矩阵理论与应用(张跃辉)习题参考解答 (上海交大)

矩阵理论与应用(张跃辉)习题参考解答 (上海交大)
矩阵理论与应用(张跃辉)习题参考解答 (上海交大)

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

2016矩阵论复习题

矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设33:R R T →是线性变换, ()()321323213212,,2,,x x x x x x x x x x x T -++-+= 求T 的零空间)(T N 和像空间)(T R 的基和维数. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++= 1)确定T 在基},,{k j i 下的矩阵; 2)求T 的像空间的基与维数.

第一学期西南交大理论力学C第3次作业答案

本次作业是本门课程本学期的第3次作业,注释如下: 一、单项选择题(只有一个选项正确,共11道小题) 1. 一点作曲线运动,开始时速度 v0=10m/s , 某瞬时切向加速度a t=4m/s2,则2s末该点的速度的大小为。 (A) 2 m/s (B) 18 m/s (C) 12 m/s (D) 无法确定 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:B 解答参考: 2. 点作曲线运动,若其法向加速度越来越大,则该点的速度。 (A) 越来越大 (B) 越来越小 (C) 大小变化不能确定 你选择的答案: C [正确] 正确答案:C 解答参考: 3. 若点的运动方程为,则它的运动轨迹是。 (A) 半圆弧 (B) 圆周 (C) 四分之一圆弧 (D) 椭圆 你选择的答案: B [正确] 正确答案:B 解答参考: 4. 图示均质杆的动量p= 。杆的质量为m,绕固定轴O转动,角速度均为 。

(A) mlω (B) mlω (C) mlω (D) 0 你选择的答案: A [正确] 正确答案:A 解答参考: 5. 图示均质圆盘质量为m,绕固定轴O转动,角速度均为ω。对转轴O的动量矩L O的大小和方向为。 (A) L O=mr2ω (顺时针方向) (B) L O=m r2ω (顺时针方向) (C) L O=m r2ω (顺时针方向)

你选择的答案:[前面作业中已经做正确] [正确] 正确答案:C 解答参考: 6. 已知P= kN,F1=,物体与地面间的静摩擦因数f s=,动摩擦因数f d=则 物体所受的摩擦力的大小为。 (A) kN (B) kN (C) kN (D) 0 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:B 解答参考: 7. 已知物块与水平面间的摩擦角,今用力F1=推动物块,P=1kN。则物块将。 (A) 平衡 (B) 滑动 (C) 处于临界平衡状态 (D) 滑动与否不能确定 你选择的答案:[前面作业中已经做正确] [正确]

上海交大研究生矩阵理论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出2 3 ,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 1122111 11 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-?????? ??=+==?? ???????? n ∑。 2.设112 2 (1,0),0 a A P P a A E λλ-??===???? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112 222 0 0 000 0 0 a λλλλλλ??????==?????????????? 1时,知1i λ=±所以所求矩阵为1 i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -?????? ===?????? --?????? 。 注:2A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩

西安交大考试卷(理论力学英文)

课程名称 理论力学A1(英) 2003 —2004学年第 1 学期 学 号 开 课 系 工程力学系 年级 本科二年级 姓 名 任课老师 柳葆生 评分 规定:仅允许携带电子词典、计算器和教师提供的课程总结 1. Member BD exerts on member ABC a force P directed along line BD. Knowing that P must have a 360-N vertical component, determine (a) the magnitude of the force P, (b) its horizontal component. (零件BD 对零件 ABC 沿BD 线施加一个力P ,已知P 的垂直分量为360-N ,计算(a ) 力P 的大小,(b )力P 的水平分量 ) 2. Two forces P and Q are applied as shown to an aircraft connection. Knowing that the connection is in equilibrium and that P = 250 N and Q = 325 N, determined the magnitude of the forces exerted on the rods A and B. (如图所示,两个力P 和Q 施加于一个飞机连接器。已知连接器处于平衡状态,并且P = 250 N 和Q = 325 N ,确定施加于连杆A 和B 上力的大小) 3. A 150 N force, acting in a vertical plane parallel to the yz plane, is applied to the 200 mm long horizontal handle AB of a socket wrench. Replace the force with a equivalent force-couple system at the origin O of the coordinate system. (一个150 N 的力,作用在平行于yz 平面的 垂直平面内,施加于一个套筒扳手200 mm 长的水平手柄上。用一个 在坐标原点O 的等效力-力偶系统代替这一力 ) 4. Knowing that the tension in wire BD is 1500 N, determine the reaction at the fixed support C of the frame shown. (已知拉索BD 中 的张力为1500 N ,确定如图示在框架固定支撑端C 的约束反力)

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1Λ=m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1,Λ=, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ΛΛ,,,,21m S S S , 其中m m m A c A c c S +++=Λ10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21Λ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1Λ=, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a ΛΛΛ2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a ΛΛΛ21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A ΛΛΛ2121) ()(2)(1)()1(τ,

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

【免费下载】控制中的矩阵理论习题

练习一: 1.设A 、是Hermite 矩阵,证明:AB 是Hermite 矩阵的充分必要条件是n n C B ?∈AB=BA 。2.设,若,则A 为反Hermite 矩阵。试证明:任意一个都n n C A ?∈A A H -=n n C B ?∈可以唯一地表示为一个Hermitet 矩阵与一个反Hermite 矩阵的和。3.证明反Hermite 矩阵的主对角线上的元素或为零,或为纯虚数。4.设是Hermite 矩阵,rank(A)=1,证明:矩阵A 的主对角线上凡不是零的元素n n C A ?∈都是具有同符号的实数;又设是反Hermite 矩阵,rank(B)=1,证明:矩阵B n n C B ?∈的主对角线上凡不是零的元素都是具有同符号的虚部之纯虚数。5.试求一酉矩阵P ,使为对角矩阵,这里AP P AP P H =-1(1)A=; (2)A=。??????????----10001i i i i ??????????-0010010i i 6. 设是Hermite 矩阵。证明A 是Hernite 正定矩阵的充分必要条件是,存在n n C A ?∈Hermite 正定矩阵B ,使得。2 B A =7.设是Hermite 矩阵,则下列条件等价:n n C A ?∈ (1)A 是Hernite 半正定矩阵; (2)A 的特征值全为非负实数; (3)存在矩阵,使得。n n C P ?∈P P A H =练习二:1.用初等变换化下列多项式矩阵为Smith 标准形:(1) ; (2);()???? ??+-=λλλλλλλ352223A ()??????????-+--=222211λλλλλλλλλλB (3) ;(4)()()220000 001C λλλλλ??+??=????+????。()()??????????????---=00000100000002222λλλλλλλD 2.求下多项式矩阵的不变因子:

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

上海交大研究生矩阵理论答案

n k r n n 1 2 习题 一 1.( 1)因 cosnx sin nx sin nx cosnx cosx sin x sin x = cosx cos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x ,故由归纳法知 cosnx sin nx A 。 sin nx cosnx ( 2)直接计算得 A 4 E ,故设 n 4 k r (r 0,1,2,3) ,则 A n A 4 k A r ( 1) A , 即 只需算出 A 2, A 3 即可。 0 1 0 1 ( 3 )记 J= ,则 , 1 0 n 1 n 1 2 n 2 n a C n a C n a C n a n C 1 a n 1 C n 1a A n (aE J ) n n C i a i J n i i 0 n n a n 。 C 1a n 1 a n 2. 设 A P 1 a 2 P 1(a 1,0),则由A 2 E 得 a 1时, 1 1 1 1 0 1 2 1 2 1 0 2 不可能。 1 而由 a 1 0时, 2 1 知 1 所以所求矩阵为 PB P 1 , 其中 P 为任意满秩矩阵,而 i i 2 2 2 1 0 1 0 1 0 B 1 , B 2 , B 3 。 0 1 0 1 1 注: A 2 E 无实解, A n E 的讨论雷同。 3. 设 A 为已给矩阵,由条件对任意 n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2 个未知数时线 性方程 AX XA=0 有 n 2 个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵, 1

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

第二章习题及参考解答 注:第27题(2)(3)错(可将“证明”改为证明或否定),第28题可不布置。第50题(含)以后属于附加内容,没有参考解答。 1.证明子空间判别法:设U是线性空间V的一个非空子集.则U是子空间??对任 意λ∈F,α,β∈U,有α+β∈U与λα∈U. 证明:必要性是显然的,下证充分性。设U关于加法“+”与数乘均封闭。则U中加法“+”的结合律与交换律以及数乘与“+”的分配律、1α=α均自动成立,因为U?V.由 于U关于数乘封闭,而0=0α∈U,?α=?1α∈U,因此U是子空间。 2.证明子空间的下述性质。(1)传递性:即若U是V的子空间,W是U的子空间,则W 也是V的子空间; (2)任意多个(可以无限)子空间的交集仍是子空间,且是含于这些子空间的最大子空间; 特别,两个子空间U与W的交U∩W仍是子空间. 证明:(1)由子空间判别法立即可得。 (2)由子空间判别法可知任意多个(可以无限)子空间的交集仍是子空间,且若某个子空 间含于所有这些子空间,则该子空间必然含于这些子空间的交。 3.(1)设V是线性空间,U与W是V的两个子空间.证明: dim(U+W)=(dim U+dim W)?dim(U∩W). (2)设V是有限维线性空间.证明并解释下面的维数公式: dim V=max{m|0=V0?V1?···?V m?1?V m=V,V i是V i+1的真子空间} 证明:(1)设dim U=s,dim W=t,dim(U∩W)=r.任取U∩W的一组基α1,α2,···,αr.由于U∩W是U与W的公共子空间,故U∩W的基是U与W的线性无关的向量组,因此 可以扩充成U或W的基.设 α1,α2,···,αr,βr+1,βr+2,···,βs(0.0.1) 与 α1,α2,···,αr,γr+1,γr+2,···,γt(0.0.2) 分别是U与W的基.我们证明 α1,α2,···,αr,βr+1,βr+2,···,βs,γr+1,γr+2,···,γt(0.0.3) 是U+W的一组基.为此需要证明该向量组线性无关,且U+W的任何向量均可由这些向量 线性表示. 设 k1α1+k2α2+···+k rαr+b r+1βr+1+···+b sβs+c r+1γr+1+···+c tγt=0.(0.0.4) 12

西交大《理论力学》在线作业.

西交《理论力学》在线作业一,单选题 1. 一重量P=500 N的物体,放在倾角为20°的斜面上。现有一力F=1000 N,当它从与斜面垂直的方向逆时针转到与斜面夹角为60°时,物体才开始下滑。则摩擦角为()。 A. 26.67 B. 30 C. 12 D. 40 正确答案:A 2. 在任一瞬时定轴转动刚体上任一点的全加速度大小都与该点的转动半径成正比,其方向与各点所在转动半径夹角()。 A. 都相同且小于90° B. 都不相同 C. 为任意角 D. 不知道正确答案:A 3. A物体放在在B平面,A重力为60kN,拉力大小为20kN,方向斜向上与水平线夹角30°,两物体间的静摩擦因数为0.5,动摩擦因数为0.4,则物块A所受的摩擦力的大小为()。 A. 25kN B. 20kN C. 17.32051kN D. 0 正确答案:C 4. 对任何一个平面力系()。 A. 总可以用一个力来与之平衡 B. 总可以用一个力偶来与之平衡 C. 总可以用合适的两个力来与之平衡 D. 总可以用一个力和一个力偶来与之平衡正确答案:C 5. 二力平衡条件的适用范围 是()。 A. 刚体 B. 刚体系统 C. 变形系统 D. 任何物体或物体系统正确答案:A 6. 三力平衡定理是()。 A. 共面不平行的三个力互相平衡必汇交于一点 B. 共面三力若平衡,必汇交于一点 C. 三力汇交于一点,则这三个力必互相平衡 D. 三力若平衡必汇交一点正确答案:A 7. 在拉车时,根据轮子的滚动条件分析可知,如果道路硬,轮胎变形小且()那么拉车就省力。 A. 轮胎变形大 B. 不知道 C. 车轮直径大D. 车轮直径小正确答案:C 8. 质点系动能对时间的()导数,等于作用于质点系的所有力的功率的代数和。 A. 一阶 B. 二阶 C. 三阶 D. 四阶正确答案:A 9. 当物 体处于临界平衡状态时,静摩擦力Fs的大小()。 A. 与物体的质量成正比 B. 与 物体的重力在支承面的法线方向的大小成正比 C. 与相互接触物体之间的正压力大小成正比 D. 由力系的平衡方程来确定正确答案:C 10. 以下运动着的物体不为自 由体的是()。 A. 飞行的飞机 B. 飞行的导弹 C. 出枪膛后做抛物线运动的子弹 D. 在轨道上高速奔驰的列车正确答案:D 11. 一力与x轴正向之间的夹角θ为钝角,则该力在x轴上的投影为()。 A. Fx=-Fsinθ B. Fx=Fsinθ C. Fx=-Fcosθ D. Fx=Fcosθ 正确答案:C 12. 在直角坐标系的点(2,2)作用一力,力的方向沿y轴正向,大小为10N,则该力对原点的力矩为()。 A. 20N.m B. 10N.m C. 40N.m D. 28.28N.m 正确答案:A 13. 当牵连运动为平移时,则牵连加速度等于牵连速度对时

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

上海交通大学理论力学2012-2013学年期中试卷(含答案)81学时

1. 如图所示,平衡系统由杆OA ﹑杆AB ﹑杆BD ﹑杆BC 和杆CD 组成。铰O 为固定端支座,铰D 为固定铰支座,铰A ﹑B ﹑C 为圆柱铰。图示位置AB 和CD 水平,OA 和BC 铅垂。 已知:a CD BC AB OA ====。杆CD 的中点E 作用铅垂力F v ,大小为F 。杆OA 上作用一力偶1M ,力偶矩的大小为Fa M 21=,杆BC 上作用一力偶2M ,力偶矩的大小为Fa M =2,不计各物体的重量。 求:(1) 杆BD 的内力(注明拉压力); (2) 固定端O 作用于杆OA 的约束力和约束力偶。(20分) 解: 由于不计各物体的重量,杆AB 和杆BD 均为两力杆。 如图建立参考基[]T y x v v r =e , 以杆BD ﹑杆CD 和杆BD 组成的系统为研究对象:

0)(1 =∑=i n i z D F M v 02 1 2=+?a S M aF AB (3分) 解得:2 F S AB =(拉力)(1分) 以杆BD 为研究对象: 0)(1 =∑=i n i z C F M v 02 12=?? M a S a S BD AB (3分) 解得:F S BD 2 2 ? =(压力)(1分) AB S r BD S r D AB S r

以杆OA 为研究对象: 01=∑=n i ix F ,0=+AB x O S F (2分) 01=∑=n i iy F ,0=y O F (2分) 0)(1 =∑=i n i z O F M v 01=++?O AB M M a S (3分) 解得:F F x O 21?=,0=y O F ,Fa M O 2 3 ?=(2分) 2. 如图所示,梯子由杆OA 和杆AB 组成, 铰O 为固定铰支座,铰A 为圆柱铰,杆AB 搁置在地面上,接触点为端点B 。杆OA 和杆AB 的长度均为l ,图示位置杆OA 和杆AB 的倾角均为60o 。杆AB 与地面接触点B 的静摩擦因数为3 21= s f 。人的重量为W , 不计杆OA 和杆AB 的重量。设梯子始终保持平衡,计算 (1) 人到达的最高点P 与点B 的距离x 。 (2) 如果人能够到达的最高点A ,接触点B 的摩擦角至少应该多大? (15分) M

上海交大研究生矩阵理论答案

|讪 而由a = 0时, 〔0 其中P 为任意满秩矩阵,而 注:A = -E 无实解,A n =E 的讨论雷同。 性方程AX -XA=0有n 2 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵, 习题 -cosnx sin nx[ 1-("因[L sinnxcosnx 丄sin C0SX sin x = COs(n 1)x sin(n 1)x ,故由归纳法知 x cosx f-sin(n 1)x cos(n 1)x A n cosnx sin nx '-sinnx cosnx (2)直接计算得 A 4 - -E ,故设 n =4k r(r =0,1,2,3),则 A n = A 4k A r =(-1)k A r ,即 只需算出A 2, A 3即可。 (3 )记 J= ,则 a n C :a n n i i n _i_ A =(aE J) = 6 C n a J i =0 n 』亠2 n _2 C n a C ;a nJ n a III c :〕 III c^a C : a n 」 n a 2?设 A =P F a 1 -0 /一 2 _ P’yo),则由 A 2 =E 得 冷0 1 〔0 1 一 ,B 2 = 【0 -0] ,艮 0] 。 -1 i 0 -k 0 1 2 _0 所以所求矩阵为PB i P’ , 3?设A 为已给矩阵,由条件对任意 n 阶方阵 X 有AX=XA ,即把X 看作n 个未知数时线

通过直接检验即发现 A 为纯量矩阵。a n ? a n 1 ■ 11( ? = 0 5.先证A 或B 是初等到阵时有 AB *=B *A * ,从而当A 或B 为可逆阵时有 AB 、B *A *。 考虑到初等变换 A 对B 的n 阶子行列式的影响及 A 二A‘即可得前面提到的结果。 下设PAQ = E r 0 ,(这里P , Q 满秩),则由前讨论只需证下式成立即可: 〔0。」 6 .由 r(A)二 r(A —)及 AX 二 0= (AX)—AX = 0,即 AX = 0 与 A —AX = 0 同解,此即所 求证。 7.设其逆为 a j ,则当I 固定时由可逆阵的定义得 n 个方程 .i 1 . 1 2 . 1 n-1 ? a

矩阵理论试题

矩阵理论2007年考试 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> , 如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323121000a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵. ( ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ) 7、如果12(,,,) T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ) 8、0010140110620 118A ??????=?????? 至少有2个实特征值. ( ) 9、设,n n A C ?∈则矩阵范数m A ∞与向量的1-范数相容. ( ) 10、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||1 1||||1max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==, 1 1100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

相关文档
最新文档