基于Snake模型的医学图像分割研究

基于Snake模型的医学图像分割研究
基于Snake模型的医学图像分割研究

基于Snake模型的医学图像分割研究

刘元张波

(兰州交通大学电子与信息工程学院 730070)

摘要:医学图像分割是指从医学图像中提取出医生感兴趣的目标,以便进行临床诊断和医学研究。医学图像分割的速度和准确性对医生进行诊断有直接影响,由于医学图像具有模糊和不均匀等特点,加之受到图像噪声、成像质量等多方面的影响,传统的图像分割方法很难获得满意的分割效果。本文对多种改进的Snake算法进行研究后,将基于梯度向量流的主动轮廓方法(GVF Snake)作为本文的分割方案,并对算法的具体实现进行了讨论。最后以OpenCV为平台实现算法,并对分割的结果进行了评估。

Abstract:Medical image segmentation is extract the interested target from the medical image for clinical diagnosis and medical research.The speed and accuracy of Medical image segmentation have a direct impact to the doctors diagnosis, as the medical image is fuzzy and uneven and so on, plus the image noise, quality and other aspects, traditional method of image segmentation is difficult to obtain satisfactory segmentation. This paper based on gradient vector flow active contour method (GVF Snake), after researched a variety of improved Snake algorithm. And discussed the proposed of the algorithm. Finally, implement the algorithm on OpenCV platform, and evaluated the segmentation results.

关键词:图像分割,主动轮廓模型,梯度向量场

0 引言

医学图像是医生进行诊断与研究的重要工具,医学图像分割就是将图像中感兴趣的部分提取出来,以便进一步处理,如病灶、器官的三维重建等。由于医学图像具有模糊和不均匀等特点,加之受到图像噪声、成像质量等多方面的影响,传统的图像分割方法很难获得满意的分割效果。在这个领域已经产生了很多图像分割方法[1]。

Kass等人提出的参数活动轮廓模型(parametric active contour model—snake)[2],能利用图像的高层信息,在图像分割领域有重大的利用价值。但经典的活动轮廓模型由于仅用到图像边缘梯度信息而忽略了区域信息,使得在检测弱边缘时会产生溢出;而且过度依赖初始轮廓的选择,在演化过程中容易陷入局部最优;另外还存在抗噪声能力不足等问题,对医学图像的分割效果并不理想。Cohen等人[3]提出的“balloon”模型,在外力中增加膨胀力,使目标内部的点在膨胀力的作用下收敛到目标边缘。并且提出标准化外部力,使得不论图像梯度绝对值的大或小,对轮廓线都有相同的影响。该模型的不足之处在于在图像力较弱的边界,轮廓会产生一定的外突现象。Xu Chenyang[4]等提出了GVF Snake方法,它是采用一种新的静态图像作用力来代替模型中的图像力,这种力不会随着时间变化而变化,而且也不依赖于初始轮廓线的位置,称之为梯度向量流(Gradient Vector Flow,GVF),这种方法通过将图像的梯度矢量向外扩散,扩大Snake模型中外部力的捕捉范围,能较好的收敛到目标的深度凹陷区域,从而提高了传统Snake的性能。

1 活动轮廓模型

1.1 经典Snake 模型

Kass 等[2]提出的经典Snake 模型由一组控制点组成:

()[(),()]v s x s y s = [0,1

]s ∈ (1-1) x(s)和y(s)分别表示每个控制点在图像中的坐标位置,s 是以傅立叶变换形式描述边界的自变量,轮廓线的能量由内部能量和外部能量组成,基本的能量构成表示为:

to ta l In te rn a l E x te rn a l E la stic B e n d in g E x te r n a l C C E E

E E E E =+=++?? (1-2)

其中:

2

12()E la s tic s C E s v d s α=? (1-3)

2

12()B e n d in g s s C E s v d s β=?

(1-4) 2()(())E xtern a l E s I v s γ=-? (1-5)

E la s tic E 为弹性能量,B e n d in g E 为弯曲能量,s v 和s s v 是v(s)对于s 的一阶和二阶导数

()s d v s v d s =,22()s s d v s v d s =。一阶导数反映曲线的连续性,二阶导数反映曲线的平滑性。在

活动轮廓发生形变时,弹性能量使轮廓收缩,弯曲能量抵抗变形,保持曲线平滑。E x te r n a l E 为外部能量,也称图像力,主动轮廓模型的关键就在于如何定义外部能量,使得能量的最小化满足期望结果的图像特征。

然而,经典Snake 模型的外部力仅存在与目标边界周围,即外部力的捕捉范围很小,若初始轮廓离目标边界较远,则达不到理想的分割效果,并且由于凹型区域内部只有水平方向的力,轮廓线难以深入。

1.2 GVF Snake 模型

梯度向量流(Gradient Vector Flow ,GVF)将图像的梯度矢量向外扩散,比图像力更加有序、更能体现物体边界的宏观走势。该算法设灰度图像(,)I x y 的一个边界图(,)(,)e x t f x y E x y =-?,GVF 定义为向量场(,)((,),(,))V x y x y v x y μ=并满足下式的最小

值:

222222()x y x y u u v v f V f d x d y εμ=++++?-??? (1-5)

其中,(,)x y 为象素点的坐标,f ?为(,)x y 处的梯度,μ为噪声因子。用来控制积分中第一,二项之间的平衡,μ值与噪声的影响有关,噪声越大,μ值也就越大。在接近目标边界的区域,f ?较大,能量主要由积分的第二项来控制,当V f ≈?时能量接近最小值,这样就使得(,)V x y 接近于目标边界的梯度;在远离目标边界的区域,f ?较小,能量主要由向量场的偏微分来决定,最小化过程会产生一个会逐渐聚合到目标边界并缓慢变化的力场。因此GVF Snakes 扩大了模型的搜索范围,对轮廓线初始位置不会敏感,轮廓线也能较快的收敛到目标边界。同时,GVF 也能对凹陷边界也能进行捕捉。

2. GVF Snake 算法的实现

在进行分割方法前,需要对医学CT 图像进行一定的预处理,得到满足分割要求的图像,本文采用的灰度化方法为加权平均值法[5]。文本在OpenCV 平台的GUI 界面中,用鼠标点取控制点,程序会将控制点自动连线,进而呈现出所绘制的初始轮廓线。取得初始轮廓线后,若不封闭,则连接第一个和最后一个点使之封闭,并使用中点插值使轮廓点的间距处在一个合理的范围。

2.1 梯度向量流的计算

根据公式1-5 ,通过变分法,解下列欧拉方程就可以得到梯度向量流场向量场(,)V x y :

222

()()0x x y u u f f f μ?--+= (2-1)

222()()0y x y v v f f f μ?--+= (2-2) 对于边界图两个方向上的梯度值x f 和y f ,边界图边缘上的像素点的梯度值一律为零,

其他的像素点的梯度值用中心插值(四邻域)的方法计算。对于非边缘的点的u 和v 的二阶微分计算,采用经典的拉普拉斯算子[6]。运用有限差分来估算偏导数:

[]2

(,)(,1)(,1)(1,)(1,)/4(,)u i j u i j u i j u i j u i j u i j ?=-+++-++- (2-3) []2(,)(,1)(,1)(1,)(1,)/4(,)v i j v i j v i j v i j v i j v i j ?=-+++-++- (2-4) u 场和v 场的二阶微分计算完后,根据下面的迭代公式:

121

,,,,(1)(,)4n n i j i j i j i j u b t u r u i j c t +=-???+???+?? (2-5)

122,,,,(1)(,)4n n i j i j i j i j v b t v r v i j c t +=-???+???+?? (2-6)

计算出u 场和v 场的值,其中t

r x y μ?=??,由于x ?,y ?和μ一般都是定值,则时间步长必须满足条件4x y

t μ???≤(Courant –Friedrichs –Lewy 步长限制条件),才能满足GVF 收敛。

2.2 内部能量和曲线演化

根据经典Snake 算法的数学定义,内部能量由弹性能量和弯曲能量组成,这两个能量都是由轮廓自身决定的,和图像的特征无关。弹性能量能抑制曲线的伸长,弯曲能量能抑制曲线弯曲,合称为内能。在没有外能的情况下,内能的作用是使曲线平滑地收缩。本文使用的是Williams 和Shah 提出的内部能量的计算方法[7],该方法对于控制点邻域上的每个点计算内部能量的公式为:

[][]_tan E la stic E x y a vg d is ce =-

(2-7)

[][]B en d in g E x y = (2-8) avg_distance 为轮廓线上所有控制点的平均距离,随着控制点位置的变化而变化。通过这样计算距离偏差的方法可以使得每个控制点获得不同的弹性能量,进而在迭代的过程中趋近于均匀分布,保证曲线的连续性;同时,这种在离散的状态下计算曲率的方法较为方便,能提高算法的执行效率。

线的演化就是在内外力共同作用下,朝着目标边界收敛的过程。在每一次曲线变化时,都会先根据控制点之间的间距,动态的添加和删除控制点,以保证曲线的正常收敛。然后根据Williams 和Shah 提出的贪婪算法,运用每次变化状态下每种能量的值,在每个控制点的领域上寻找合适的更新点,将控制点移动过去,该算法是将原来仅对控制点的计算转换到控制点领域上的每一点,这样通过计算每个轮廓点局部的能量最小值,进而得到整个轮廓线的最小值,完成轮廓线的变化。曲线演化的方程为:

(,)''(,)''(,)t X s t X s t X s t V αβγ=-- (2-9)

2.3 算法实现

本文基于梯度向量流主动轮廓算法的主要实现过程如下:

Step 1:调用Initialize(InitContour)函数,得到在图形用户界面(GUI )上绘制好的初始轮廓线并得到其信息。

Step 2:调用GetEdgeImage(srcImage),得到需分割图像的边界图f(x,y)。

Step 3:调用GetGvf(iteration,f),得到边界图f(x,y)的梯度向量流,iteration 为计算梯度向量流的迭代次数。

Step 4:调用GetElastic(SnakeArray[i]),gvfSnake.GetBending(SnakeArray[i])得到内部能量,即弹性能量和弯曲能量。

Step 5:调用SnakeDeform(srcImage):综合所有能量进行曲线的变化,并得到轮廓线的最终收敛结果。

其中,对于曲线演化的迭代,本文采用的是3x3邻域,在控制点邻域上查找能量最小点并更新控制点。

3. 结果分析

为了验证基于梯度向量流主动轮廓算法的有效性,本文给出以下几组实验结果:图3-1为对普通的二值图像(目标为圆形)和二值图像(目标为多边形)分割的效果图,可以看出对于这类简单的二值化的目标图像,即使多边形有一定的凹点,也能到达较好的收敛效果(参数α=0.01,β=0.015,γ=0.5,μ=0.2)。

图3-1 二值图像分割效果图

就目前的医学图像应用来说,使用梯度向量流主动轮廓模型分割的主要是二值模型图或噪声较小的CT和MRI图像。图3-2为运用基本梯度向量流主动轮廓算法对本文CT图像进行分割的效果图,结果反映出使用梯度向量流主动轮廓模型对存在模糊边界和噪声的医学图像能达到较好的分割效果(参数α=0.01,β=0.02,γ=0.5,μ=0.2)。

图3-2 医学CT图像分割效果图

4.结束语

本文讨论了Snake模型及GVF Snake模型的实现方法及其在医学图像分割中的应用。通过实验结果可看出,GVF Snake模型能够克服经典Snake模型的局部性,和轮廓线无法深入凹型区域内部的问题。针对医学图像边界模糊,噪声较大的特点,GVF Snakes轮廓线对初始位置敏感度较低,轮廓线也能较快的收敛到目标边界,也具备一定的抗噪声能力。同时

该算法可根据图像的特点和具体分割的要求调整参数和迭代次数,得到不同的图像分割效果,有一定的灵活性。

参考文献

[1]林瑶,田捷.图像分割方法综述.模式识别与人工智能,2002,15(2):192-204.

[2] M Kass, A Witkin, D Tezopoulos. Snake: Active Contour Models[J]. International Journal of

Computer Vision, 1987, 1(4): 321-331.

[3] Cohen L D. On active contour models and balloons[J]. CVGIP: Image Understanding, 1991, 53(2): 211-218.

[4] Xu C, Prince P L. Snakes, Shapes, and Gradient Vector Flow[J]. IEEE Transaction on Image Processing, 1998, 7(3): 357-369.

[5] 刘文耀.光电图像处理[M].北京:电子工业出版社,2002.

[6] (美)冈萨雷斯等著.阮秋琦等译.数字图像处理(第二版)[M].北京:电子工业出版社,2007.

[7] Williams D J, Shah M. A Fast algorithm for active contours and curvature estimation[J]. CVGIP: Image Understanding, 1992, 55(1): 14-26.

作者简介:

刘元,男,1983年10月生,现于兰州交通大学电子与信息工程学院攻读硕士学位,通信地址:兰州交通大学34号信箱,邮编730070,电子邮件isoftk@https://www.360docs.net/doc/0612343192.html,

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

医学图像分割方法汇总

医学图像分割方法汇总 本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。 1阈值法分割 1-1 简单阈值分割 简单的阈值处理是图像分割中最为简单基础的一种分割方法。对于一副灰度图像,使用给定的阈值。图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图1.2是利用五个不同的阈值对脑部图像(图 1.1)的分割结果。(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。 图1.1原始脑部图像

图1.2 使用不同阈值分割后的结果 从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。 1-2 otsu阈值分割法 Otsu阈值分割法又称大津阈值分割法。它的原理是对图像所有的像素围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。 原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。 假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

医学图像的分割

第六章医学图像分割 医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。 第一节医学图像分割的意义、概念、分类和研究现状 医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。 所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。一般说来,有意义的图像分割结果中至少存在一个包含感兴趣目标的区域。

改进的B-Snake模型肝脏CT图像分割算法

Computer Engineering and Applications 计算机工程与应用 2015,51(9)1引言随着计算机图形学技术以及虚拟仿真技术的不断发展,虚拟手术技术特别是虚拟肝技术已经有了很大的发展[1]。三维肝脏模型跟肝脏的二维数字断层图像相比,更直观,更能展现人体器官的三维结构和形态,因此肝脏三维重建技术已广泛运用于虚拟手术中。由于每个病人的肝脏器官外形都不一样,病灶也不一样,如何构造出个性化的肝脏模型是肝脏虚拟手术中重要的研究方向之一,而肝脏模型的个性化又是以肝脏CT 图像 的三维分割为前提的,因此,肝脏CT 图像的三维分割算法的研究具有很重要的意义[2]。但是由于肝脏及其周围组织结构的复杂性,肝脏CT 图像的三维分割一直都是一项挑战性的任务,很多科研工作者已经在这方面进行了研究[3]。 传统的图像分割方法一般可以分为三类:基于阈值的分割、基于边缘检测的分割和基于区域的分割[4]。改进的B-Snake 模型肝脏CT 图像分割算法 王杰雄,陈国栋,陈怡 WANG Jiexiong,CHEN Guodong,CHEN Yi 福州大学物理与信息工程学院,福州350002 College of Physics and Information Engineering,Fuzhou University,Fuzhou 350002,China WANG Jiexiong,CHEN Guodong,CHEN Yi.Improved B-Snake segmentation method for liver CT https://www.360docs.net/doc/0612343192.html,puter Engineering and Applications,2015,51(9):152-157. Abstract :The personalization of liver models,which is premised on the 3d segmentation of liver CT images,is a key technology in the virtual surgery of liver.Considering the features of B-Snake model,this paper presents an improved B-Snake segmentation algorithm combined with Region Filling.The contour of the adjacent and processed section is mapped on the current section.Based on the contour,it gets a connected region according to Region Filling algorithm and compares the region with the liver region of the adjacent and processed section according to certain algorithm in order to obtain a more accurate contour.The resulting contour is close to the liver boundary,and large amount of the control points are on the right boundary.Then,the contour is served as the initial contour of the improved B-Snake algorithm for further processing,resulting in the final segmentation result after the evolution of part of the initial contour.The algorithm will not end untill all sections are processed.Experimental results show that the algorithm can obtain segmentaion result of liver CT images efficiently and accurately. Key words :liver;image segmentation;region filling;active contour model 摘要:肝脏模型的个性化是肝脏虚拟手术系统中的一个关键技术,而肝脏模型的个性化又是以肝脏CT 图像的三维分割为前提的。针对B-Snake 模型的特点,提出一种结合区域填充的改进B-Snake 模型图像分割算法。将相邻的上一张切片的分割结果映射到当前切片上,根据一定的规则进行区域填充,并将填充后的结果与前一张切片的分割结果按一定的算法进行比较,进一步优化。得到的初始轮廓很接近肝脏的真实边界,而且大部分曲线已在边界上,将其作为改进的B-Snake 模型算法的初始轮廓,只需对其进行部分控制点的优化调整,就可得到准确的分割结果。以此类推,直到处理完所有切片图。实验表明,该算法能有效提高分割的准确度,获得较满意的分割结果。关键词:肝脏;图像分割;区域填充;活动轮廓模型 文献标志码:A 中图分类号:TP317.4doi :10.3778/j.issn.1002-8331.1306-0111 基金项目:福建省科技计划重点项目(No.2011H0027)。 作者简介:王杰雄(1989—),男,硕士研究生,研究领域为图像处理与通信;陈国栋(1979—),男,博士研究生,助理研究员,研究领域 为计算机图形学;陈怡(1990—),男,硕士研究生,研究领域为图像处理与通信。E-mail :wangjiexiong_1989@https://www.360docs.net/doc/0612343192.html, 收稿日期:2013-06-13修回日期:2013-09-04文章编号:1002-8331(2015)09-0152-06 CNKI 网络优先出版:2013-11-12,https://www.360docs.net/doc/0612343192.html,/kcms/detail/11.2127.TP.20131112.1119.011.html 152

图像分割技术在医学图像处理中的应用研究

2007年3月第期 3TAIYU ANSCI-TECH 图像分割是指将图像分割成各具特征的区域并提取出感兴趣的目标的技术和过程,是图像处理到图像分析的关键步骤。在医学领域中,图像分割常常用于病变区域提取,特定组织测量以及实现三维重建研究,因此研究图像分割技术在医学图像处理过程中具有十分重要的意义。 1基于区域的分割方法 基于区域的分割方法是利用区域内的特征的相 似性把图像划分为一系列有意义的区域。 1.1阈值法 阈值法是一种最常用的并行区域技术,阈值是 用于区分不同目标的灰度值。阈值分割方法的结果依赖于阈值的选取,确定阈值是阈值分割的关键,阈值分割实质上就是按照某个准则求出最佳阈值的过程。 阈值法的优点是计算简单、运算速度快,特别是不同物体或结构之间有较大的强度对比时,能够得到很好的分割效果,此分割方法通常是交互式的,由于阈值法能实现实时操作,所以它更易于建立在用户视觉估计的基础上。 阈值法的缺陷是:最简单形式的阈值法只能产 生二值图像来区分两个不同的类别。此外,阈值法在考虑像素本身灰度值的同时并不考虑图像的空间分布,这样其分割结果就对噪声很敏感。针对它的不足,一些学者提出了许多经典的算法,如局部阈值、模糊阈值,随机阈值等方法。阈值分割对于 CT图像的效果较好,但在选取阈值时需要用户依 经验判断,或者先做多次尝试性分割后再对阈值进行调整,直至用户满意为止。Kim等用多次阈值分割法检测螺旋CT图像中的肺结性病变,共检测了 24例病人的827张图像,检测结果灵敏度为96%, 并且没有出现假阳性结果[1]。 1.2区域生长法 区域生长法是根据预先定义的标准,提取图像 中相连接的区域的一种分割方法。采用区域生长法的关键在于种子点的位置选择、生长准则和生长顺序。 区域生长法对面积不大的区域进行分割时,效果显著,如果对面积较大的区域进行分割,则计算速度就会减慢。另外,对于图像中不相邻而灰度值相同或相近的区域,不能一次分割出来,只能一次分割一个区域。 2基于边界的分割方法 基于边界的分割方法是利用不同区域间像素灰 度不连续的特点检测出区域间的边缘,从而实现图像分割。根据边缘检测方法的不同,通常把边缘检测方法分成串行边缘检测和并行边缘检测两大类。 2.1串行边缘检测法 串行边缘检测法首先要检测出一个边缘起始 点,然后根据某种相似性准则寻找与前一点同类的 边缘点,这种确定后续相似点的方法称为跟踪。根据跟踪方法的不同,这种串行边缘检测方法又可分为轮廓跟踪、光棚跟踪和全向跟踪3种。 图像分割技术在医学图像处理中的 应用研究 马春梅1,刘贵如2,王陆林3 文章编号:1006-4877(2007)03-0064-02 收稿日期:2007-01-19;修回日期:2007-02-10 作者简介:马春梅(1978-),女,山西朔州人。2005年9月就 读于山西大学,攻读硕士学位,助教。 (1.山西忻州师范学院数学系,山西 忻州 034000;2.云南师范大学计算机科学与信息技术学院,云南 昆明650092; 3.西南交通大学,四川 成都 610031) 摘 要:图像分割是图像处理、图像分析的关键步骤,而医 学图像分割是图像分割的一个重要的应用领域,也是一个经典难题。从应用的特定角度,论述了医学图像处理中图像分割的几种算法,对近年来医学图像分割的新方法或改进算法进行了阐述,并简要介绍了每种算法的特点及应用。关键词:图像分割;医学图像处理;边缘检测中图分类号:TP391.41 文献标识码:A 应用技术

医学图像分割综述

医学图像分割综述 郭爱心 安徽大学 摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。 关键字:医学图像分割意义方法评估标准发展前景 A Review of Medical Image Segmentation Ai-Xin Guo Anhui University Abstract:Image segmentation is the key of image processing and analysis.With the development of medical image,image segmentation is of great significance in medical applications.From the perspective of medical applications,this paper made a simple review of the medical image segmentation on it’s significance、methods、evaluation standards and development prospects. Key words:medical image,segmentation,significance,methods,evaluation standards,development prospects 1.医学图像分割的意义 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超声)及其它医学影像设备所获得的图像[2]。医学图像分割是将原始的2D或3D图像划分成不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来[1]。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。 医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,由于人与人之间有很大的差别,且人体组织结构形状复杂。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 2.医学图像分割的方法 2.1.基于区域的分割方法 基于区域的分割方法有阈值法,区域生长和分裂合并,分类器与聚类和基于随机场的方法等。 阈值分割是最常见的并行直接检测区域的图像分割方法。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开[2]。阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围

snake图像分割

计算机视觉实验二 ——图像分割:snake轮廓模型 简介 Snake是Active Contour Model的一种,它以构成一定形状的一些控制点为模版(轮廓线),通过模版自身的弹性形变,与图像局部特征相匹配达到调和,即某种能量函数极小化,完成对图像的分割。每一个Snake都是能量最小曲线,受外部限制力引导及图像力的影响使它向着线和边缘等特征移动。Snakes是活动轮廓模型:他们自动跟踪附近边缘,准确地使曲线集中。尺度空间(scale-space)的连续性用来去扩大对特征周围区域的捕获。Snakes提供一种许多视觉问题的统一的解决方法,包括检测边,线及主观轮廓;移动跟踪;及立体匹配。我们成功使用Snakes用于交互解释(interactive interpretation),即用户提出一种限制力引导Snake靠近感兴趣的特征。 基本snake性能 我们的基本snake模型是一条被控制的连续曲线,其曲线受图像力和外部限制力的影响。内部样条(splint)力用来加以分段平滑限制。图像力把snake推向显著图像特征,如线,边,主观轮廓等等。外部限制力负责推动snakes靠近理想的局部最小值。例如这些力,可以来自使用者接口,自动注意机制(automatic attentional mechanisms),或者高层解释(high-level interpretations)。 实验关键步骤代码 1.获取手动取点坐标,该部分代码如下 14 % ========================================================================= 15 %获取手动取点坐标 16 % ========================================================================= 17 %读取显示图像 18 %I = imread('Coronary_MPR.jpg'); 19 I = imread('plane.png'); 20 %转化为双精度型 21 %I = im2double(I); 22 %若为彩色,转化为灰度 23 i f(size(I,3)==3), I=rgb2gray(I); end 24 f igure(1),imshow(I); 25 %---------------------------

医学图像分割方法综述

医学图像分割方法综述 随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。文章针对近年来提出的图像分割方法进行了总结。 标签:图像分割;区域生长;聚类;水平集;图割 1 概述 图像分割是图像处理和计算机视觉领域的基础。分割结果直接影响着后续任务的有效性和效率[1]。图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。 2 图像分割方法分类 医学图像有各种成像模态,比如CT、MRI、PET、超声等。由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。 2.1 聚类法 聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。 K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下: 其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x 表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。显然,J越小表明聚类效果越好。 K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中隨机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上

医学图像分割综述

龙源期刊网 https://www.360docs.net/doc/0612343192.html, 医学图像分割综述 作者:王益东 来源:《健康必读(上旬刊)》2018年第04期 【摘要】医学图像分割是指在医学图像中,利用计算机视觉技术,根据区域内像素的相 似特性(纹理等)以及区域间的不同特性,将图像中感兴趣的区域(ROI)提取出来,获取有关人体组织器官的有效信息,反馈给医生以及学者作为诊断依据。随着计算机技术的日新月异和医疗设备的快速发展,医疗图像分割技术在影像医学中的作用日益增大。本文首先介绍了医学图像分割的背景及其应用。接着,详细分析了相关图像分割算法。最后,总结了医疗图像分割技术在目前面临的困难与挑战,并提出了展望。 【关键词】医学影像;图像分割 【中图分类号】TP391.41 【文献标识码】A 【文章编号】1672-3783(2018)04-0281-01 1 引言 近几年来,随着计算机视觉技术和磁共振成像技术(MRI)、正电子放射层析成像技术(PET)、计算机断层成像(CT)、单光子辐射断层摄像(SPECT)、超声(Ultrasound)等医学影像设备的飞速发展,医学图像分割技术在影像医学中所发挥的作用越来越大。医学图像分割技术则是把医学图像分割成若干个具有不同特性的区域,区域内保持一定的相似性,区域间有一定的相异性,从而提取出感兴趣的部分。 医学图像分割在临床诊断中发挥着重要作用,如: (1)生物医学图像分析:解剖结构的测量、心脏运动跟踪等。 (2)组织、器官定量分析:通过对人体器官或是病变器官容积的定量检测,为医生的临床诊断提供依据。 (3)医学图像3D重建:用于外科手术的仿真、药物治疗的评估等。 目前,医学图像分割技术的发展仍然面临一些困境,主要原因在于医学图像的多样性、复杂性及其采集的困难性。由于人体器官位置的特殊性,医学图像采集较为困难,图形容易受到组织运动等问题的影响,所采集的医学图像相交于普通图像而言,噪声较大。并且人体间存在个体差异,不同人体的组织和器官差异较大。因此,针对医学图像对图像分割技术进行研究,显得尤为重要。 2 医学图像分割算法

医学图像处理技术

医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。 2.2关键技术: 图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自

医学图像分割综述

医学图像分割综述 楼琼,11106109 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像处理的意义越来越重大,其一般流程如下图: 而图像分割技术是图像分析环节的关键技术,其在影像医学中发挥着越来越大的作用 [1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析, 诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开,这些区域是互相不交叉 的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中(,)g x y 0_x Max x ≤≤,0y Max y _≤≤,进行分割就是将图像划分为满足如下条件的子区域:

a) ,即所有子区域组成了整幅图像。 1(,)(,)N k k g x y g x y ==∪b) 是连通的区域。 k g c) (,)(,)k j g x y g x y φ=∩,即任意两个子区域不存在公共元素。 d) 区域满足一定的均一性条件。其中均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 k g 如果连通性的约束被取消,那么对像素集的划分就称为分类,每一个像素集称为类。简便起见,在下面的叙述中将经典的分割和像素分类通称为分割。 医学图像分割至今仍然没有获得很好的解决,其中一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,人体组织结构形状复杂,而且人与人之间有很大的差别。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论、偏微分方程理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程、水平集方法等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中的新方法或对原有方法的新改进。 2.基于区域的分割方法 图像分割通常会用到不同对象间特征的不连续性和同一对象内部特征的相似性。基于区域的算法侧重于利用区域内特征的相似性。 2.1 阈值法 阈值分割是最常见的并行直接检测区域的分割方法[5]。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开。 阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。 阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围有较大重叠的图像分割问题难以得到准确的结果。另外,由于它仅仅考虑了图像的灰度信息而不考虑图像的空间信息,阈值分割对噪声和灰度不均匀很敏感。针对阈值分割方法的缺点,不少学者提出了许多改进方法,如基于过渡区的方法[6],还有利用像素点空间位置信息的变化阈值法[7],结合连通信息[8]的阈值方法。 对于多目标的图像来讲,如何选取合适的阈值实在是基于阈值分割方法的困难所在。至

医学图像分割文献综述

前言 随着科学技术的发展,生物切片图像在生命科学、医学、农业等领域得到越来越广泛的应用。通过对切片图像进行图形、图像处理,可以从图像中提取有意义的目标.并重建出三维模型.为人们提供便利。与其他图像相比,生物切片图像具有颜色相近、灰度不均匀、边缘复杂等特点,增加了图像分割的难度。 常用的图像分割方法有阈值法、基于边缘的方法、基于区域生长的方法等。对于生物切片图像,传统的分割技术或失败,或需要特殊的处理技术?。新兴的数学形态学技术在滤波去噪、保持轮廓信息等方面有着明显的优势。因此, 形态学常与分割方法相结合,如用形态学改进边缘检测效果,应用于生物组织的纹理分割I,以及生物切片的交互式区域分割等。本文探讨形态学与阈值方法相结合的模板法。以实现医学病理切片图像中真皮区域分割 2.2医学图像分割概述算法应用与研究 图像分割是图像处理中的关键问题,分布的区域,得到的图像称为分割图像, 可以给出如下图像分割的定义[1】:它把图像分成若干个按照一个或几个特征均匀表示的是区域信息。借助集合概念对图像分割令集合R代表整个图像区域,对R的分割可以看着将R分成N个满足以下五个条件的非空子集;Ⅳ ①lJRi=R f=l ②Rin母=a,对所有的i和j,f≠J ③P(Ri)=TRUE,i--1,2一·N ④P(RiA母)=FALSE,i≠J ⑤Rf是连通的区域,i=l,2···N 条件①指出在对一幅图像的分割应将图像中的每个像素都分进某个子区域中;条件②指出在分割结果中各个子区域是互补重叠的;条件③指出在分割结果中每个子区域都有独特的特性;条件④指出在分割结果中,各个子区域具有不同的特性,没有共同元素;条件⑤指出分割结果中同一个子区域内的像素应该是连通的。 医学图像中包含的内容很多,有些是临床诊断所关心的有用区域,称之为感兴趣区域(Region Of Interest,ROI),有些是不感兴趣的周围环境区域,称之为不感兴趣区域(Region Of Uninterested,ROU)。为了识别和分析医学图像感兴趣区域,就必须将这些区域分离出来。在医学图像处理中,自动识别有特定意义的图像成分,解剖结构和其他感兴趣的区域,是图像分割技术的一个根本任务。图像分割技术极大的推动了可视化和特定组织结构处理的发展。而这往往是决定着整个临床和研究分析结果的关键一步。 图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分

相关文档
最新文档