电力系统变压器中性点运行方式的分析与比较

电力系统变压器中性点运行方式的分析与比较
电力系统变压器中性点运行方式的分析与比较

电力系统运行过程中,变压器中性点的运行、接地方式是影响整个电力系统安全与稳定的关键问题,电力系统变压器中性点为什么有的接地有的不接地,有的又经过消弧线圈接地?不同场合采用哪种运行方式好?下文就这个问题进行了分析比较。

一、电力系统变压器中性点运行方式

三相交流电力系统中,作为供电电源的变压器的中性点有三种运行方式:一种是中性点不接地,(见图一);另一种是中性点经阻抗或消弧线圈接地,(见图三、图四);再有一种是中性点直接接地,(见图二)。前两种合称为小接地电流系统,亦称中性点非有效接地系统,或中性点非直接接地系统;后一种中性点直接接地系统,称为大接地电流系统,亦称中性点有效接地系统。

二、影响电力系统的中性点运行的因素

电力系统的中性点接地不接地,怎样接地,是由以下多方面因素决定的:

1、供电可靠性与故障范围。在中性点不接地系统中若发生单相接地可不掉闸,而直接接地系统就得掉闸。

2、内过电压的倍数。在中性点直接接地系统中,内过电压是在相电压的基础

电力系统变压器中性点运行方式的分析与比较

毕筱妍 威海职业技术学院 264210

上产生和发展的,在小电流接地系统中,则在线电压的基础上产生和发展,因而内过电压数值必然较大。

3、大气过电压的保护。发电厂与变电所中电气设备绝缘上所受到的大气过电压数值,取决于阀型避雷器的保护特性。由于大电流接地系统所用避雷器具有较少的火花间隙与阀片,它们的冲击放电电压与残压均比小电流接地系统所用的避雷器低20%左右,故大电流接地系统的绝缘冲击耐压水平也可相应的降低。

4、电力系统的绝缘水平与绝缘配合。电气设备的绝缘水平主要取决于大气过

电压和内过电压。中性点直接接地,可使内过电压降低20~30%,因而这种系统的绝缘工频耐压水平也可相应降低20%

左右。绝缘配合与绝缘水平有直接关系。从过电压与绝缘水平的观点来看,中性点直接接地比经消弧线圈接地好,而消弧线圈接地又比不接地好。

5、继电保护的要求。系统中性点接地方式,对继电保护的动作方式即作用于掉闸或信号,及所应用的接线方式即两相式或三相式接线有决定性的影响。从简化接地保护和提高其灵敏度的要求来说,大电流接地系统是较容易达到的。

6、对通讯与信号系统的干扰影响。每一条交流线路的周围空间都建立起交变电磁场,而交变电磁场会在附近的通讯线路或信号系统内产生感应电压,这将

造成严重的干扰,甚至危及工作人员的

5、加强绿地管理,发挥绿地最佳功效

一个好的绿地设计,必须通过良好的管理才能充分体现和发挥绿化效益和功能。按照生态园林观点来衡量,有绿化不一定就有效益。如果树木管理养护不当,枝叶枯萎,光合作用将受到影响;树木重剪或经常修剪,则会降低其新陈代谢;植物叶面上覆盖的污染物,阻碍叶片光合与呼吸作用的进行,使植物失去自我调节与自身生态平衡。因此为了使植物正常生长,发挥出正常的生态功能,就要人为地帮助植物恢复它本身的平衡,包括对绿地中的植物进行精细与科学的管理。

三、建设生态小区应该注意的几个问题

1、构建复层园林,提高绿地生态效益

小区绿地改善小区生态环境的作用是通过园林植物的植物循环和数量流动所产生的生态效益来实现的。生态效益的大小取决于绿量,绿量的大小取决于园林植物总叶面积的大小。高大乔木的生态效益高于灌木更高于草坪,构建乔木、灌木和草坪相结合的复层结构绿地,其生态效益明显大于双层或单层结构绿地。因此,要尽量提高小区绿地的利用率,改善植物配置和空间结构,以乔木为主,乔、灌、草相结合,提高绿地空间利用率,使有限的小区绿地发挥最大生态效益和景观效益。

2、绿地建设中不可过量以草代本

前几年,由于小区受社会影响,过于追求绿地开阔、舒展等景观效果或模仿其他城市风格,而忽视了生态效益的发挥,出现了较多的以草代本的大草坪和以小灌木代乔木的大色块,或不惜砍掉已具有成效的园林树木,影响了生态效益和小区整体景观效果。以草坪为主的绿化生态效益和乔、灌、草相结合的植物群落相比较,仅吸收二氧化碳释放氧气一项就下降80%,其综合效益则下降80% ̄90%,草坪状养护费用则是植物群落的3倍,投资则是乔木的10倍,而树木夏季给人们提供的阴凉则是草坪所不能比拟的。当然,在小区重点部位种植一些草坪,形成开阔的透视效果,丰富小区景观,也是园林绿化艺术多样化性的体现。

3、绿地建设要注重栽植大苗,保留大树

据有关部门测定,一株成年旺长的

期工作电压的过电压均较高,特别是,存在电弧接地过电压的危险,整个系统绝缘水平要较高。此外,实现灵敏而有选择性的接地保护比较困难。

中性点直接接地系统的主要优点是,过电压和绝缘水平较低。从继电保护角度来看,对于大电流接地系统用一般简单的零序过流保护就可对付,选择性和灵敏度都易解决。从经济观点看,中性点直接接地是一种投资最少的接地方式。但缺点是,一切故障,尤其是最可能发生单相接地故障,都将引起开关掉闸,这样增加了停电的次数。另外,接地短路电流过大,有时会烧坏设备和妨碍通讯系统的工作。

中性点经消弧线圈接地的优点是,解决了中性点不接地时可能因电容电流大接地电弧不能自动熄灭的问题,不但使单相接地故障所引起的停电次数大大减少,而且还能减少系统中发生多相短路故障的次数。

结束语

从电力系统发展的历史来看,初期大多数系统是以中性点不接地的方式运行的,其明显的优点是单相接地时,由于并不破坏三相线电压的对称性,允许运行相当长的时间,这样可以减少停电次数。随着系统的扩大,线路长度的增加和额定电压的提高,中性点不接地运行的缺点显得严重起来。因电容电流的增大,使愈来愈多的瞬时接地故障不能自动消除,而断续电弧接地会在系统中引起很高的过电压,绝缘遭到严重的威胁,为了解决这个问题,逐渐采用了直接接地或经消弧线圈接地的方式。

现在我国3~66 kV系统,特别是3~10 kV系统,一般采用中性点不接地的运行方式。如单相接地电流大于一定数值时(3~10 kV系统中接地电流大于30 A、20 kV及以上系统中接地电流大于10 A时),则应采用中性点经消弧线圈接地的运行方式。我国110 kV及以上的系统、220/380 V低压配电系统都采用中性点直接接地的运行方式。

变压器中性点接地方式分析与探讨

变压器中性点接地方式分析与探讨 [摘要] 概述目前电网中变压器中性点接地方式,进行分析与探讨,提出看法和发展方向 [关键词] 中性点方式优点缺点发展方向 1.概述 中压电网以35KV、10KV、6KV三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV电网如果单相接地电容电流大于10A,3KV —10KV电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式原因是美国在历史上过高的估计了弧光接地过电压的危害性而采用此种方式用以泄放线路上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度可以

电力系统运行方式及潮流分析实验报告

电力系统运行方式及潮 流分析实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电力系统第一次实验报告——电力系统运行方式及潮流分析实验

实验1 电力系统运行方式及潮流分析实验 一、实验目的 1、掌握电力系统主接线电路的建立方法 2、掌握辐射形网络的潮流计算方法; 3、比较计算机潮流计算与手算潮流的差异; 4、掌握不同运行方式下潮流分布的特点。 二、实验内容 1、辐射形网络的潮流计算; 2、不同运行方式下潮流分布的比较分析 三、实验方法和步骤 1.辐射形网络主接线系统的建立 输入参数(系统图如下): G1:300+j180MVA(平衡节点) 变压器B1:Sn=360MVA,变比=18/121,Uk%=%,Pk=230KW,P0=150KW,I0/In=1%; 变压器B2、B3:Sn=15MVA,变比=110/11 KV,Uk%=%,Pk=128KW, P0=,I0/In=%; 负荷F1:20+j15MVA;负荷F2:28+j10MVA; 线路L1、L2:长度:80km,电阻:Ω/km,电抗:Ω/km,电纳:×10-6S/km。 辐射形网络主接线图 (1)在DDRTS中绘出辐射形网络主接线图如下所示: (2)设置各项设备参数: G1:300+j180MVA(平衡节点) 变压器B1:Sn=360MVA,变比=18/121,Uk%=%,Pk=230KW,P0=150KW,I0/In=1%;

变压器B2、B3:Sn=15MVA,变比=110/11 KV,Uk%=%,Pk=128KW, P0=,I0/In=%; 负荷F1:20+j15MVA;负荷F2:28+j10MVA; 线路L1、L2:长度:80km,电阻:Ω/km,电抗:Ω/km,电纳:×10-6S/km。2.辐射形网络的潮流计算 (1)调节发电机输出电压,使母线A的电压为115KV,运行DDRTS进行系统潮流计算,在监控图页上观察计算结果 项目DDRTS潮流计算结果 变压器B2输入功率+ 变压器B2输出功率+ 变压器B3输入功率+ 变压器B3输出功率+ 线路L1输入功率+ 线路L1输出功率+ 线路L2输入功率+ 线路L2输出功率+ (2)手算潮流: (3)计算比较误差分析 通过比较可以看出,手算结果与计算机仿真结果相差不大。产生误差原因:手算时是已知首端电压、末端功率的潮流计算,计算过程中要将输电线路对地电容吸收的功率以及变压器励磁回路吸收的功率归算到运算负荷中,并且在每一轮的潮流计算中都用上一轮的电压或功率的值(第一轮电压用额定电压)。 3.不同运行方式下潮流比较分析 (1)实验网络结构图如上。由线路上的断路器切换以下实验运行方式: ①双回线运行(L1、L2均投入运行) ②单回线运行(L1投入运行,L2退出)将断路器断开 对上述两种运行方式分别运行潮流计算功能,将潮流计算结果填入下表:

变压器中性点运行方式对线路保护的影响

变压器中性点运行方式对线路保护的影响 发表时间:2017-06-22T16:21:12.380Z 来源:《基层建设》2017年5期作者:贾俊涛 [导读] 为保障220kV线路后备保护动作可靠性,文章通过线路接地故障模拟,分析变电站主变中性点接地运行方式改变对后备保护动作可靠性、灵敏性所产生的影响,供参考。 湛江供电局广东湛江 524000 摘要:在电力系统中,变压器中性点接地方式与系统零序电流保护密切相关。为保障220kV线路后备保护动作可靠性,文章通过线路接地故障模拟,分析变电站主变中性点接地运行方式改变对后备保护动作可靠性、灵敏性所产生的影响,供参考。 关键词:变压器;中性点接地;运行方式;零序电流 电力系统中的变压器中性点的接地方式是电网研究中的一个十分重要的内容,它与电网电压等级、电网结构、绝缘水平、供电可靠性、继电保护、电磁干扰、人身安全都有很大的关系。220 kV变电站主变压器中性点接地方式的变化本质上改变了系统的零序阻抗,需要调整元件状态或保护配合以适应新的方式,因此,原有线路元件可能因中性点接地方式不同,出现保护动作可靠性、灵敏性不足的问题。下面,文章就相关问题展开探究。 1 现状 如图1所示,220kV双电源输电网络中WB-2母线所在变电站的TM-1、TM-2主变并列运行,WB-4母线所在变电站的TM-3、TM-4主变并列运行。两台主变在实际运行中中性点接地方式因各种原因发生改变,同时会改变整个WB-4变电站的零序网络参数,影响4QF线路的零序过流保护和接地距离保护的正确动作。图1中WB-2母线短路电流见表1。 2 定值整定 以图1中4QF为例进行定值整定。 2.1 图1中4QF零序过流保护定值整定 (1)4QF零序过流I段定值的整定 对图1中220kV线路XL-2的WB-4侧的零序过流I段保护定值进行计算,4QF按IDZ.I=KK3I0.max计算定值,整定原则为大于末端最大接地短路电流,已知4QF线路对侧最大短路电流3I0.max为1420A,则: IDZ.I=KK3I0.max=1.3×1420=1846(A),tI=0(s) (2)4QF零序过流II段保护定值的整定 4QF零序过流保护II段定值整定公式:IDZ.II=KKKF3I'dz.I,其中3I`dz.I=1880A,为相邻段线路XL-1首端零序过流I段动作值;分支系数KF=本线路最大短路电流/本线路最大短路电流+本线路末端变压器高压侧最大短路电流,因WB-4母线所在变电站内有两台变压器,所以可不考虑其中一台变压器停运的运行方式,查短路电流表并计算4QF对2QF的分支系数为:KF= ≈0.413; 则4QF零序过流保护II段定值为: IDZ.II=KKKF3I'dz.I=1.15×0.413×1880≈893(A),tI=0.5(s) 查短路电流表进行灵敏度校验Klm=1170/893≈1.32,定值可取。 (3)4QF零序电流III、IV段保护定值整定 4QF零序过流保护III、IV段定值分别与2QF零序过流保护II、III段定值相配合,计算4QF零序过流保护III段定值为675A,tI=1s, Klm=1170/675≈1.73,该定值可取。 IV段定值为450A,tI=2s,Klm=1170/450≈2.6,该定值可取。 2.2 接地距离保护整定计算 (1)4QF的距离保护I段定值计算公式为ZDZI=KKZ1,式中XL-2线路正序阻抗Z1为10.5Ω,代入接地距离I段保护定值公式 ZDZI=KKZ1=0.85×10.5=8.925(Ω) 取8.9Ω,tI=0s。 (2)4QF距离保护II段按相邻下一段线路距离I段定值基础上进行计算,必须小于XL-1首端接地距离I段保护范围,KK取0.9。已知2QF

变压器运行方式

变压器运行方式

1主题内容与适用范围 本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器。 2引用标准 GB1094.1~1094.5电力变压器 GB6450干式电力变压器 DL400继电保护和安全自动装置技术规程 SDJ7电力设备过电压保护设计技术规程 SDJ8电力设备接地设计技术规程 SDJ9电气测量仪表装置设计技术规程 SDJ2变电所设计技术规程 DL/T573-95电力变压器检修导则 3基本要求 3.1保护、测量、冷却装置 3.1.1变压器应按有关标准的规定装设保护和测量装置。 干式变压器有关装置应符合相应技术要求。 3.1.2装有气体继电器的油浸式变压器,无升高坡度者,安装时应使顶盖沿气体继电器方向有1%~1.5%的升高坡度。 3.1.3变压器的冷却装置应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.风扇的附属电动机应有过负荷、短路及断相保护;

3.1.4变压器应按下列规定装设温度测量装置: a.应有测量顶层的温度计(柱上变压器可不装),无人值班变电站内的变压器应装设指示顶层最高值的温度计; b.干式变压器应按制造厂的规定,装设温度测量装置。 3.2有关变压器运行的其它要求 3.2.1变压器应有铭牌,并标明运行编号和相位标志。 3.2.2变压器在运行情况下,应能安全地查看顶层温度。 3.2.3室内安装的变压器应有足够的通风,避免变压器温度过高。 3.2.4变压器室的门应采用阻燃或不燃材料,并应上锁。门上应标明变压器的名称和运行编号,门外应挂“止步,高压危险”的标志牌。 3.3技术文件 3.3.1变压器投入运行前,应保存好技术文件和图纸。 a.制造厂提供的说明书、图纸及出厂试验报告; 3.3.1.2检修竣工后需交: a.变压器及附属设备的检修原因及检修全过程记录; 3.3.2每台变压器应有下述内容的技术档案: a.检修记录; b.预防性试验记录; c.变压器保护和测量装置的校验记录; 4变压器运行方式 4.1一般运行条件 4.1.1变压器的运行电压一般不应高于该运行分接额定电压的105%。对于特殊的使用情况,允许在不超过110%的额定电压下运行。

电网运行方式

电网运行方式 变电站运行方式 1)变电站运行方式是标明变电站通过主要电力设备运行连接方式。变电站运行方式的特点是: 保证对重要用户的可靠供电,对于重要用户应采用双回路供电,就是2个独立的电源同时对用户供电。 便于事故处理,考虑部分供电设备在发生故障时能通过紧急的倒闸操作,恢复对用户的供电,对于变电站有多台变压器的,应考虑到当其中一台变压器发生故障或者失去电源时,其他的变压器能担负起失电用户的负荷转供任务。 要考虑运行的经济性,在编制各种运行方式时,尽量使负荷分配合理,减少由于线路潮流引起的电能损耗。对于双回路供电的变电站,应将双回线同时投入运行,以减少电流密度。 断路器的开断容量应大于最大运行方式时短路容量,如果断路器短路容量低于系统计算点短路容量,则当被保护区发生短路故障时,断路器由于容量过小,不能正常断开,回进一步使事故扩大,在成断路器爆炸的可能。 变电站满足防雷、继电保护及消弧线圈运行要求。 2)变电站一次主结线图 变电站一次主结线图是为了方便运行人员熟悉变电站设备接线

方式,同时在进行倒闸操作时,可按照主结线图进行模拟操作,以防止误操作事故发生,最主要的是,一次主结线图能明确反映出各电气设备实时状态。一般变电站主接线类型有如下几种: ?有母线的主接线:有母线的变电站接线可分单母线和双母线二类, 一般单母线接线又分成单母有分段、单母无分段、单母分段加旁路。双母线接线的变电站可分成单开关双母线、双开关双母线、二分之三开关双母线及带旁路母线的双母线。 供电可靠性最好的是双母线带旁路母线接线形式。 ?无母线的主要接线有:单元接线、扩大单元接线、桥型接线和多 角接线等。 通常变电站常用接线方式有:单母线或单母分段、双母线加分段、双母线带旁路。 3)各种接线图例 ?单母线接线

DLT 572—95电力变压器运行规程

DLT 572—95电力变压器运行规程 DL/T572-95 中华人民共和国电力行业标准 DL/T572—95 电力变压器运行规程中华人民共和国电力工业部1995-06-29批准1995-11-01实施1 主题内容与适用范围本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器,电抗器、消弧线圈、调压器等同类设备可参照执行。国外进口的电力变压器,一般按本规程执行,必要时可参照制造厂的有关规定。 2 引用标准 GB109 4、1~109 4、5 电力变压器 GB6450 干式电力变压器 GB6451 油浸式电力变压器技术参数和要求 GB7252 变压器油中溶解气体分析和判断导则 GB/T15164~1994 油浸式电力变压器负载导则 GBJ148 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 DL400 继电保护和安全自动装置技术规程 SDJ7 电力设备过电压保护设计技术规程 SDJ8 电力设备接地设计技术规程 SDJ9 电气测量仪表装置设计技术规程 SDJ2 变电所设计技术规程 DL/T573—95 电力变压器检修导则 DL/T574—95 有载分接开关运行维修导则3 基本要求 3、1 保护、测量、冷却装置

3、1、1 变压器应按有关标准的规定装设保护和测量装置。 3、1、2 油浸式变压器本体的安全保护装置、冷却装置、油 保护装置、温度测量装置和油箱及附件等应符合GB6451的要求。 干式变压器有关装置应符合相应技术要求。 3、1、3 变压器用熔断器保护时,熔断器性能必须满足系统 短路容量、灵敏度和选择性的要求。分级绝缘变压器用熔断器保 护时,其中性点必须直接接地。 3、1、4 装有气体继电器的油浸式变压器,无升高坡度者, 安装时应使顶盖沿气体继电器方向有1%~ 1、5%的升高坡度。 3、1、5 变压器的冷却装置应符合以下要求: a、按制造厂 的规定安装全部冷却装置; b、强油循环的冷却系统必须有两个 独立的工作电源并能自动切换。当工作电源发生故障时,应自动 投入备用电源并发出音响及灯光信号; c、强油循环变压器,当 切除故障冷却器时应发出音响及灯光信号,并自动(水冷的可手动)投入备用冷却器; d、风扇、水泵及油泵的附属电动机应有过负荷、短路及断相保护;应有监视油泵电机旋转方向的装置; e、 水冷却器的油泵应装在冷却器的进油侧,并保证在任何情况下冷 却器中的油压大于水压约0、05MPa(制造厂另有规定者除外)。冷却器出水侧应有放水旋塞; f、强油循环水冷却的变压器,各冷 却器的潜油泵出口应装逆止阀; g、强油循环冷却的变压器,应 能按温度和(或)负载控制冷却器的投切。

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

电力系统运行方式分析和计算

电力系统运行方式分析和计算 设计报告 专业:电气工程及其自动化 班级:11级电气1班 学号: 2 2 姓名:杨玉豪潘鸣 华南理工大学电力学院 2015-01-05

0、课程设计题目A3:电力系统运行方式分析和计算 姓名: 指导教师: 一、 一个220kV 分网结构和参数如下: #1 500kV 变电站G 220kV 变电站 火电厂 #2 #3 #4#5 #6 11km 11km 30km 20km 9km 16km 25km 500kV 站(#1)的220kV 母线视为无穷大母线,电压恒定在230kV 。 图中,各变电站参数如下表: 编号 类型 220kV 最大负荷,MV A #1 500kV 站 平衡节点 #2 220kV 站 230+j40 #3 220kV 站 210+j25 #4 220kV 站 300+j85 #5 220kV 站 410+j110 #6 220kV 站 220+j30 各变电站负荷曲线基本一致。日负荷曲线主要参数为: 日负荷率:0.85,日最小负荷系数:0.64

各线路长度如图所示。所有线路型号均为LGJ-2*300,基本电气参数为: 正序参数:r = 0.054Ω/km, x = 0.308Ω/km, C = 0.0116 μF/km; 零序参数:r0 = 0.204Ω/km, x0 = 0.968Ω/km, C0 = 0.0078 μF/km; 40oC长期运行允许的最大电流:1190A。 燃煤发电厂G有三台机组,均采用单元接线。电厂220kV侧采用双母接线。发电机组主要参数如下表(在PowerWorld中选择GENTRA模型): 机组台数 单台 容量 (M W) 额定电 压 (EV ) 功 率 因 数 升 压 变 容 量 MV A Xd Xd’Xq Td0’TJ= 2H a i,2 t/(MW2? h) a i,1 t/(MW ?h) a i,0 t/h Pmax (MW) Pmin (MW) 1 300 10.5 0.85 350 1.8 0.18 1.2 8 7 0.00004 0.298 10.22 300 120 1 300 10.5 0.85 350 1.8 0.18 1.2 8 7 0.00003 0.305 10.32 300 120 1 250 10.5 0.85 300 2.1 0.2 1.5 7 6 0.00003 0.321 9.38 250 100 升压变参数均为Vs%=10.5%,变比10.5kV/242kV。不计内阻和空载损耗。 稳定仿真中发电机采用无阻尼绕组的凸极机模型。不考虑调速器和原动机模型。不考虑 电力系统稳定器模型。励磁系统模型为: 该模型在PowerWorld中为BPA_EG模型,主要参数如下: KA=40 TA=0.1 TA1=0.1 KF=0.05 TF=0.7 VRmax=3.7 VRmin=0.0 发电厂按PV方式运行,高压母线电压定值为1.05V N。考虑两种有功出力安排方式: ?满发方式:开机三台,所有发电机保留10%的功率裕度; ?轻载方式:仅开250MW机组,且保留10%的功率裕度; ?发电厂厂用电均按出力的7%考虑。 二、设计的主要内容:

加强电网运行方式管理的策略分析

加强电网运行方式管理的策略分析 发表时间:2018-06-04T10:52:24.773Z 来源:《电力设备》2018年第2期作者:黄寻李清华 [导读] 摘要:随着经济社会的发展,人们对电力需求不断增加,国家大力建设电力工程。 (国网辽宁省本溪供电公司辽宁 117000) 摘要:随着经济社会的发展,人们对电力需求不断增加,国家大力建设电力工程。然而随着电网的规模不断扩大,电网的智能化水平也随之不断提高,这对电网运行管理提出了新的挑战。传统的电网运行管理模式已经不适应当下电网的发展需求。因此,电力企业必须满足当下电网运行要求,对电网进行综合管理,从而更好地适应当下电网的运行要求。本文根据笔者工作实践,对电网运行方式管理的策略进行了分析和探讨。 关键词:电网;运行;方式;管理;策略 1 电网运行方式综合管理的必要性 电网运行环境比较复杂,在运行过程中,容易受到自身设计缺陷、自然因素以及人为因素的影响,从而导致电力故障的发生。因此,为了确保电网安全运行,必须加强电网运行的管理。为了满足人们对电力的需求,近年来国家大力建设电网工程,中国电网规模位居世界第一。随着电网规模不断扩大,覆盖面积越来越广,电网运行管理要求不断提高。由于中国电网运行比较恶劣,大部分电网直接裸露在户外,很容易受到雷击、雨雪和大风的侵袭,电力设备出现绝缘体破裂或者接触点松动,从而直接威胁到电网的安全运行。所以,必须加强对电网运行方式的综合管理,才能确保电网在一个比较安全的环境下运行。随着电力体制改革,电网直接面向市场化,电力企业之间的竞争也越来越激烈,电力企业如何在激烈的电力市场抢占一席之地是很多电力企业所要思考的问题。电力企业需要通过降低电网运行成本,才能够提高自身的竞争力。随着智能电网的发展,很多智能变电站开始实现无人值守和少人值守,这一定程度上降低了电力企业的人力成本。然而智能变电站建设过程中,需要使用大量的智能设备,这些智能设备造价比较高,所以电力企业一次性投入成本比较大[2]。如何平衡变电站投入与后期运营成本之间的关系,需要电力企业严谨的计算并进行对比分析,才能制定一套符合企业实际情况的建设运营管理方案。 2 电网运行方式综合管理存在的问题 为了给居民提供更加优质的电能,国家近年来加大对城乡电网工程的改造,极大地提高了电网运行水平。然而由于电力系统大量应用智能设备,智能设备采集大量的电力运行数据,并对这些数据进行处理,这进一步增加了电网运行管理的复杂性,因此促使电力企业形成了综合性比较强的电网运行管理模式。电网运行管理涉及到电力系统的日常管理、变电设备的检修工作和电力工人的管理等内容,所以在制定电网运行管理方案的时候需要综合考虑到各个因素,然而这些因素有些是不可控的。比如电力系统运行过程中,突然主变压器出现漏油现象,发生变压器起火等故障,那么电网运行管理人员需要立即找到判断该故障发生的原因,并立即安排就近技术人员进行维修。变电站检修过程中,运维管理人员要综合分析变电检修环境,上一次检修过程中存在的问题,综合各个方面的因素,为变电检修工作提供参考和决策。电网运维管理涉及的内容比较多,需要运维管理人员综合各个要素作出综合判断。 2.2电网运行管理计算数据比较复杂 电网运行管理过程中,需要涉及到较多种类的资料。比如变电站规划设计资料、电力设备参数、各个区域居民用电情况、变电检修计划和检修内容等等内容,这些内容能够给电网运行提供参考。所以电网运行管理人员必须对这些资料数据十分清楚,并能够很好地运用这些数据,通过精确的计算,找到一套适合电网运行综合管理的方法,从而提高电网运行效率。 3提高电网运行方式综合管理的途径 3.1建立健全电网运行方式管理制度 电网运行方式综合管理的主体是人,因此加强对综合管理工作人员的管理。首先,要建认一套适合电网运行方式管理的制度,科学的管理制度是实现电网运行的关键。针对当前电网运行特点,明确每一个岗位的工作职责和工作内容,确保电网运行每一个环节处于可控状态。其次,做好电网运行不良方式的事故演习,从而提高综合管理人员应对事故的反应能力,并在事故演习中找到管理存在的问题,从而提出相应的解决方案。最后,电力还要制定相应的奖惩制度,提高管理人员的工作积极性。做到哪一个环节出问题,都能找到相关的负责人,从而避免工作中出现相互推楼的现象。 3.2提高电网运行方式综合管理人员素质 为了确保电网运行的安全性和可靠性,必须提高运行方式综合管理人员的管理水平。首先,电力企业应该定期举行相关技术培训,让管理人员了解相关的电力知识,比如变压器、电流互感器和继电器等相关电力设备的结构和特点,从而对这些电气设备有一定的了解,为电力运行管理打下良好的基础。其次,电力企业应该投人部分资金,组织电网运维管理骨干到国内外知名的企业或者机构进行进修学习,提高他们的管理水平。电力企业需严格按照《“变电运维一体化”模式实施方案及推进计划》,加强综合型人才的培养。 3.3加强继电保护管理 继电保护装置是电力系统中重要的组成部分,它是电力系统运行的保护伞,直接关系到电网运行的安全性和稳定性。如果继电保护装置失效,可能造成严重的电力事故。因此,必须加强电力保护装置的管理。日常管理工作中,电网运行管理人员要加强继电保护装置的管理和维护,及时检查继电保护装置直流系统、分支保险、接触点是否存在问题,继电保护装置绝缘性能是否下降,发生跳闸事故以后继电保护装置的信号灯是否开启等等进行全面检查,才能确保电力故障发生以后,继电保护装置不会出现拒动、误动等现象,确保电网安全运行。其次,管理人员还要根据继电保护装置的性能制定检修计划,及时对有问题的保护装置进行更换和维修,将一些先进的科学技术和设备应用在继电保护系统中。比如将可视化技术应用在继电保护装置中,继电保护装置的分析系统中以时间为线索,并根据分析系统文件中的故障录播文件再现事故发生继电保护装置各个元件动作逻辑顺序,从而将故障发生全过程展现在管理人员面前,这样就减少了电力系统故障排查的时间,能够将电力故障时间和范围缩小,确保电网运行的安全性。 3.4建立电网运行管理数据库,实现数据共享 随着电网覆盖面积不断扩大,电力系统采集的电网运行数据越来越多,这一定程度上增加了电网数据计算、管理难度。而各地供电公司各自为阵没有建认统一的数据库,因此无法实现数据共享。在信息时代,信息共享已经成为一种趋势。电网公司建认统一的数据库,各级电网公司将变电运行的数据上传到数据库,不仅有利于电网公司及时了解电网整体运行状态,而且还能为电网公司的发展和决策提供参

基于PowerWorld的电力系统运行方式分析和计算

基于PowerWorld的电力系统运行方式分析和计算 李应宏 华南理工大学电力学院08电气2班 1 PowerWorld Simulator介绍 PowerWorld Simulator(仿真器)是一个电力系统仿真软件包,其设计界面友好,并有高度的交互性。该仿真软件能够进行专业的工程分析。而且由于其可交互性和可绘图性,它也可以用于向非专业用户解释电力系统的运行操作。 该仿真器是一个集成的产品,其核心是一个全面、强大的潮流计算程序。它能够有效地计算高达10,0000个节点的电力网络,因此当它作为一个独立的潮流分析软件包时,性非常实用。与其它商业潮流计算软件包不同,该软件可以让用户通过生动详细的全景图来观察电力系统。此外,系统模型可以通过使用仿真软件的图形编辑工具很容易地进行修改,用户只需轻轻点击几下鼠标就可以在检修期间切换线路、增加新的线路或发电机、确定新的交易容量。仿真器广泛地使用了图形和动画功能,大大地增强了用户对系统特性、问题和约束的理解,以便于用户对系统进行维护。它基本的工具包括经济调度、区域功率经济分配分析、功率传输分配因子计算算(PTDF)、短路分析以及事故分析等功能的工具。 2电力系统网络结构及参数 2.1 220kV分网结构和参数 图1 220kV分网结构和参数 500kV站(#1)的220kV母线视为无穷大母线,电压恒定在230kV。

日负荷率:0.85,日最小负荷系数:0.64 各线路长度如图所示。所有线路型号均为LGJ-2*300,基本电气参数为:正序参数:r = 0.054Ω/km, x = 0.308Ω/km, C = 0.0116 μF/km; 零序参数:r0 = 0.204Ω/km, x0 = 0.968Ω/km, C0 = 0.0078 μF/km; 40oC长期运行允许的最大电流:1190A。 燃煤发电厂G有三台机组,均采用单元接线。电厂220kV侧采用双母接线。发电机组主要参数如下表(在PowerWorld中选择GENTRA模型): 稳定计算中平衡节点用一台大发电机代替,选定GENPWTwoAxis模型,把其中的H值设得非常大(如300.000),其他都用默认参数。 稳定仿真中发电机采用无阻尼绕组的凸极机模型。不考虑调速器和原动机模型。不考虑电力系统稳定器模型。励磁系统模型为: 图2 励磁系统模型 该模型在PowerWorld中为BPA_EG模型,主要参数如下:

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

电力系统三个实验

实验一:一机—无穷大系统稳态运行方式实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。 图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验 在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验 按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。 表3-1 注:U Z —中间开关站电压; ?U —输电线路的电压损耗; △U —输电线路的电压降落

变压器中性点接地方式分析与探讨(7)

筑龙网W W W .Z H U L O N G .C O M 变压器中性点接地方式分析与探讨 周志敏 1.概 述 中压电网以35KV、10KV、6KV 三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV 电网如果单相接地电容电流大于10A,3KV—10KV 电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV 城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界 也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式 原因是美国在历史上过高的估计了弧光接地过电压的危害性 而采用此种方式用以泄放线路 上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A 左右,也有的控制在100A 左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度

220kV变电站主变中性点运行方式

220kV变电站主变中性点运行方式 摘要:220kV主变中性点接地方式与电网结构、绝缘水平、供电可靠性、保护的配置及发生接地故障时的短路电流及分布等方面都有很大的关系。本文介绍了变压器中性点的几种运行方式及其特点,分析了220kV变电站主变中性点正常情况下的运行方式,及其零序网络。 关键词:主变;运行方式;零序网络 引言 电网中变压器中性点接地方式的选择,对电网的安全经济运行具有重要的作用。它与电网的绝缘水平、保护配置、系统的供电可靠性、发生接地故障时的短路电流及分布等关系密切[1]。 一、变压器中性点运行方式 三相交流电力系统中,变压器的中性点有三种运行方式:中性点不接地、中性点经阻抗或消弧线圈接地、中性点直接接地。 (一)中性点不接地 中性点不接地系统发生单相短路时,故障相电压为零,正常相电压为原来的3倍,中性点电位由零变为相电压,

此时的短路电流为电容电流,线电压不变。因此变压器中 性点不接地方式运行对变压器的绝缘工频耐压水平要求更高,由于电容电流较小,当发生单相接地故障时,允许系统短时运行,提高了系统的可靠性。 中性点不接地系统中,零序网络没有形成回路,在发生不平衡故障时,系统中没有零序阻抗,也不会产生零序电流。 (二)中性点经消弧线圈接地 对于线路较长的系统,输电导线对地电容较大,因而电容电流较大,中性点消弧线圈可以有效补偿电容电流,泄放线路上的过剩电荷来限制过电压。然而,这种接地方式会使中性点电位升高,对变压器中性点绝缘要求较高。 (三)中性点直接接地 当发生单相短路故障时,中性点直接接地系统的故障点短路电流较大,会引起停电,同时对运行人员及设备的安全构成威胁。但这种运行方式下,中性点电位稳定,接近于零,正常相电压不变,不易引起相间短路。 中性点直接接地方式多见于110kV以上的电网。因为110 kV以上的电网单相接地的概率比中低压电网小,所以只要提高输电线路的耐雷水平,安装自动重合闸装置,就可以基本实现系统的安全运行[2]。 二、220kV站主变中性点运行方式与继电保护的配合 调度运行方式规定,220kV变电站主变中性点接地的原

DLT572_2010电力变压器运行规程完整

电力变压器运行规程 1 主题内容与适用范围 本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器,电抗器、消弧线圈、调压器等同类设备可参照执行。国外进口的电力变压器,一般按本规程执行,必要时可参照制造厂的有关规定。 2 引用标准 GB1094.1~1094.5 电力变压器 GB6450 干式电力变压器 GB6451 油浸式电力变压器技术参数和要求 GB7252 变压器油中溶解气体分析和判断导则 GB/T15164~1994 油浸式电力变压器负载导则 GBJ148 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 DL400 继电保护和安全自动装置技术规程 SDJ7 电力设备过电压保护设计技术规程 SDJ8 电力设备接地设计技术规程 SDJ9 电气测量仪表装置设计技术规程 SDJ2 变电所设计技术规程 DL/T573—95 电力变压器检修导则 DL/T574—95 有载分接开关运行维修导则 3 基本要求 3.1 保护、测量、冷却装置 3.1.1 变压器应按有关标准的规定装设保护和测量装置。 3.1.2 油浸式变压器本体的安全保护装置、冷却装置、油保护装置、温度测量装置和油箱及附件等应符合GB6451的要求。 干式变压器有关装置应符合相应技术要求。 3.1.3 变压器用熔断器保护时,熔断器性能必须满足系统短路容量、灵敏度和选择性的要求。分级绝缘变压器用熔断器保护时,其中性点必须直接接地。 3.1.4 装有气体继电器的油浸式变压器,无升高坡度者,安装时应使顶盖沿气体继电器方向有1%~1.5%的升高坡度。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

相关文档
最新文档