二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)
二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

动点问题题型方法归纳总结

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点

5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

共同点:

⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

二次函数的动态问题(动点)

1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形

MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取

值范围;

(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;

(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.

[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,

(08)F -,.

①特殊四边形为背景;

②点动带线动得出动三角形;

③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;

设抛物线2C 的解析式是

2(0)y ax bx c a =++≠, 则16404208a b c a b c c ++=??

++=??=-?,,. 解得168a b c =-??

=??=-?

,,.

所以所求抛物线的解析式是2

68y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.

过点N 作NH AD ⊥,垂足为H .

当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.

所以,四边形MDNA 的面积2

(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.

所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781

444

S t ?

?=--+ ???,

(04t <≤). 所以74t =

时,S 有最大值814

. 提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形

MDNA 是矩形.

所以OD ON =.所以2222OD ON OH NH ==+. 所以22420t t +-=

.解之得1222t t =

=,(舍).

所以在运动过程中四边形MDNA

可以形成矩形,此时2t =.

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

2. (06福建龙岩卷)如图,已知抛物线2

34y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线3

34y x t

=-+与x 轴交于点Q ,

点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<.

(1)确定b c ,的值:__________b c ==,;

(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):

(______)(______)(______)B Q P ,,,,,;

(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.

[解] (1)9

4

b =

3c = (2)(40)B , (40)Q t , (443)P t t -,

(3)存在t 的值,有以下三种情况 ①当PQ PB =时

PH OB ⊥ ,则GH HB = 4444t t t ∴--= 1

3

t ∴=

②当PB QB =时 得445t t -= 4

9

t ∴=

③当PQ QB =时,如图

解法一:过Q 作QD BP ⊥,又PQ QB =

则5

22

BP BD t ==

又BDQ BOC △∽△

C O

BD BQ

BO BC ∴

=

544245t

t -∴= 32

57

t ∴=

解法二:作Rt OBC △斜边中线OE

则5

22

BC OE BE BE ===,,

此时OEB PQB △∽△

BE OB

BQ PB

∴=

5

4

2445t t ∴=-

32

57

t ∴=

解法三:在Rt PHQ △中有2

22

QH PH PQ += 2

2

2

(84)(3)(44)t t t ∴-+=- 257320t t ∴-= 32

057

t t ∴=

=,(舍去) 又01t <<

∴当13t =或49或32

57

时,PQB △为等腰三角形.

解法四: 数学往往有两个思考方向:代数和几何,有时可以独立思考,有

时需要综合运用。

代数讨论:计算出△PQB 三边长度,均用t 表示,再讨论分析

Rt △PHQ 中用勾股定理计算PQ 长度,而PB 、BQ 长度都可以直

接直接用t 表示,进行分组讨论即可计算。

[点评]此题综合性较强,涉及函数、相似性等代数、几何知识,1、2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的是在进行讨论并且得出结论后应当检验,在本题中若求出的t 值与题目中的01t <<矛盾,应舍去 3.如图1,已知直线12y x =-

与抛物线21

64

y x =-+交于A

B ,两点. (1)求A

B ,两点的坐标; (2)求线段AB 的垂直平分线的解析式;

(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A

B ,两处.用铅笔拉着这C

O

根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.

[解] (1)解:依题意得216412

y x y x

?=-+????=-??解之得12126432x x y y ==-????=-=??

(63)(42

A B ∴--,,, (2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图1) 由(1

)可知:OA OB ==

AB ∴=

12OM AB OB ∴=

-=

过B 作BE x ⊥轴,E 为垂足

由BEO OCM △∽△,得:5

4

OC OM OC OB OE =∴=,,

同理:5

55002

42OD C D ????=∴- ? ?????

,,,, 设CD 的解析式为(0)y kx b k =+≠

5204

5522

k k b b b ?==+????∴∴??=-??-=???

图2 图1

图1

第26题

AB ∴的垂直平分线的解析式为:522

y x =-

. (3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交

点的直线1

2

y x m =-+上,并设该直线与x 轴,y 轴交于G H ,两点(如图2).

212164

y x m y x ?=-+??∴??=-+??

211

6042

x x m ∴

-+-= 抛物线与直线只有一个交点,

2

114(6)024m ??

∴--?-= ???

2523144m P ??∴=

∴ ???

, 在直线125

24

GH y x =-

+:中, 25250024G H ????

∴ ? ?????

,,,

GH ∴=

设O 到GH 的距离为d ,

112211252524224GH d OG OH d d AB GH ∴=∴?=??∴= ,

P ∴到AB 的距离等于O 到GH 的距离d .

另解:过P 做PC ∥y 轴,PC 交AB 于C ,当PC 最大时△PBA 在AB 边上的高h 最大(h

与PC 夹角固定),则S △PBA 最大 → 问题转化为求PC 最大值,设P (

x,

),C

x, ),从而可以表示PC 长度,进行极值求取。

图2

最后,以PC 为底边,分别计算S △PBC 和S △PAC 即可。

[点评]这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题。

4.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,

出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时

间为t 秒.

(1)求正方形ABCD 的边长.

(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.

(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P

的坐标.

(4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =

∠的点P 有 个.

(抛物线()2

0y ax bx c a =++≠的顶点坐标是2424b ac b a a ??

-- ???

,.

[解] (1)作BF y ⊥轴于F .

()()01084A B ,,,,

86FB FA ∴==,.

10AB ∴=.

图①

图②

(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷= ,.

P Q ∴,两点的运动速度均为每秒1个单位.

(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.

GA AP FA AB ∴

=,即610

GA t

=.

3

5

GA t ∴=.

3

105

OG t ∴=-.

4OQ t =+ ,

()113410225S OQ OG t t ?

?∴=??=+- ??

?.

即2319

20105

S t t =-

++. 19195323

210b a -=-=???- ???

,且190103≤≤, ∴当19

3t =

时,S 有最大值. 此时476331

1051555

GP t OG t ===-=,,

∴点P 的坐标为7631155??

???

,.

(8分)

方法二:当5t =时,163

7922

OG OQ S OG OQ ====

,,. 设所求函数关系式为220S at bt =++.

抛物线过点()63102852??

???

,,,,

1001020286325520.2

a b a b ++=??∴?++=??,

310

19.5a b ?=-??∴?

?=??, 2319

20105

S t t ∴=-

++. 19195323

210b a -=-=???- ???

,且190103≤≤, ∴当19

3t =

时,S 有最大值. 此时7631

155

GP OG ==,,

∴点P 的坐标为7631155??

???

,.

(4)2.

[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

. 5. 如图①,Rt ABC △中,90B ∠= ,30CAB ∠= .它的顶点A 的坐标为(100),,顶点

B

的坐标为(5,10AB =,点P 从点A 出发,沿A B C →→的方向匀速运动,同时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒. (1)求BAO ∠的度数.

(2)当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.

(3)求(2)中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标. (4)如果点P Q ,保持(2)中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点

P 沿这两边运动时,使90OPQ ∠= 的点P 有几个?请说明理由.

解: (1)60BAO = ∠.

(2)点P 的运动速度为2个单位/秒. (3

)(10)P t -(05t ≤≤)

1

(22)(10)2S t t =+-

2

9121

24t ??=--+ ???

. ∴当92t =

时,S 有最大值为1214

, 此时1122P ?

??

,. (4)当点P 沿这两边运动时,90OPQ =

∠的点P 有2个. ①当点P 与点A 重合时,90OPQ <

∠,

当点P 运动到与点B 重合时,OQ 的长是12单位长度, 作90OPM = ∠交y 轴于点M ,作PH y ⊥轴于点H ,

由OPH OPM △∽△

得:11.5OM =

=, 所以OQ OM >,从而90OPQ >

∠.

所以当点P 在AB 边上运动时,90OPQ =

∠的点P 有1个.

②同理当点P 在BC

边上运动时,可算得1217.8OQ ==. (第29题图①)

x t 第29题图①

而构成直角时交y 轴于0? ??20.217.8=>, 所以90OCQ <

∠,从而90OPQ =

∠的点P 也有1个. 所以当点P 沿这两边运动时,90OPQ =

∠的点P 有2个.

6. (本题满分14分)如图12,直线43

4

+-

=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .

(1)求该二次函数的关系式;

(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒

2

3

个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →

A 的路线运动,

当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S .

①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;

②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围;

③设0S 是②中函数S 的最大值,那么0S = .

解:(1)令0=x ,则4=y ;

令0=y 则3=x .∴()30A ,.()04C , ∵二次函数的图象过点()04C ,

, ∴可设二次函数的关系式为

42++=bx ax y

又∵该函数图象过点()30A ,

.()10B -, ∴093404a b a b =++??

=-+?,.

解之,得34-

=a ,3

8=b . ∴所求二次函数的关系式为43

8

342++-

=x x y (2)∵43

8

342++-

=x x y =()3

161342+--x

∴顶点M 的坐标为1613?

? ???

, 过点M 作MF x ⊥轴于F

∴AFM AOCM FOCM S S S =+△四边形梯形

=()1013164213161321=???

? ??+?+?-? ∴四边形AOCM 的面积为10 (3)①不存在DE ∥OC

∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时12t <<,在Rt AOC △中,5AC =.

设点E 的坐标为()11x y ,

∴5443

1-=

t x ,∴5

12

121-=t x ∵DE OC ∥, ∴

t t 2

351212=- ∴38

=t

∵3

8

=t >2,不满足12t <<.

∴不存在DE OC ∥.

②根据题意得D ,E 两点相遇的时间为

1124

42

3543=

+++(秒) 现分情况讨论如下: ⅰ)当01t <≤时,213

4322

S t t t =

?= ; ⅱ)当12t <≤时,设点E 的坐标为()22x y ,

()54454

2--=

t y ,∴5

16362t

y -=

∴t t t t S 5

275125163623212+-=-??=

ⅲ)当2

16363t

y -=

设点D 的坐标为()44,y x

∴5

32

344

-=t y , ∴5

12

64-=t y

∴AOE AOD S S S =-△△

512

632151636321-?

?--??=

t t =5

72533+-t

③80243

0=S

7.关于x 的二次函数2

2

(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方.

(1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;

(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作

x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;

(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.

参考资料:抛物线2

(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ??

-- ???

,,对称轴是直线2b

x a

=-

. 解:(1)据题意得:240k -=,

2k ∴=±.

当2k =时,2220k -=>. 当2k =-时,2260k -=-<.

又抛物线与y 轴的交点在x 轴上方,2k ∴=.

∴抛物线的解析式为:22y x =-+.

函数的草图如图所示.(只要与坐标轴的三个交点的位置及图象大致形状正确即可) (2)解:令220x -+=

,得x =

不0x <<

112A D x =,2112A B x =-+,

211112()244l A B A D x x ∴=+=-++.

当x >222A D x =,

22

22(2)2A B x x =--+=-. 2

22222()244l A D A B x x ∴=+=+-.

l ∴关于x 的函数关系是:

当0x <<

2244l x x =-++;

当x >2

244l x x =+-. (3

)解法一:当0x <<1111A B A D =,

得2

220x x +-=.

解得1x =-

,或1x =-.

将1x =-代入2

244l x x =-++,

得8l =.

当x >2222A B A D =,得2220x x --=.

解得1x =

,或1x =.

将1x =代入2244l x x =+-

,得8l =.

综上,矩形ABCD 能成为正方形,

且当1x =

时正方形的周长为8;

当1x =

时,正方形的周长为8.

解法二:当0x <<

1x =-+.

正方形的周长11488l A D x ===.

当x >

1x =+.

(第26题)

∴正方形的周长22488l A D x ===.

综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =

时,正方形的周长为8.

解法三: 点A 在y 轴右侧的抛物线上,

0x ∴>,且点A 的坐标为2(2)x x -+,

. 令AB AD =,则222x x -+=.

∴222x x -+=, ①或222x x -+=- ②

由①解得1x =--,或1x =-+

由②解得1x =,或1x =. 又8l x =,

∴当1x =-时8l =;

当1x =时8l =.

综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =

时,正方形的周长为8.

8.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;

(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;

(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.

解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8

∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0) (2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得

?

??

??

0=36a -6b +80=4a +2b +8 解得???

a =-2

3

b =-8

3

第26题图(批卷教师用图)

第26题图

∴所求抛物线的表达式为y =-23x 2-8

3x +8

(3)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴

EF AC =BE AB 即EF 10=8-m

8

∴EF =40-5m 4

过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =4

5

FG EF =45 ∴FG =45·40-5m 4

=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )

=12(8-m )(8-8+m )=12(8-m )m =-1

2m 2+4m 自变量m 的取值范围是0<m <8 (4)存在.

理由:∵S =-12m 2+4m =-12(m -4)2+8 且-1

2

<0,

∴当m =4时,S 有最大值,S 最大值=8

∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形.

9.(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.

(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;

(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。 (注:抛物线2

y ax bx c =++的对称轴为2b x a

=-)

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考数学二次函数-经典压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

初中数学二次函数应用方法

初中数学二次函数应用方法 初中数学二次函数应用学习方法 学生是学习的主体,老师是学习的主导。教师要因人而异,因材施教,方能取得较好的课堂效果。 二次函数应用 在期末复习期间,我们在区教研室和学校领导的指导下,通过“初备一一交流一一复备一一再交流”,完成了《二次函数应用》的复习。通过本次活动,使我受益匪浅。 一、集体智慧胜于个人智慧。备课期间大家各显神通,献计献 尺0 束。 二、备学生要胜于备教材。 三、化难为易,化繁为简。教师在课堂上应该起到把握重点,分解难点的作用。 四、勤于思考,善于总结。在大量的习题中,在众多的方法下, 指导学生梳理知识,归纳题型,提炼方法,总结规律。以提高学生的分析问题解决问题的能力。 温馨建议:备课时将问题设置成问题串,为学生搭建解决问题的台阶。 初中数学解题方法之常用的公式 下面是对数学常用的公式的讲解,同学们认真学习哦。 对于常用的公式 如数学中的乘法公式、三角函数公式,常用的数字,女口11?25 的平

方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反 应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。 总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。 初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。 学会画图 画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。 画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧 途。 初中数学解题方法之审题对于一道具体的习题,解题时最重要的环节 是审题。 审题

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

九年级数学二次函数应用题 含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式; 米,)2)该男同学把铅球推出去多远?(精确到0.01 ( 元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.

件)可看成是一次函数关系:/(元与每件的销售价 之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1. 利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路 线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时 每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有 如下关系: 转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问: ①经销商甲选择方案1与方案2一年内分别获得利润各多少元?

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

初中数学二次函数综合应用

学 科 中考数学 课题名称 二次函数综合应用 教学目标 二次函数属于中考压轴题,知识点不仅多,考点灵活多变,而且难度较高,这就要求学生在复习二次函数时,须得把相关性质及相关解题技巧掌握扎实,理解透彻。本专题通过梳理二次函数的知识点(拓展知识点),并结合近几年上海市中考数学最后2道题二次函数的考点,把握中考二次函数命题方向,提高学生利用二次函数和结合相似等综合知识点解决问题的能力。 教学重难点 重点:二次函数解析式的确定,二次函数与x 轴交点问题,二次函数最值问题,二次函数图像上点的 存在问题,二次函数与相似等其它知识点的结合。 难点:二次函数与相似等其它知识点的结合。 知识精解 二次函数性质及相关扩展 1、一般式:y=ax 2+bx+c(a≠0), 函数图像是抛物线; 2、开口方向:(1)a>0, 开口向上, (2)a<0, 开口向下; 3、顶点坐标:(-b/2a, (4ac-b 2)/4a ), 对称轴:x= -b/2a 4、 顶点式:y=a(x+h)2+k(a≠0) h= -b/2a, k=(4ac-b 2)/4a 5、平移问题: ①将一般式化为顶点式; ②遵循原则:“左+ 右-,上+ 下-”(左右是指沿x 轴平移,上下是指沿y 轴平移) 例:将y=x 2+4x+3先向右平移2个单位,再向上平移1个单位,得到的新抛物线解析式是多少? 6、交点式:y=a(x-x 1)(x-x 2)(a≠0) ①一元二次方程根与系数的关系:x 1+x 2= -b/a, x 1.x 2=c/a ②求根公式:x =2 42b b ac a -±-,其中△=b 2-4ac 叫做根的判别式。 当△>0时,抛物线与x 轴有两个交点; 当△=0时,抛物线与x 轴有一个交点; 当△<0时,抛物线与x 轴没有交点。 ③运用抛物线的对称性: 若已知抛物线上两点12(,)(,)、x y x y , 则对称轴方程可以表示为:12 2 x x x += 7、增减性: ①a>0时,在对称轴的左侧,y 随x 的增大而减小; 在对称轴的右侧,y 随x 的增大而增大。 ②a<0时,在对称轴的左侧,y 随x 的增大而增大;

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学二次函数-经典压轴题及详细答案

-X 二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数y = α√-2αχ + 3的最大值为4,且该抛物线与A 轴的交点为C ,顶点为 D ? (1) 求该二次函数的解析式及点C , D 的坐标: (2) 点P(ΛO)是X 轴上的动点, ① 求IPC - PDl 的最大值及对应的点P 的坐标: ② 设0(0,2/)是y 轴上的动点,若线段PQ 与函数y = a ?x ?1 -2a ?x ?+3的图像只有一个 公共 点,求f 的取值范围. 【答案】(i) y = -χ2+2x + 3, C 点坐标为(0,3),顶点D 的坐标为(1,4); (2)①最 _ 3 7 大值是J∑, P 的坐标为(一 3,0),②,的取值范围为U_3或才Qv3或心?? 2 2 【解析】 【分析】 孕=1,计算对称轴,即顶点坐标为(1, 4),再将两点代 2a 入列二元一次方程组求出解析式: (2)根据三角形的三边关系:可知P 、C 、D 三点共线时IPC-PDl 取得最大值,求出直线CD 与X 轴的交点坐标,就是此时点P 的坐标; —χ-+ 2Λ"+3, X n 0, , ,此函数是两个二次函数 —XJ — 2x + 3, X < 0. 的一部分,分三种情况进行计算:①当线段PQ 过点(0, 3 ),即点Q 与点C 重合时,两 图象有一个公共点,当线段PQ 过点(3, 0),即点P 与点(3, 0)重合时,两函数有两 个公共点,写出t 的取值:②线段PQ 与当函数y=a∣x∣2-2a∣×∣+c (x>0)时有一个公共点 时,求t 的值:③当线段PQ 过点 (-3, 0),即点P 与点(-3, 0)重合时,线段PQ 与当 函数y=a∣x∣2-2a∣x∣+c (×<0)时也有一个公共 点,则当t 冬3时,都满足条件;综合以上结 论,得出t 的取值. 【详解】 —2a (I) VX= ???y = ax'-ax+3的对称轴为X = 1? T y = ax 2 -ax + 3人最大值为4, ???抛物线过点(1,4). 得 a-2a+3 = 4, 解得a = -l. ???该二次函数的解析式为y = —X? + 2x + 3. C 点坐标为(0,3),顶点 D 的坐标为(1,4). (2) ①.? IPC-PDI≤CD, (1)先利用对称轴公式X= (3)先把函数中的绝对值化去,可知y = <

初三数学二次函数应用题专题复习

二次函数应用题专题复习(含答案) 1、(2016?葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y与x的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元 (3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少 * 2.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件. (1)若公司每天的现售价为x元时则每天销售量为多少 (2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元

( 3.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大最大利润是多少 (3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内(每天的总成本=每件的成本×每天的销售量) ^

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

初中数学中考二次函数应用题专题训练

二次函数应用题专题训练 1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x 元,该经销店的月利润为y 元. (1)当每吨售价为240元时,计算此时的月销售量; (2)求y 与x 的函数关系式(不要求写出x 的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯? 3.外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 4某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100 1 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳100 1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

二次函数压轴题(经典版)

2016年10月26日二次函数压轴2 一.解答题(共30小题) 1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点. (1)求抛物线的解析式; (2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. 2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的函数关系式及顶点D的坐标; (2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值. 3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E. (1)求抛物线的解析式; (2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标; (3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.

4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内 交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C. (1)求△AOD的面积; (2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标; (3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标. 5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2, 与y轴交于点C. (1)求抛物线L2的解析式; (2)判断△ABC的形状,并说明理由; (3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.

相关文档
最新文档