多模态论文

多模态论文
多模态论文

A DAM :A M ETHOD FOR S TOCHASTIC O PTIMIZATION

Diederik P.Kingma *

University of Amsterdam,OpenAI

dpkingma@https://www.360docs.net/doc/0a12851463.html,

Jimmy Lei Ba ?University of Toronto

jimmy@psi.utoronto.ca

A BSTRACT

We introduce Adam ,an algorithm for ?rst-order gradient-based optimization of stochastic objective functions,based on adaptive estimates of lower-order mo-ments.The method is straightforward to implement,is computationally ef?cient,has little memory requirements,is invariant to diagonal rescaling of the gradients,and is well suited for problems that are large in terms of data and/or parameters.The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients.The hyper-parameters have intuitive interpre-tations and typically require little tuning.Some connections to related algorithms,on which Adam was inspired,are discussed.We also analyze the theoretical con-vergence properties of the algorithm and provide a regret bound on the conver-gence rate that is comparable to the best known results under the online convex optimization framework.Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods.Finally,we discuss AdaMax ,a variant of Adam based on the in?nity norm.

1I NTRODUCTION

Stochastic gradient-based optimization is of core practical importance in many ?elds of science and engineering.Many problems in these ?elds can be cast as the optimization of some scalar parameter-ized objective function requiring maximization or minimization with respect to its parameters.If the function is differentiable w.r.t.its parameters,gradient descent is a relatively ef?cient optimization method,since the computation of ?rst-order partial derivatives w.r.t.all the parameters is of the same computational complexity as just evaluating the function.Often,objective functions are stochastic.For example,many objective functions are composed of a sum of subfunctions evaluated at different subsamples of data;in this case optimization can be made more ef?cient by taking gradient steps w.r.t.individual subfunctions,i.e.stochastic gradient descent (SGD)or ascent.SGD proved itself as an ef?cient and effective optimization method that was central in many machine learning success stories,such as recent advances in deep learning (Deng et al.,2013;Krizhevsky et al.,2012;Hinton &Salakhutdinov,2006;Hinton et al.,2012a;Graves et al.,2013).Objectives may also have other sources of noise than data subsampling,such as dropout (Hinton et al.,2012b)regularization.For all such noisy objectives,ef?cient stochastic optimization techniques are required.The focus of this paper is on the optimization of stochastic objectives with high-dimensional parameters spaces.In these cases,higher-order optimization methods are ill-suited,and discussion in this paper will be restricted to ?rst-order methods.

We propose Adam ,a method for ef?cient stochastic optimization that only requires ?rst-order gra-dients with little memory requirement.The method computes individual adaptive learning rates for different parameters from estimates of ?rst and second moments of the gradients;the name Adam is derived from adaptive moment estimation.Our method is designed to combine the advantages of two recently popular methods:AdaGrad (Duchi et al.,2011),which works well with sparse gra-dients,and RMSProp (Tieleman &Hinton,2012),which works well in on-line and non-stationary settings;important connections to these and other stochastic optimization methods are clari?ed in section 5.Some of Adam’s advantages are that the magnitudes of parameter updates are invariant to rescaling of the gradient,its stepsizes are approximately bounded by the stepsize hyperparameter,it does not require a stationary objective,it works with sparse gradients,and it naturally performs a form of step size annealing.

?

Equal contribution.Author ordering determined by coin ?ip over a Google Hangout.

a r X i v :1412.6980v 9 [c s .L G ] 30 J a n 2017

Algorithm 1:Adam ,our proposed algorithm for stochastic optimization.See section 2for details,

and for a slightly more ef?cient (but less clear)order of computation.g 2

t indicates the elementwise square g t g t .Good default settings for the tested machine learning problems are α=0.001,

β1=0.9,β2=0.999and =10?8.All operations on vectors are element-wise.With βt 1and βt

2we denote β1and β2to the power t .Require:α:Stepsize

Require:β1,β2∈[0,1):Exponential decay rates for the moment estimates Require:f (θ):Stochastic objective function with parameters θRequire:θ0:Initial parameter vector m 0←0(Initialize 1st moment vector)v 0←0(Initialize 2nd moment vector)t ←0(Initialize timestep)while θt not converged do t ←t +1

g t ←?θf t (θt ?1)(Get gradients w.r.t.stochastic objective at timestep t )m t ←β1·m t ?1+(1?β1)·g t (Update biased ?rst moment estimate)

v t ←β2·v t ?1+(1?β2)·g 2

t (Update biased second raw moment estimate)

m t ←m t /(1?βt

1)(Compute bias-corrected ?rst moment estimate)

v t ←v t /(1?βt

2)(Compute bias-corrected second raw moment estimate)θt ←θt ?1?α· m t /(√ v t + )(Update parameters)end while

return θt (Resulting parameters)In section 2we describe the algorithm and the properties of its update rule.Section 3explains our initialization bias correction technique,and section 4provides a theoretical analysis of Adam’s convergence in online convex programming.Empirically,our method consistently outperforms other methods for a variety of models and datasets,as shown in section 6.Overall,we show that Adam is a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2A LGORITHM

See algorithm 1for pseudo-code of our proposed algorithm Adam .Let f (θ)be a noisy objec-tive function:a stochastic scalar function that is differentiable w.r.t.parameters θ.We are in-terested in minimizing the expected value of this function,E [f (θ)]w.r.t.its parameters θ.With f 1(θ),...,,f T (θ)we denote the realisations of the stochastic function at subsequent timesteps 1,...,T .The stochasticity might come from the evaluation at random subsamples (minibatches)of datapoints,or arise from inherent function noise.With g t =?θf t (θ)we denote the gradient,i.e.the vector of partial derivatives of f t ,w.r.t θevaluated at timestep t .

The algorithm updates exponential moving averages of the gradient (m t )and the squared gradient (v t )where the hyper-parameters β1,β2∈[0,1)control the exponential decay rates of these moving averages.The moving averages themselves are estimates of the 1st moment (the mean)and the 2nd raw moment (the uncentered variance)of the gradient.However,these moving averages are initialized as (vectors of)0’s,leading to moment estimates that are biased towards zero,especially during the initial timesteps,and especially when the decay rates are small (i.e.the βs are close to 1).The good news is that this initialization bias can be easily counteracted,resulting in bias-corrected estimates m t and v t .See section 3for more details.Note that the ef?ciency of algorithm 1can,at the expense of clarity,be improved upon by changing the order of computation,e.g.by replacing the last three lines in the loop with the following lines:

αt =α· t 2/(1?βt 1)and θt ←θt ?1?αt ·m t /(√v t +? ).2.1

A DAM ’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes.Assuming =0,the

effective step taken in parameter space at timestep t is ?t =α· m t /√ v t .The effective stepsize has two upper bounds:|?t |≤α·(1?β1)/√1?β2in the case (1?β1)>√1?β2,and |?t |≤α

otherwise.The ?rst case only happens in the most severe case of sparsity:when a gradient has been zero at all timesteps except at the current timestep.For less sparse cases,the effective stepsize will be smaller.When (1?β1)=√1?β2we have that | m t /√ v t |<1therefore |?t |<α.In more common scenarios,we will have that m t /√ v t ≈±1since |E [g ]/ E [g 2]|≤1.The effective magnitude of the steps taken in parameter space at each timestep are approximately bounded by the stepsize setting α,i.e.,|?t | α.This can be understood as establishing a trust region around the current parameter value,beyond which the current gradient estimate does not provide suf?cient information.This typically makes it relatively easy to know the right scale of αin advance.For many machine learning models,for instance,we often know in advance that good optima are with high probability within some set region in parameter space;it is not uncommon,for example,to have a prior distribution over the parameters.Since αsets (an upper bound of)the magnitude of steps in parameter space,we can often deduce the right order of magnitude of αsuch that optima can be reached from θ0within some number of iterations.With a slight abuse of terminology,we will call the ratio m t /√ v t the signal-to-noise ratio (SNR ).With a smaller SNR the effective stepsize ?t will be closer to zero.This is a desirable property,since a smaller SNR means that there is greater uncertainty about whether the direction of m t corresponds to the direction of the true gradient.For example,the SNR value typically becomes closer to 0towards an optimum,leading to smaller effective steps in parameter space:a form of automatic annealing.The effective stepsize ?t is also invariant to the scale of the gradients;rescaling the gradients g with factor c will scale m t with a factor c and v t with a factor c 2,which cancel out:(c · m t )/(√c 2· v t )= m t /√ v t .

3I NITIALIZATION BIAS CORRECTION

As explained in section 2,Adam utilizes initialization bias correction terms.We will here derive the term for the second moment estimate;the derivation for the ?rst moment estimate is completely analogous.Let g be the gradient of the stochastic objective f ,and we wish to estimate its second raw moment (uncentered variance)using an exponential moving average of the squared gradient,with decay rate β2.Let g 1,...,g T be the gradients at subsequent timesteps,each a draw from an underlying gradient distribution g t ~p (g t ).Let us initialize the exponential moving average as v 0=0(a vector of zeros).First note that the update at timestep t of the exponential moving average

v t =β2·v t ?1+(1?β2)·g 2t (where g 2

t indicates the elementwise square g t g t )can be written as a function of the gradients at all previous timesteps:

v t =(1?β2)

t i =1

βt ?i 2·g 2i

(1)

We wish to know how E [v t ],the expected value of the exponential moving average at timestep t ,

relates to the true second moment E [g 2

t

],so we can correct for the discrepancy between the two.Taking expectations of the left-hand and right-hand sides of eq.(1):

E [v t ]=E (1?β2)t

i =1

βt ?i 2·g 2

i (2)

=E [g 2

t ]·(1?β2)t i =1

βt ?i

2+ζ

(3)=

E [g 2t ]

·(1?

βt

2)

(4)

where ζ=0if the true second moment E [g 2

i ]is stationary;otherwise ζcan be kept small since the exponential decay rate β1can (and should)be chosen such that the exponential moving average

assigns small weights to gradients too far in the past.What is left is the term (1?βt

2)which is caused by initializing the running average with zeros.In algorithm 1we therefore divide by this term to correct the initialization bias.

In case of sparse gradients,for a reliable estimate of the second moment one needs to average over many gradients by chosing a small value of β2;however it is exactly this case of small β2where a lack of initialisation bias correction would lead to initial steps that are much larger.

4C ONVERGENCE ANALYSIS

We analyze the convergence of Adam using the online learning framework proposed in (Zinkevich,2003).Given an arbitrary,unknown sequence of convex cost functions f 1(θ),f 2(θ),...,f T (θ).At each time t ,our goal is to predict the parameter θt and evaluate it on a previously unknown cost function f t .Since the nature of the sequence is unknown in advance,we evaluate our algorithm using the regret,that is the sum of all the previous difference between the online prediction f t (θt )and the best ?xed point parameter f t (θ?)from a feasible set X for all the previous steps.Concretely,the regret is de?ned as:

R (T )=T

t =1

[f t (θt )?f t (θ?)]

(5)

where θ?=arg min θ∈X T

t =1f t (θ).We show Adam has O (√T )regret bound and a proof is given in the appendix.Our result is comparable to the best known bound for this general convex online learning problem.We also use some de?nitions simplify our notation,where g t ?f t (θt )and g t,i as the i th element.We de?ne g 1:t,i ∈R t as a vector that contains the i th dimension of the gradients over all iterations till t ,g 1:t,i =[g 1,i ,g 2,i ,···,g t,i ].Also,we de?ne γ

β21√β2

.Our following

theorem holds when the learning rate αt is decaying at a rate of t ?1

2and ?rst moment running average coef?cient β1,t decay exponentially with λ,that is typically close to 1,e.g.1?10?8.

Theorem 4.1.Assume that the function f t has bounded gradients, ?f t (θ) 2≤G , ?f t (θ) ∞≤G ∞for all θ∈R d and distance between any θt generated by Adam is bounded, θn ?θm 2≤D ,

θm ?θn ∞≤D ∞for any m,n ∈{1,...,T },and β1,β2∈[0,1)satisfy β21√β2

<1.Let αt =α

t and β1,t =β1λt ?1

,λ∈(0,1).Adam achieves the following guarantee,for all T ≥1.

R (T )≤D 22α(1?β1)d i =1 T v T,i +α(1+β1)G ∞(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2+

d i =1D 2∞

G ∞√1?β22α(1?β1)(1?λ)2Our Theorem 4.1implies when the data features are sparse and bounded gradients,the sum-mation term can be much smaller than its upper bound d i =1 g 1:T,i 2<

T v T,i <

i =1 g 1:T,i 2]also apply to Adam.In particular,the adaptive method,such as Adam and Adagrad,can achieve O (log d √T ),an improvement over O (√

dT )for the non-adaptive method.Decaying β1,t towards zero is impor-tant in our theoretical analysis and also matches previous empirical ?ndings,e.g.(Sutskever et al.,2013)suggests reducing the momentum coef?cient in the end of training can improve convergence.Finally,we can show the average regret of Adam converges,

Corollary 4.2.Assume that the function f t has bounded gradients, ?f t (θ) 2≤G , ?f t (θ) ∞≤G ∞for all θ∈R d and distance between any θt generated by Adam is bounded, θn ?θm 2≤D , θm ?θn ∞≤D ∞for any m,n ∈{1,...,T }.Adam achieves the following guarantee,for all T ≥1.

R (T )

T =O (1√T

)This result can be obtained by using Theorem 4.1and d

i =1

g 1:T,i 2≤dG ∞√T .Thus,lim T →∞R (T )

T =0.

5R ELATED WORK

Optimization methods bearing a direct relation to Adam are RMSProp (Tieleman &Hinton,2012;Graves,2013)and AdaGrad (Duchi et al.,2011);these relationships are discussed below.Other stochastic optimization methods include vSGD (Schaul et al.,2012),AdaDelta (Zeiler,2012)and the natural Newton method from Roux &Fitzgibbon (2010),all setting stepsizes by estimating curvature

from ?rst-order information.The Sum-of-Functions Optimizer (SFO)(Sohl-Dickstein et al.,2014)is a quasi-Newton method based on minibatches,but (unlike Adam)has memory requirements linear in the number of minibatch partitions of a dataset,which is often infeasible on memory-constrained systems such as a GPU.Like natural gradient descent (NGD)(Amari,1998),Adam employs a preconditioner that adapts to the geometry of the data,since v t is an approximation to the diagonal of the Fisher information matrix (Pascanu &Bengio,2013);however,Adam’s preconditioner (like AdaGrad’s)is more conservative in its adaption than vanilla NGD by preconditioning with the square root of the inverse of the diagonal Fisher information matrix approximation.

RMSProp:An optimization method closely related to Adam is RMSProp (Tieleman &Hinton,2012).A version with momentum has sometimes been used (Graves,2013).There are a few impor-tant differences between RMSProp with momentum and Adam:RMSProp with momentum gener-ates its parameter updates using a momentum on the rescaled gradient,whereas Adam updates are directly estimated using a running average of ?rst and second moment of the gradient.RMSProp also lacks a bias-correction term;this matters most in case of a value of β2close to 1(required in case of sparse gradients),since in that case not correcting the bias leads to very large stepsizes and often divergence,as we also empirically demonstrate in section 6.4.

AdaGrad:An algorithm that works well for sparse gradients is AdaGrad (Duchi et al.,2011).Its

basic version updates parameters as θt +1=θt ?α·g t / t i =1g 2t .Note that if we choose β2to be in?nitesimally close to 1from below,then lim β2→1 v t =t ?1· t

i =1g 2

t .AdaGrad corresponds to a version of Adam with β1=0,in?nitesimal (1?β2)and a replacement of αby an annealed version αt =α·t ?1/2,namely θt ?α·t ?1/2· m t / lim β2→1 v t =θt ?α·t ?1/2·g t / t ?1· t

i =1g 2t

=θt ?α·g t /

t i =1g 2t .Note that this direct correspondence between Adam and Adagrad does

not hold when removing the bias-correction terms;without bias correction,like in RMSProp,a β2in?nitesimally close to 1would lead to in?nitely large bias,and in?nitely large parameter updates.

6E XPERIMENTS

To empirically evaluate the proposed method,we investigated different popular machine learning models,including logistic regression,multilayer fully connected neural networks and deep convolu-tional neural https://www.360docs.net/doc/0a12851463.html,ing large models and datasets,we demonstrate Adam can ef?ciently solve practical deep learning problems.

We use the same parameter initialization when comparing different optimization algorithms.The hyper-parameters,such as learning rate and momentum,are searched over a dense grid and the results are reported using the best hyper-parameter setting.6.1

E XPERIMENT :L OGISTIC R EGRESSION

We evaluate our proposed method on L2-regularized multi-class logistic regression using the MNIST dataset.Logistic regression has a well-studied convex objective,making it suitable for comparison of different optimizers without worrying about local minimum issues.The stepsize αin our logistic

regression experiments is adjusted by 1/√t decay,namely αt =α

t

that matches with our theorat-ical prediction from section 4.The logistic regression classi?es the class label directly on the 784dimension image vectors.We compare Adam to accelerated SGD with Nesterov momentum and Adagrad using minibatch size of 128.According to Figure 1,we found that the Adam yields similar convergence as SGD with momentum and both converge faster than Adagrad.

As discussed in (Duchi et al.,2011),Adagrad can ef?ciently deal with sparse features and gradi-ents as one of its main theoretical results whereas SGD is low at learning rare features.Adam with 1/√t decay on its stepsize should theoratically match the performance of Adagrad.We examine the sparse feature problem using IMDB movie review dataset from (Maas et al.,2011).We pre-process the IMDB movie reviews into bag-of-words (BoW)feature vectors including the ?rst 10,000most frequent words.The 10,000dimension BoW feature vector for each review is highly sparse.As sug-gested in (Wang &Manning,2013),50%dropout noise can be applied to the BoW features during

Figure1:Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with10,000bag-of-words(BoW)feature vectors.

training to prevent over-?tting.In?gure1,Adagrad outperforms SGD with Nesterov momentum by a large margin both with and without dropout noise.Adam converges as fast as Adagrad.The empirical performance of Adam is consistent with our theoretical?ndings in sections2and4.Sim-ilar to Adagrad,Adam can take advantage of sparse features and obtain faster convergence rate than normal SGD with momentum.

6.2E XPERIMENT:M ULTI-LAYER N EURAL N ETWORKS

Multi-layer neural network are powerful models with non-convex objective functions.Although our convergence analysis does not apply to non-convex problems,we empirically found that Adam often outperforms other methods in such cases.In our experiments,we made model choices that are consistent with previous publications in the area;a neural network model with two fully connected hidden layers with1000hidden units each and ReLU activation are used for this experiment with minibatch size of128.

First,we study different optimizers using the standard deterministic cross-entropy objective func-tion with L2weight decay on the parameters to prevent over-?tting.The sum-of-functions(SFO) method(Sohl-Dickstein et al.,2014)is a recently proposed quasi-Newton method that works with minibatches of data and has shown good performance on optimization of multi-layer neural net-works.We used their implementation and compared with Adam to train such models.Figure2 shows that Adam makes faster progress in terms of both the number of iterations and wall-clock time.Due to the cost of updating curvature information,SFO is5-10x slower per iteration com-pared to Adam,and has a memory requirement that is linear in the number minibatches. Stochastic regularization methods,such as dropout,are an effective way to prevent over-?tting and often used in practice due to their simplicity.SFO assumes deterministic subfunctions,and indeed failed to converge on cost functions with stochastic regularization.We compare the effectiveness of Adam to other stochastic?rst order methods on multi-layer neural networks trained with dropout noise.Figure2shows our results;Adam shows better convergence than other methods.

6.3E XPERIMENT:C ONVOLUTIONAL N EURAL N ETWORKS

Convolutional neural networks(CNNs)with several layers of convolution,pooling and non-linear units have shown considerable success in computer vision tasks.Unlike most fully connected neural nets,weight sharing in CNNs results in vastly different gradients in different layers.A smaller learning rate for the convolution layers is often used in practice when applying SGD.We show the effectiveness of Adam in deep CNNs.Our CNN architecture has three alternating stages of5x5 convolution?lters and3x3max pooling with stride of2that are followed by a fully connected layer of1000recti?ed linear hidden units(ReLU’s).The input image are pre-processed by whitening,and

6

Figure 2:Training of multilayer neural networks on MNIST images.(a)Neural networks using dropout stochastic regularization.(b)Neural networks with deterministic cost function.We compare with the sum-of-functions (SFO)optimizer (Sohl-Dickstein et al.,2014)

Figure 3:Convolutional neural networks training cost.(left)Training cost for the ?rst three epochs.(right)Training cost over 45epochs.CIFAR-10with c64-c64-c128-1000architecture.

dropout noise is applied to the input layer and fully connected layer.The minibatch size is also set to 128similar to previous experiments.

Interestingly,although both Adam and Adagrad make rapid progress lowering the cost in the initial stage of the training,shown in Figure 3(left),Adam and SGD eventually converge considerably faster than Adagrad for CNNs shown in Figure 3(right).We notice the second moment estimate v t vanishes to zeros after a few epochs and is dominated by the in algorithm 1.The second moment estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing to fully connected network from Section 6.2.Whereas,reducing the minibatch variance through the ?rst moment is more important in CNNs and contributes to the speed-up.As a result,Adagrad converges much slower than others in this particular experiment.Though Adam shows marginal improvement over SGD with momentum,it adapts learning rate scale for different layers instead of hand picking manually as in SGD.

7

6.4E XPERIMENT :BIAS -CORRECTION TERM

We also empirically evaluate the effect of the bias correction terms explained in sections 2and 3.Discussed in section 5,removal of the bias correction terms results in a version of RMSProp (Tiele-man &Hinton,2012)with momentum.We vary the β1and β2when training a variational auto-encoder (V AE)with the same architecture as in (Kingma &Welling,2013)with a single hidden layer with 500hidden units with softplus nonlinearities and a 50-dimensional spherical Gaussian latent variable.We iterated over a broad range of hyper-parameter choices,i.e.β1∈[0,0.9]and β2∈[0.99,0.999,0.9999],and log 10(α)∈[?5,...,?1].Values of β2close to 1,required for robust-ness to sparse gradients,results in larger initialization bias;therefore we expect the bias correction term is important in such cases of slow decay,preventing an adverse effect on optimization.In Figure 4,values β2close to 1indeed lead to instabilities in training when no bias correction term was present,especially at ?rst few epochs of the training.The best results were achieved with small values of (1?β2)and bias correction;this was more apparent towards the end of optimization when gradients tends to become sparser as hidden units specialize to speci?c patterns.In summary,Adam performed equal or better than RMSProp,regardless of hyper-parameter setting.

7

E XTENSIONS

7.1

A DA M AX

In Adam,the update rule for individual weights is to scale their gradients inversely proportional to a (scaled)L 2norm of their individual current and past gradients.We can generalize the L 2norm based update rule to a L p norm based update rule.Such variants become numerically unstable for large p .However,in the special case where we let p →∞,a surprisingly simple and stable algorithm emerges;see algorithm 2.We’ll now derive the algorithm.Let,in case of the L p norm,the stepsize

at time t be inversely proportional to v 1/p

t ,where:

v t =βp 2v t ?1+(1?βp

2)|g t |p

(6)=(1?

βp

2)

t i =1

βp (t ?i )

2

·|g i |p

(7)

Algorithm 2:AdaMax ,a variant of Adam based on the in?nity norm.See section 7.1for details.Good default settings for the tested machine learning problems are α=0.002,β1=0.9and

β2=0.999.With βt 1we denote β1to the power t .Here,(α/(1?βt

1))is the learning rate with the bias-correction term for the ?rst moment.All operations on vectors are element-wise.Require:α:Stepsize

Require:β1,β2∈[0,1):Exponential decay rates

Require:f (θ):Stochastic objective function with parameters θRequire:θ0:Initial parameter vector m 0←0(Initialize 1st moment vector)

u 0←0(Initialize the exponentially weighted in?nity norm)t ←0(Initialize timestep)while θt not converged do t ←t +1

g t ←?θf t (θt ?1)(Get gradients w.r.t.stochastic objective at timestep t )m t ←β1·m t ?1+(1?β1)·g t (Update biased ?rst moment estimate)

u t ←max(β2·u t ?1,|g t |)(Update the exponentially weighted in?nity norm)

θt ←θt ?1?(α/(1?βt

1))·m t /u t (Update parameters)end while

return θt (Resulting parameters)

Note that the decay term is here equivalently parameterised as βp

2instead of β2.Now let p →∞,

and de?ne u t =lim p →∞(v t )1/p

,then:

u t =lim p →∞

(v t )1/p =lim p →∞

(1?βp

2)t i =1

βp (t ?i )2·|g i |p 1/p

(8)

=lim p →∞

(1?βp 2)1/p

t

i =1

βp (t ?i )

2

·|g i |p

1/p

(9)

=lim

p →∞

t

i =1

β(t ?i )2·|g i |

p

1/p

(10)=max

βt ?12|g 1|,βt ?2

2|g 2|,...,β2|g t ?1|,|g t |

(11)

Which corresponds to the remarkably simple recursive formula:

u t =max(β2·u t ?1,|g t |)

(12)

with initial value u 0=0.Note that,conveniently enough,we don’t need to correct for initialization bias in this case.Also note that the magnitude of parameter updates has a simpler bound with AdaMax than Adam,namely:|?t |≤α.7.2

T EMPORAL AVERAGING

Since the last iterate is noisy due to stochastic approximation,better generalization performance is often achieved by averaging.Previously in Moulines &Bach (2011),Polyak-Ruppert averaging (Polyak &Juditsky,1992;Ruppert,1988)has been shown to improve the convergence of standard

SGD,where ˉθt =1t n k =1θk .Alternatively,an exponential moving average over the parameters can

be used,giving higher weight to more recent parameter values.This can be trivially implemented

by adding one line to the inner loop of algorithms 1and 2:ˉθt ←β2·ˉθt ?1+(1?β2)θt ,with ˉθ0=0.Initalization bias can again be corrected by the estimator θt =ˉθt /(1?βt 2

).8C ONCLUSION

We have introduced a simple and computationally ef?cient algorithm for gradient-based optimiza-tion of stochastic objective functions.Our method is aimed towards machine learning problems with

large datasets and/or high-dimensional parameter spaces.The method combines the advantages of two recently popular optimization methods:the ability of AdaGrad to deal with sparse gradients, and the ability of RMSProp to deal with non-stationary objectives.The method is straightforward to implement and requires little memory.The experiments con?rm the analysis on the rate of con-vergence in convex problems.Overall,we found Adam to be robust and well-suited to a wide range of non-convex optimization problems in the?eld machine learning.

9A CKNOWLEDGMENTS

This paper would probably not have existed without the support of Google Deepmind.We would like to give special thanks to Ivo Danihelka,and Tom Schaul for coining the name Adam.Thanks to Kai Fan from Duke University for spotting an error in the original AdaMax derivation.Experiments in this work were partly carried out on the Dutch national e-infrastructure with the support of SURF Foundation.Diederik Kingma is supported by the Google European Doctorate Fellowship in Deep Learning.

R EFERENCES

Amari,Shun-Ichi.Natural gradient works ef?ciently in learning.Neural computation,10(2):251–276,1998. Deng,Li,Li,Jinyu,Huang,Jui-Ting,Yao,Kaisheng,Yu,Dong,Seide,Frank,Seltzer,Michael,Zweig,Geoff, He,Xiaodong,Williams,Jason,et al.Recent advances in deep learning for speech research at microsoft. ICASSP2013,2013.

Duchi,John,Hazan,Elad,and Singer,Yoram.Adaptive subgradient methods for online learning and stochastic optimization.The Journal of Machine Learning Research,12:2121–2159,2011.

Graves,Alex.Generating sequences with recurrent neural networks.arXiv preprint arXiv:1308.0850,2013. Graves,Alex,Mohamed,Abdel-rahman,and Hinton,Geoffrey.Speech recognition with deep recurrent neural networks.In Acoustics,Speech and Signal Processing(ICASSP),2013IEEE International Conference on, pp.6645–6649.IEEE,2013.

Hinton,G.E.and Salakhutdinov,R.R.Reducing the dimensionality of data with neural networks.Science,313 (5786):504–507,2006.

Hinton,Geoffrey,Deng,Li,Yu,Dong,Dahl,George E,Mohamed,Abdel-rahman,Jaitly,Navdeep,Senior, Andrew,Vanhoucke,Vincent,Nguyen,Patrick,Sainath,Tara N,et al.Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups.Signal Processing Magazine, IEEE,29(6):82–97,2012a.

Hinton,Geoffrey E,Srivastava,Nitish,Krizhevsky,Alex,Sutskever,Ilya,and Salakhutdinov,Ruslan R.Im-proving neural networks by preventing co-adaptation of feature detectors.arXiv preprint arXiv:1207.0580, 2012b.

Kingma,Diederik P and Welling,Max.Auto-Encoding Variational Bayes.In The2nd International Conference on Learning Representations(ICLR),2013.

Krizhevsky,Alex,Sutskever,Ilya,and Hinton,Geoffrey E.Imagenet classi?cation with deep convolutional neural networks.In Advances in neural information processing systems,pp.1097–1105,2012.

Maas,Andrew L,Daly,Raymond E,Pham,Peter T,Huang,Dan,Ng,Andrew Y,and Potts,Christopher. Learning word vectors for sentiment analysis.In Proceedings of the49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies-Volume1,pp.142–150.Association for Computational Linguistics,2011.

Moulines,Eric and Bach,Francis R.Non-asymptotic analysis of stochastic approximation algorithms for machine learning.In Advances in Neural Information Processing Systems,pp.451–459,2011. Pascanu,Razvan and Bengio,Yoshua.Revisiting natural gradient for deep networks.arXiv preprint arXiv:1301.3584,2013.

Polyak,Boris T and Juditsky,Anatoli B.Acceleration of stochastic approximation by averaging.SIAM Journal on Control and Optimization,30(4):838–855,1992.

Roux,Nicolas L and Fitzgibbon,Andrew W.A fast natural newton method.In Proceedings of the27th International Conference on Machine Learning(ICML-10),pp.623–630,2010.

Ruppert,David.Ef?cient estimations from a slowly convergent robbins-monro process.Technical report, Cornell University Operations Research and Industrial Engineering,1988.

Schaul,Tom,Zhang,Sixin,and LeCun,Yann.No more pesky learning rates.arXiv preprint arXiv:1206.1106, 2012.

Sohl-Dickstein,Jascha,Poole,Ben,and Ganguli,Surya.Fast large-scale optimization by unifying stochas-tic gradient and quasi-newton methods.In Proceedings of the31st International Conference on Machine Learning(ICML-14),pp.604–612,2014.

Sutskever,Ilya,Martens,James,Dahl,George,and Hinton,Geoffrey.On the importance of initialization and momentum in deep learning.In Proceedings of the30th International Conference on Machine Learning (ICML-13),pp.1139–1147,2013.

Tieleman,T.and Hinton,G.Lecture6.5-RMSProp,COURSERA:Neural Networks for Machine Learning. Technical report,2012.

Wang,Sida and Manning,Christopher.Fast dropout training.In Proceedings of the30th International Confer-ence on Machine Learning(ICML-13),pp.118–126,2013.

Zeiler,Matthew D.Adadelta:An adaptive learning rate method.arXiv preprint arXiv:1212.5701,2012. Zinkevich,Martin.Online convex programming and generalized in?nitesimal gradient ascent.2003.

10

A PPENDIX

10.1

C ONVERGENCE P ROOF

De?nition 10.1.A function f :R d →R is convex if for all x ,y ∈R d ,for all λ∈[0,1],

λf (x )+(1?λ)f (y )≥f (λx +(1?λ)y )

Also,notice that a convex function can be lower bounded by a hyperplane at its tangent.Lemma 10.2.If a function f :R d →R is convex,then for all x ,y ∈R d ,

f (y )≥f (x )+?f (x )T (y ?x )

The above lemma can be used to upper bound the regret and our proof for the main theorem is constructed by substituting the hyperplane with the Adam update rules.

The following two lemmas are used to support our main theorem.We also use some de?nitions sim-plify our notation,where g t ?f t (θt )and g t,i as the i th element.We de?ne g 1:t,i ∈R t as a vector that contains the i th dimension of the gradients over all iterations till t ,g 1:t,i =[g 1,i ,g 2,i ,···,g t,i ]Lemma 10.3.Let g t =?f t (θt )and g 1:t be de?ned as above and bounded, g t 2≤G , g t ∞≤G ∞.Then,T t =1

g 2t,i

t ≤2G ∞ g 1:T,i 2Proof.We will prove the inequality using induction over T.

The base case for T =1,we have

g 21,i

≤2G ∞ g 1,i 2.For the inductive step,

T t =1

g 2t,i

t

=

T ?1 t =1

g 2t,i

t

+

g 2T,i

T

≤2G ∞ g 1:T ?1,i 2+

g 2T,i

T

=2G ∞

g 1:T,i 22?g 2T +

g 2T,i

T

From, g 1:T,i 22?g 2

T,i +g 4T,i

4 g 1:T,i 22

≥ g 1:T,i 22?g 2

T,i ,we can take square root of both side and

have,

g 1:T,i 22?g 2T,i

≤ g 1:T,i 2?

g 2

T,i

2 g 1:T,i 2≤ g 1:T,i 2?g 2T,i

2

T G 2∞

Rearrange the inequality and substitute the

g 1:T,i 22?g 2T,i term,

G ∞ g 1:T,i 22?g 2T +

g 2T,i

T

≤2G ∞ g 1:T,i

2

Lemma 10.4.Let γ β2

1

√β2

.For β1,β2∈[0,1)that satisfy β21√β2

<1and bounded g t , g t 2≤G ,

g t ∞≤G ∞,the following inequality holds

T t =1

m 2t,i t v t,i ≤21?γ1√1?β2 g 1:T,i 2

Proof.Under the assumption,√

1?βt

2(1?βt 1)2≤1

(1?β1)2.We can expand the last term in the summation using the update rules in Algorithm 1,

T t =1 m 2t,i t v t,i =T ?1 t =1

m 2t,i t v t,i

+ 1?βT 2(1?βT 1)2( T k =1(1?β1)βT ?k 1

g k,i )2 T T j =1

(1?β2

)βT ?j 2g 2j,i

≤T ?1

t =1 m 2t,i

t v t,i +

T 2(1?βT 1)2T k =1

T ((1?β1)βT ?k 1g k,i )2 T T j =1(1?β2)βT ?j 2g 2j,i ≤T ?1 t =1 m 2t,i

t v t,i + 1?βT 2(1?β1)T k =1

T ((1?β1)βT ?k 1g k,i )2 T (1?β2

)βT ?k 2g 2k,i

≤T ?1 t =1

m 2t,i t v t,i +

1?βT 2(1?βT 1)2(1?β1)2 T (1?β2)T k =1

T β21√β2 T ?k g k,i 2≤

T ?1 t =1

m 2t,i t v t,i +T T (1?β2)T k =1

γT ?k g k,i 2Similarly,we can upper bound the rest of the terms in the summation.

T t =1 m 2t,i

t v t,i ≤T t =1

g t,i 2 t (1?β2)T ?t j =0tγj ≤

T t =1

g t,i 2

t (1?β2)

T j =0

tγj

For γ<1,using the upper bound on the arithmetic-geometric series,

t

tγt <

1

(1?γ)2:

T t =1

g t,i 2

t (1?β2)T

j =0

tγj

1(1?γ)2√1?β2T t =1 g t,i 2

√t Apply Lemma 10.3,

T t =1

m 2t,i t v t,i ≤2G ∞

(1?γ)2√1?β2 g 1:T,i 2

To simplify the notation,we de?ne γ

β21√β2

.Intuitively,our following theorem holds when the

learning rate αt is decaying at a rate of t ?1

2and ?rst moment running average coef?cient β1,t decay

exponentially with λ,that is typically close to 1,e.g.1?10?8.

Theorem 10.5.Assume that the function f t has bounded gradients, ?f t (θ) 2≤G , ?f t (θ) ∞≤G ∞for all θ∈R d and distance between any θt generated by Adam is bounded, θn ?θm 2≤D ,

θm ?θn ∞≤D ∞for any m,n ∈{1,...,T },and β1,β2∈[0,1)satisfy β2

1

√β2

<1.Let αt =α√t

and β1,t =β1λt ?1,λ∈(0,1).Adam achieves the following guarantee,for all T ≥1.

R (T )≤D 22α(1?β1)d i =1 T v T,i +α(β1+1)G ∞(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2+

d i =1D 2∞G ∞√1?β2

2α(1?β1)(1?λ)https://www.360docs.net/doc/0a12851463.html,ing Lemma 10.2,we have,

f t (θt )?f t (θ?

)≤

g T t (θt

?θ?

)=

d i =1

g t,i (θt,i ?θ?

,i )

From the update rules presented in algorithm 1,

θt +1=θt ?αt m t /

v t =θt ?αt

1?βt 1 β1,t √ v t m t ?1+(1?β1,t )√ v t

g t We focus on the i th dimension of the parameter vector θt ∈R d .Subtract the scalar θ?

,i and square both sides of the above update rule,we have,(θt +1,i ?θ?,i )2=(θt,i ?θ?,i )2

?

2αt 1?βt 1(β1,t v t,i m t ?1,i +(1?β1,t ) v t,i g t,i )(θt,i ?θ?,i )+α2t ( m t,i v t,i

)2We can rearrange the above equation and use Young’s inequality,ab ≤a 2/2+b 2/2.Also,it can be

shown that v t,i = t j =1(1?β2)βt ?j 2g 2j,i / 1?βt 2≤ g 1:t,i 2and β1,t ≤β1.Then g t,i (θt,i ?θ?,i )=(1?βt

1) v t,i 2αt (1?β1,t )

(θt,i ?θ?,t )2?(θt +1,i ?θ?,i )

2

+β1,t (1?β1,t ) v 14t ?1,i √

αt ?1(θ?,i ?θt,i )√

αt ?1m t ?1,i v 14t ?1,i

+αt (1?βt 1) v t,i 2(1?β1,t )( m t,i v t,i )2≤12αt (1?β1) (θt,i ?θ?,t )2?(θt +1,i ?θ?,i )2

v t,i +β1,t 2αt ?1(1?β1,t )

(θ?,i ?θt,i )2 v

t ?1,i +β1αt ?12(1?β1)m 2t ?1,i

v t ?1,i +

αt 2(1?β1) m 2t,i v t,i

We apply Lemma 10.4to the above inequality and derive the regret bound by summing across all

the dimensions for i ∈1,...,d in the upper bound of f t (θt )?f t (θ?)and the sequence of convex functions for t ∈1,...,T :R (T )≤

d i =1

1

2α1(1?β1)

(θ1,i ?θ?,i )2

1,i +

d i =1T t =2

12(1?β1)(θt,i ?θ?,i )2

( v t,i αt

?

v t ?1,i

αt ?1

)+β1αG ∞(1?β1)√1?β2(1?γ)2d i =1 g 1:T,i 2+αG ∞

(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2

+

d i =1T t =1

β1,t 2αt (1?β1,t )(θ?,i

?θt,i )2

v t,i

From the assumption, θt ?θ? 2≤D , θm ?θn ∞≤D ∞,we have:

R (T )≤D 22α(1?β1)d i =1 T v T,i +α(1+β1)G ∞(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2

+D 2∞2αd i =1t t =1β1,t (1?β1,t )

t v t,i ≤

D 2

1d i =1 T v T,i +α(1+β1)G ∞(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2+D 2

∞G ∞√1?β22αd i =1t t =1

β1,t (1?β1,t )√We can use arithmetic geometric series upper bound for the last term:

t t =1

β1,t (1?β1,t )√

t ≤

t

t =1

1(1?β1)λt ?1√t ≤t t =1

1

(1?β1)

λt ?1t

1

(1?β1)(1?λ)2

Therefore,we have the following regret bound:

R (T )≤D 21d i =1 T v T,i +

α(1+β1)G ∞

(1?β1)√1?β2(1?γ)2d i =1

g 1:T,i 2+d i =1

D 2∞G ∞√1

?β21

白车身模态分析试验方法研究 毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 试验模态分析 (5) 2.1模态试验理论 (5) 2.2试验测试系统组成 (6) 3 模态参数识别方法 (7) 3.1模态参数识别主要方法 (7) 3.2最小二乘复频域法 (9) 3.2.1最小二乘复频域法简介 (9) 3.2.2系统模型的确定 (9) 4 白车身模态试验 (10) 4.1白车身参数 (10) 4.2试验结构的支撑方式 (10) 4.3传感器的选择及布置原则 (12) 4.4激励系统 (13) 4.4.1激励方式 (13) 4.4.2振动激励源的选择和比较 (14) 4.4.3设备传感器 (15) 4.5试验测试系统检验 (16) 5 试验测试结果及分析 (21) 5.1稳态图 (21) 5.2模态频率与阻尼比 (23) 5.3模态振型 (24) 5.4模态试验的有效性 (26) 6 有限元分析结果与试验结果对比 (30) 结论 (33) 谢辞 (34) 参考文献 (35)

白车身模态试验方法研究 摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精 确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX) 法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、 模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者 之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点 并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简 化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析 结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文 认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。 关键词:白车身模态试验分析方法MIMO PolyMAX 1

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

视觉诗40-Love多模态意义的构建

视觉诗40-Love多模态意义的构建 摘要:视觉诗有一般诗歌所没有的视觉效果,传统的单模态分析方法不能照顾这一特点,多模态话语分析理论为可视诗研究提供了一套同时分析视、听和文字互相兼容的系统研究体系。本文在此基础上,以系统功能语言学和多模态话语分析为理论框架,对Roger McGough的可视诗40-Love进行模态分解、单模态意义构建、多模态意义整合的尝试性研究。 关键词:多模态化;模态分解;单模态意义构建;多模态意义整合;视觉诗 1 引言 董崇选指出真正以“形”取胜的诗可以统称为“视觉诗”( visual poetry) 。它自诞生以来一直都是诗坛争议最多的一种诗歌形式,有人批评它不够严肃。针对于此,张旭红认为一种诗歌形式的成功与否不仅在于诗人的创作技巧,更在于读者的解读技能。传统的分析模式局限于单一的言语信息,忽视构成可视诗歌这一特殊文学形式的其他符号系统的分析,因而无法充分地诠释创作者的创作意图。而兴起于20世纪90年代的多模态话语分析理论为视觉诗的研究提供了一套同时分析视、听和文字互相兼容的系统研究体系。但目前国内外在该项研究中都刚刚起步,现有的研究主要集中在影视、多媒体、海报、视觉广告功能文体分析及口语的研究上,其中张旭红采用该理论对视觉诗歌Me up at does 作了大胆的尝试,并取得了成功。针对于此,本文以40-Love为例,并借鉴张先生研究模式尝试对其进行多模态的文体分析。 2 多模态话语分析综述 模态(modality)是指交流的渠道和媒介,包括语言、技术、图像、颜色、音乐等符号系统(朱永生2007)。多模态(multimodal)是指除了文本之外,还带有

毕业设计论文中期报告.doc

毕业论文中期报告 一,预期目标 理论知识:1,了解网架结构的特点,并学习网架结构的计算与设计研究方法; 2,学习网架结构的静力分析方法。按照《建筑结构荷载规范》及设计规范取值,计算时考虑各项荷载及其组合,并根据组合确定几种最大影响工况,然后用ansys分析最不利情况,考察最不利情况是否满足《网架结构设计与施工规程》; 3,学习网架结构的动力特性分析。动力特性分析只作模态分析和随机振动谱分析。,模态分析理论是基础,它主要用于计算模型固有模态的两个基本参数:固有频率和模态振型。随机振动谱分析是一种将模态分析结果和已知谱联系起来,然后计算模型位移和应力的分析技术,主要用于模型在确定载荷或随机载荷作用下,获得结构的响应情况。 软件应用:1,学习有限元软件ansys的基本操作,并针对以前学习中出现的问题作补充 学习; 2,学习ansys自带的参数化设计语言APDL; 3,空间网架结构的参数化建模。 二,开题以来所做的具体工作和取得的进展或成果 自开题以来,按照开题报告所作的安排,陆续学习了相关知识,包括:网架结构的特点,计算与设计研究方法等,网架结构的静力分析方法,动力特性分析方法等。 另外,在学习理论知识的同时,也开始了有限元软件ansys的学习,主要是一些基本的理论知识,操作方法,了解一些在本论文应用中可能存在的问题。 三,存在的具体问题 1,涉及到的动力特性分析,比初始考虑的问题要复杂,因而加重了这一块学习的任务,到目前为止,有些问题依然比较模糊。 2,网架结构的参数化建模。由于APDL语言学习的水平所限,现在参数化建模没有完成,可能会影响到后期的进程。 四,下一步工作具体设想与安排 1,继续熟悉网架结构动力特性分析的理论知识,清晰化前期的模糊概念等内容; 2,加强APDL语言的学习,并强化编程能力,争取尽早完成网架结构的参数化建模; 3,参数化建模完成之后,加快速度做结构的静力特性分析,动力特性分析等; 4,完成毕业论文的撰写、修改、完稿等相关工作; 根据需要,随时补充学习相关的知识。精品文档5,

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

多模态话语分析理论在新媒介时代的应用

龙源期刊网 https://www.360docs.net/doc/0a12851463.html, 多模态话语分析理论在新媒介时代的应用 作者:李妙晴 来源:《学理论·下》2009年第06期 摘要:20世纪90年代西方兴起的多模态话语分析,逐渐成为语言学研究的新热点之一。通 过回顾其在国外和国内的发展历史,重点解释了多模态话语与社会符号学的关系,并展望未来发展方向。 关键词:多模态话语分析;新媒介时代;社会符号学 中图分类号:H04文献标志码:A 文章编号:1002—2589(2009)14—0204—02 一、多模态话语分析理论 朱永生(2007),只使用一种模态的话语叫做“单模态话语”;同时使用两种或两种以上模态的话语叫做“多模态话语”。新媒介时代,语篇呈多模态化,20世纪90年代西方兴起的多模态话语分析(multimodal discourse analysis)为由多种符号组成的语篇分析提供了途径,帮助读者了解不同模态作为社会符号,如何共同作用构成意义,达到意义潜势,对提高人们多模式话语识读,具有积极的意义。多模态话语分析属于社会符号学的分支,Halliday的系统语言学作为基础,具有跨学科、应 用性强特点,能运用在语音文字、建筑、城市设计及规划、影视戏剧、音乐、PPT、教学和数据库广告、网站页面设计、大型演出及舞台表演、排版、音乐、教科书设计、教学等多领域,与 传媒学、批评话语分析等有紧密联系,已经影响了当今很多学科的研究方向,如阅读写作能力教育、传媒话语分析、文化研究等,对社会的经济能起直接的指导作用。该理论无论在国外还是 在国内都处于起步阶段,在国外已经有出版书目和召开国际会议,李战子(2003)首次引入了多模 态分析理论。 朱永生(2007),几个关键字的概念,模式(mode)、媒介(medium)与模态(modality)。模式指系 统功能语言学与话语范围(field)和话语基调(tenor)并列的语境三要素之一的话语模式,指交流渠道,如口头、书面、电子等。模态(modality)原指语言系统中讲话者对事物的或然性进行判断和事物的必要性表明态度的语义系统情态;这里指交流的渠道和媒介,包括语言、技术、图象、颜色、音乐等符号系统。媒介是表达信息的物理工具。采用某一种媒体仍可以有不同模式表达信息,同样的模式可以用不同媒体表达。 二、研究现状 辛志英(2008)大致有:社会符号学流派,包括O’Toole、Kress、Leeuwen、Lemke、 O’Halloran、Baldry Thibault和Ventola等;交互社会学流派,包括Scollon、Norris及Jewitt等;认知学流派,主要有Forceville和Holsanova等人。

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

多模态话语分析

“蓝·创未来”广告是2010年北京国际车展上大众汽车倾力打造的一幅环保广告,当时从车展现场到北京大街小巷的候车亭里都贴满了这幅广告。选择该广告作为个案研究对象的原因有三:第一,这则广告尽管构图非常简单,却具备了语言、图形和颜色三个模态;第二,这幅广告的独特之处在于,颜色模态居于主导地位,而非语言或图像模态;第三,这幅广告具有鲜明的时代意义。从2009年底的哥本哈根世界气候峰会到国家战略性新兴产业规划①的出台,从“十二·五”规划到2011年9月6日胡锦涛主席在首届亚太经合组织林业部长级会议上发表的题为《加强区域合作实现绿色增长》的致辞,都反映了我国政府实现节能减排、低碳环保、绿色经济的强大决心和战略部署。而我国汽车业也进入了开发新能源、打造新能源汽车的历史阶段。所以这则广告非常契合目前中国大力倡导绿色经济的国家战略,是很有代表性的现代环保广告,内容洗练,留给人们很大的想象和思考空间。 大众汽车集团(中国)总裁兼CEO范安德博士向记者介绍大众汽车品牌“Think Blue (蓝·创未来)”的理念 一、多模态和多元识读概念的产生以及目前大学生多元识读能力现状的调查 随着科学技术的进步和社会生活的日益丰富多彩,人与人之间的交流方式正在发生着巨大变化。在公共交流的很多方面,我们可以深深感受到语言符号以及其他传统习惯中被人们认为是副语言的图像、音乐、颜色等,越来越多地处于突出、甚至是一种优势和中心的地位(韦琴红,2009)。作为单一模态的语言为主导的交流时代已经发展到了多模态交流的时代。然而,丰富多彩的符号资源是如何参与意义构建(meaning making)的、符号系统之间存在何种关系、人们如何解读充满多元符号系统的文本或其他载体,这些亟待解决的问题于20世纪90年代催生了一个新的研究领域——多模态话语分析(multimodal discourse analysis)。基于此,多元识读能力的概念也就应运而生。多元识读能力(multiliteracy),也称多模态识读能力,是新伦敦小组(New London Group)于2000年提出的概念,指具有能阅读所能接触到的各种媒体和模态的信息,并能循此产生相应的材料,如阅读互联网或互动的多媒体。Spiliotopoulos对多元识读有更宽广的视野,认为它指人们能从多种信息传递和信息网络理解各种模态的语篇,能发展批评性思维的技能,能与他人合作并帮助他们发展跨文化意识。根据现有材料,多元识读能力是多层次的,其中最高层次的能力要求参与者不仅能识读语篇信息,能解释符号和图像,利用多媒体和其他技术工具,如互联网,实现意义构建、学习和与他人互动(胡壮麟,2007;韦琴红,2009)。 多模态话语分析的概念和理论研究还处于初始阶段,国内外只有少数专家、学者从事该领域的研究。目前,人们多元识读的意识还几乎没有建立起来。然而,对于担当未来社会文化传播主力军的大学生而言,进行多元识读能力的培养有着非常重要的现实意义和时代意义。 为此,笔者选取了“2010北京国际车展”的大众汽车“蓝·创未来”环保广告为研究个案,以问卷调查和访谈的形式调查了北京部分高校不同年级的近200名本科生,尤其是英语专业本科生,了解其多元识读意识和能力。根据调查和访谈结果,笔者对大学生对该则广告解读的情况进行了总结: 1.大约92%的学生都能解读出蓝色代表海洋、天空,象征着清洁、环保的未来。这也说明颜色在这则广告中发挥的重要作用。 2.只有大约2%的学生,提及了广告把文字和颜色结合了起来,能够想到“Think”表示行动,广告要求大家用环保的思维方式去思考,然后行动,还世界一片蓝天。 3.大约3%的学生认为这则广告中的蓝色代表自由,目的是激起人们自由弛骋的想象,这是对广告的错误解读。 4.还有大约3%的学生提出,这则广告信息量太少,如果教师不提示是大众汽车的广告,

机械制造专业_毕业设计_小型龙门加工中心基础件设计与受力分析(ANSYS模态分析)

第一章概述 1.1课题研究的背景及意义 机床是现代制造技术的工作母机,在某种意义上,一个国家机床设计和制造水平的高低,决定着这个国家整个制造业水平的高低。在信息革命的推动下,现代工业技术发展迅猛。近年来,各国在信息工业,航空航天工业,军事工业,电子工业,能源工业等领域竞争日益激烈。随着这些高科技领域日益向高速、高效、精密、轻量化和自动化的方向发展,对机床的要求也越来越高。现代机床正向高速、大功率、高精度的方向发展。随着机床向高速度、大功率和高精度方向的发展,除了要求机床重量轻、成本低、使用方便和具有良好的工艺性能以外,而着重要求机床具有愈来愈高的加工性能。而机床的加工性能又与其动态特性紧密相关。事实表明,随着机床的加工精度的不断提高,对机床动态特性的要求也愈来愈高。 多年来,由于受到理论分析和测试实验手段落后的限制,机床结构的设计计算主要沿用传统的结构强度为主的设计方法。传统设计方法主要是保证刀具和工件间具有一定的相对运动关系和满足机床几何精度要求,采用经验和类比的方法进行,设计的主要依据是静刚度和静强度,对机床的动态性能考虑较少。在利用传统方法进行机床结构的设计计算时,因为不能准确地把握机床结构与其动态特性之间量的关系,所以结构设计的结果常常是以较大的安全系数加强机床结构。这样的设计方法容易导致机床结构尺寸和重量的加大;其结果一则不能很好发挥材料的潜力,二来机床结构的动态性能也不会有根本的改进提高。所以,后来科研工作者对机床的动态特性、切削稳定性进行了大量的研究工作,最初是以实物或模型为基础,进行机床性能试验,从中发现规律,分析影响机床动态性能的主要原因,寻求解决问题的方法,处于弄清机理,说明现象的定性阶段。从二十世纪六十年代中期以来,由于计算机技术、振动理论和结构动力学理论等的发展,为机床的动态性能研究提供了坚实的理论基础和先进的测试手段,使研究进入一个全新的计算机辅助分析和优化设计的定量研究阶段,系统地建立了机床动态特性的研究理论,达到了一定的实用程度,并在不断地深化和发展。1.2我国基础件现状 基础件是机床的重要组成部分。我的国对机械基础件在机械工业中的重要地位认识较晚,长期投入乏力,致使整个行业基础差、底子薄、实力弱。随着我国主机水平的提高,机械基础件落后于主机的瓶颈现象日益显现。近年来,虽然在技术引进、技术改造、科研开发等方面,国家给予了一定的支持,但与当前市场需求及国外水平相比,仍有不少差距。具体表现在以下几个方面: 一、产品品种少,水平低,质量不稳定,早期故障率高,可靠性差。我国机械基础件产品品种、规格少,特别是高档产品差距较大,不能满足主机日益发展的需求。目前,各类主机基础件的性能指标大体相当于国外20世纪80年代水平。质量不稳定,早期故障率高,可靠性差,是基础件的致命弱点。因此,不少主机厂为提高其主机的市场竞争力,往往选择进口基础件配套。因而,国产基础件,特别是技术含量较低的产品,国内市场占有率在明显下降。虽然基础件产品出口有明显优势,但主要是劳动密集型产品,数量大,价值低,技术附加值不高。 二、重复建设严重,专业化程度低,形不成规模,经济效益差。机械基础件与主机相比,企业建立的初始资金和技术所需投入相对较少,因此在国家几次经济大发展时期,都增加了一批基础件生产企业。行业中已呈现大量的低水平重复建设,点多、批量小,形不成经济规模。基础件企业虽然逐渐独立于主机厂,但大多数企业本身就是“大而全”、“小而全”,专业化程度低,装备水平不高,质量不稳定,经济效益低下。例如,轴承行业哈轴、瓦轴、洛轴三家大型骨干企业年产轴承的总和还不到国外一家著名公司的50%,现在全国轴承厂

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

【完整版】毕业设计论文基于ANSYS的轴承座的模态分析

河南科技学院 2013届本科毕业论文(设计) 论文题目:基于ANSYS的轴承座的模态分析 学生姓名:刘x 所在院系:机电学院 所学专业:机械设计及其自动化 导师姓名: 完成时间:2013年5月8日

摘要 轴承座在机械生产中很常见,在各类机器、机构中都有它存在的身影,由于轴承座本身结构并不是太复杂,所以本文并没有借助其他类型的三维软件建模,而是在ANSYS环境下建立的模型。轴承座的受力主要是分布在轴承孔圆周上,还有轴承孔的下半部分的径向压力载荷。为了提高结构的抗振性,本文借助于ANSYS软件强大的模态分析功能,运用ANSYS软件建立了轴承座的三维模型,并对轴承座进行模态分析,并给出前20阶的固有频率和振型,以此来指导结构的优化设计[1]。 关键字:轴承座,模态分析,有限元,ANSYS Abstract Bearing seat is common in the machinery manufacturing, it exists in all kinds of machine, figure, because the bearing seat structure itself is not too complicated, so this article does not use other types of 3 d software modeling, but established under ANSYS environment model. Stress is mainly distributed in the bearing hole of the bearing on the circumference of a circle, and the bearing hole of the bottom half of the radial pressure load. In order to improve the vibration resistance of structure, in this paper, with the aid of powerful modal analysis function of ANSYS software, and the 3 d model of the bearing was established by applying the ANSYS software, and the modal analysis was carried out on the bearing seat, and give the top 20 order natural frequency and vibration mode, in order to guide the optimization design of structure. Keywords: bearing seat,modal analysis,finite element ,ANSYS

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

多模态批评话语分析

多模态批评话语分析 随着互联网和多媒体的迅速发展和广泛应用,语言文本不再是交际的唯一手段,图像、手势、动作、颜色、声音等其他非语言符号也成为信息传递的重要方式。我们生活在一个由多种符号资源构成的社会中,意义的构建不再单纯依靠语言文本,而是越来越依赖各种符号资源的整合。人类交流所依赖的媒介和渠道被称之为“模态”(modality),例如:语言、声音、颜色、图像、手势等符号系统。作为人类的一种重要交际行为,话语自然具有多模态性。传统的话语分析以大于句子的语言单位作为研究对象,对实际使用中的语言进行观察和分析,研究语言的组织结构、使用特点、语法规律、语言中的制约因素等内容,忽略了能够传递大量重要信息的其他非语言符号。可见,传统的话语分析已经不能满足人们的实际交际需要,多模态话语分析符合当下信息时代发展的要求和趋势。多模态话语分析为人类理解丰富多彩的符号系统提供了新视角,目前已发展成为一种重要的话语分析方式。像语言一样,视觉符号和声音符号貌似正常或中立(平淡无奇),实则隐含着个人或社会团体的不公正、偏见和歧视。因此,在多模态话语分析中,我们应坚持批评的立场,给予非语言模态符号足够的重视,关注其中含而不露的意识形态意义,尤其是那些被人们习以为常的思想和观点。在多模态话语和批评话语分析互相影响

和借鉴的基础上,多模态批评话语分析应运而生。 20世纪90年代,多模态话语分析在西方开始兴起,引起越来越多语言学家的关注。传统意义上的话语分析注重分析语言符号系统和语义结构本身,忽略了对其他符号系统(例如:图像、声音、颜色、手势等)的研究。随着现代科学技术的发展,人类交际开始依靠多种模态共同完成,包括图像、音乐、声音、颜色等。而这种运用语言、图像、声音、动作等多种符号资源进行交际的现象就是“多模态话语”(multimod aldis-course)。学界对交际中出现的图像、手势、姿态以及空间的运用也产生了浓厚兴趣。学者们认识到,对于意义理解不仅需要对话语语言的分析,更要对独立或相互依赖的其他符号资源进行研究。法国语言学家BarthesRlando是最早从事多模态话语分析研究的学者之一。他在1977年发表的论文《形象的修辞》中探讨了图像在表达意义上与语言的相互作用[1]。Kress和VanLeuwene[2][3][4](P343-368)[5](P35-50)作为社会符号学的代表研究了模态与媒体的关系,在系统功能语言学的基础上,构建了视频话语的分析模式和多模态话语分析框架,探讨了多模态符号表达意义的现象,包括视觉图像、颜色语法以及报纸的版面设计和不同媒介的作用等方面。2007年,朱永生[6](P82-86)提出了两种多模态话语的识别标准:(1)同时使用两种模态的话语叫做“多模态话语”;(2)只涉及一种模态,但包含两个或更多符号系统的话语也是“多模态话语”,比如:视觉

相关文档
最新文档