数字图像处理方法的研究

数字图像处理方法的研究
数字图像处理方法的研究

外文资料翻译译文

数字图像处理方法的研究

1 绪论

数字图像处理方法的研究源于两个主要应用领域:其一是为了便于人们分析而对图像信息进行改进;其二是为了使机器自动理解而对图像数据进行存储、传输及显示。

1.1 数字图像处理的概念

一幅图像可定义为一个二维函数f(x, y),这里x和y是空间坐标,而在任何一对空间坐标f(x, y)上的幅值f称为该点图像的强度或灰度。当x,y和幅值f为有限的、离散的数值时,称该点是由有限的元素组成的,没一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或象素。象素是广泛用于表示数字图像元素的词汇。在第二章,将用更正式的术语研究这些定义。

视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。

图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有一致的看法。有时用处理的输人和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输人采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢得多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。

从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输人、输出都是图像为特点的处理。中级处理涉及分割〔把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同日标的分类(识别)。中级图像处理是以输人为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。

根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区

域是图像中特定区域或物体的识别这一领域。这样,在本书中,我们界定数字图像处理包括输人和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本书界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。这样,本书定义的数字图像处理的概念将在有特殊社会和经济价值的领域内通用。在以下各章展开的概念是那些应用领域所用方法的基础。

1.2数字图像处理的起源

数字图像处理最早的应用之一是在报纸业,当时,图像第一次通过海底电缆从伦敦传往纽约。早在20世纪20年代曾引入Btutlane电缆图片传输系统,把横跨大西洋传送一幅图片所需的时间从一个多星期减少到3个小时。为了用电缆传输图片,首先要进行编码,然后在接收端用特殊的打印设备重构该图片。图1.1就是用这种方法传送并利用电报打印机通过字符模拟中间色调还原出来的图像。

这些早期数字图像视觉质量的改进工作,涉及到打印过程的选择和亮度等级的分布等问题。用于得到图1.1的打印方法到1921年底就被彻底淘汰了,转而支持一种基于光学还原的技术,该技术在电报接收端用穿孔纸带打出图片。图1.2就是用这种方法得到的图像,对比图1.1,它在色调质量和分辨率方面的改进都很明显。

图1.1 1421年由电报打印机采用特殊字图1.2 1922年在信号两次穿越大西洋后,符在编码纸带中产生的数字图像从穿孔纸带得到的数字图像,可以

( McFalsne) 看出某些差错 ( McFalsne)

早期的Bartlane系统可以用5个灰度等级对图像编码,到1929年已增加到15个等级。图1.3所示的这种典型类型的图像就是用15级色调设备得到的。在这一时期,由于引入了一种用编码图像纸带去调制光束而使底片感光的系统,明显地改善了复原过程。

刚才引用的数字图像的例子并没有考虑数字图像处理的结果,这主要是因为没有涉及到计算机。因此,数字图像处理的历史与数字计算机的发展密切相关。

事实上,数字图像要求非常大的存储和计算能力,因此数字图像处理领域的发展必须依靠数字计算机及数据存储、显示和传输等相关技术的发展。

计算机的概念可追溯到5000多年前中国算盘的发明。近两个世纪以来的一些发展也奠定了计算机的基础。然而,现代计算机的基础还要回溯到20世纪40年代由约翰·冯·诺依曼提出的两个重要概念:(l)保存程序和数据的存储器;(2)条件分支。这两个概念是中央处理单元(CPU)的基础。今天,它是计算机的心脏。从冯·诺依曼开始,引发了一系列重要技术进步,使得计算机以强大的功能用于数字图像处理领域。

简单说,这些进步可归纳为如下几点:

(1)1948年贝尔实验室发明了晶体三极管;

(2)20世纪50年代到20世纪60年代高级编程语言(如COBOL和FORTRAN)的开发;

(3)1958年得州仪器公司发明了集成电路(IC);

(4)20世纪60年代早期操作系统的发展;

(5)20世纪70年代Intel公司开发了微处理器(由中央处理单元、存储器和输入输出控制组成的单一芯片);

(6)1981年IBM公司推出了个人计算机;

(7)20世纪70年代出现的大规模集成电路(LI)所引发的元件微小化革命,20世纪80年代出现了YLSI(超大规模集成电路),现在已出现了ULSI。

图1.3在1929年从伦敦到纽约用15级色调设备通过电缆

传送的Cenerale Pershing和Foch的未经修饰的照片伴随着这些技术进步,大规模的存储和显示系统也随之发展起来。这两者均是数字图像处理的基础。

第一台可以执行有意义的图像处理任务的大型计算机出现在20世纪60年代早期。数字图像处理技术的诞生可追溯至这一时期这些机器的使用和空间项目的开发,这两大发展把人们的注意力集中到数字图像处理的潜能上。利用计算机技术改善空间探测器发回的图像的工作,始于1964年美国加利福尼亚的喷气推进实验室。当时由“旅行者7号”卫星传送的月球图像由一台计算机进行了处理,以校正航天器上电视摄像机中各种类型的图像畸变。图1.4显示了由“旅行者7号”于1954年7月31日上午(东部白天时间)9点09分在光线影响月球表面前

约17分钟时摄取的第一张月球图像[痕迹(称为网状痕迹)用于几何校正,在第5章将讨论该间题],这也是美国航天器取得的第一幅月球图像。“旅行者7号”传送的图像可作为改善的增强和复原图像(例如来自“探索者”登月一飞行、“水手号”系列空间探渊器及阿波罗载人登月飞行的图像)方法的基础。

进行空间应用的同时,数字图像处理技术在20世纪60年代末和20世纪70年代初开始用于医学图像、地球遥感监测和天文学等领域。早在20世纪70年代发明的计算机轴向断层术(CAT)[简称计算机断层(CT)]是图像处理在医学诊断领域最重要的应用之一。计算机轴向断层术是一种处理方法,在这种处理中,一个检测器环围绕着一个物体(或病人),并且一个x射线源(与检测器环同心)绕着物体旋转。X射线穿过物体并由位于对面环中的相应检测器收集起来。当X射线源旋转时,重复这一过程。断层技术由一些算法组成,该算法用感知的数据去重建通过物体的“切片”图像。当物体沿垂直于检测器的方向运动时就产生一系列这样的“切片”,这些切片组成了物体内部的再现图像。断层技术是由Godfrey N. Hounsfield先生和Allan M.Cormack教授发明的,他们共同获得了1979年诺贝尔医学奖。X射线是在1895年由威廉·康拉德·伦琴发现的,由于这一发现,他获得了I901年诺贝尔物理学奖。这两项发明相差近100年。它们在今天引领着图像处理某些最活跃的应用领域。

图1.4美国航天器传送的第一张月球照片,“旅行者7号”

卫星1964年7月31日9点09分(东部白天时间)在

光线影响月球表面前17分钟时摄取的图像

The research of digital image processing technique

1 Introduction

Interest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception. This chapter has several objectives: (1)to define the scope of the field that we call image processing; (2)to give a historical perspective of the origins of this field;

(3)to give an idea of the state of the art in image processing by examining some of the principal area in which it is applied; (4)to discuss briefly the principal approaches used in digital image processing; (5)to give an overview of the components contained in a typical, general-purpose image processing system; and (6) to provide direction to the books and other literature where image processing work normally is reporter.

1.1What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image. We consider these definitions in more formal terms in Chapter2.

Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike human who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that human are not accustomed to associating with image. These include ultrasound, electron microscopy, and computer-generated images. Thus, digital image processing encompasses a wide and varied field of application.

There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other ha nd, there are fields such as computer vision whose ultimate goal is to use computer to

emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. This field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at one end to computer vision at the other. However , one useful paradigm is to consider three types of computerized processes is this continuum: low-, mid-, and high-ever processes. Low-level processes involve primitive operation such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its input and output are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual object. Amid-level process is characterized by the fact that its inputs generally are images, but its output is attributes extracted from those images (e. g., edges contours, and the identity of individual object). Finally, higher-level processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of the continuum, performing the cognitive function normally associated with vision. Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text. Preprocessing that images, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making cense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad rang of areas of exceptional social and economic value. The concepts developed in the following chapters are the foundation for the methods used in those application areas.

1.2T he Origins of Digital Image Processing

One of the first applications of digital images was in the newspaper industry, when pictures were first sent by submarine cable between London and NewY ork. Introduction of the Bartlane cable picture transmission system in the early 1920s reduced the time required to transport a picture across the Atlantic from more than a

week to less than three hours. Specialized printing equipment coded pictures for cable transmission and then reconstructed them at the receiving end. Figure 1.1 was transmitted in this way and reproduced on a telegraph printer fitted with typefaces simulating a halftone pattern.

Some of the initial problems in improving the visual quality of these early digital pictures were related to the selection of printing procedures and the distribution of intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward the end of 1921 in favor of a technique based on photographic reproduction made from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an images obtained using this method. The improvements over Fig. 1.1 are evident, both in tonal quality and in resolution.

FIGURE 1.1 A digital picture produced in FIGURE 1.2 A digital picture 1921 from a coded tape by a telegraph printer made in 1922 from a tape punched With special type faces (McFarlane) after the signals had crossed the

Atlantic twice. Some errors are

V isible. (McFarlane)

The early Bartlane systems were capable of coding images in five distinct level o f gray. This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the images that could be obtained using the 15-tone equipment. During this period, introduction of a system for developing a film plate via light beams that were modulated by the coded picture tape improved the reproduction process considerably. Although the examples just cited involve digital images, they are not considered digital image processing results in the context of our definition because computer were not involved in their creation. Thus, the history of digital processing is intimately tied to the development of the digital computer. In fact digital images require so much storage and computational power that progress in the field of digital image processing has been dependent on the development of digital computers of supporting technologies that include data storage, display, and transmission.

The idea of a computer goes back to the invention of the abacus in Asia Minor, more than 5000 years ago. More recently, there were developments in the past two centuries that are the foundation of what we call computer today. However, the basis

for what we call a modern digital computer dates back to only the 1940s with the introduction by John von Neumann of two key concepts: (1) a memory to hold a stored program and data, and (2) conditional branching. There two ideas are the foundation of a central processing unit (CPU), which is at the heart of computer today. Starting with von Neumann, there were a series of advances that led to computers powerful enough to be used for digital image processing. Briefly, these advances may be summarized as follow:

(1)the invention of the transistor by Bell Laboratories in 1948;

(2)the development in the 1950s and 1960s of the high-level programming

languages COBOL (Common Business-Oriented Language) and FORTRAN ( Formula Translator);

(3)the invention of the integrated circuit (IC) at Texas Instruments in 1958;

(4)the development of operating system in the early 1960s;

(5)the development of the microprocessor (a single chip consisting of the central

processing unit, memory, and input and output controls) by Inter in the early 1970s;

(6)introduction by IBM of the personal computer in 1981;

(7)progressive miniaturization of components, starting with large scale integration

(LI) in the late 1970s, then very large scale integration (VLSI) in the 1980s, to the present use of ultra large scale integration (ULSI).

Figure 1.3 In 1929 from London to Cenerale Pershing

that New Y ork delivers with 15 level tone equipments

through cable with Foch do not the photograph by decoration

Concurrent with these advances were development in the areas of mass storage and display systems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image processing

tasks appeared in the early 1960s. The birth of what we call digital image processing today can be traced to the availability of those machines and the onset of the apace program during that period. It took the combination of those two developments to bring into focus the potential of digital image processing concepts. Work on using computer techniques for improving images from a space probe began at the Jet Propulsion Laboratory (Pasadena, California) in 1964 when pictures of the moon transmitted by Ranger 7 were processed by a computer to correct various types of image distortion inherent in the on-board television camera. Figure1.4shows the first image of the moon taken by Ranger 7 on July 31, 1964 at 9: 09 A. M. Eastern Daylight Time (EDT), about 17 minutes before impacting the lunar surface (the markers, called reseau mark, are used for geometric corrections, as discussed in Chapter 5). This also is the first image of the moon taken by a U.S. spacecraft. The imaging lessons learned with ranger 7 served as the basis for improved methods used to enhance and restore images from the Surveyor missions to the moon, the Mariner series of flyby mission to Mars, the Apollo manned flights to the moon, and others.

In parallel with space application, digital image processing techniques began in the late 1960s and early 1970s to be used in medical imaging, remote Earth resources observations, and astronomy. The invention in the early 1970s of computerized axial tomography (CAT), also called computerized tomography (CT) for short, is one of the most important events in the application of image processing in medical diagnosis. Computerized axial tomography is a process in which a ring of detectors encircles an object (or patient) and an X-ray source, concentric with the detector ring, rotates about the object. The X-rays pass through the object and are collected at the opposite end by the corresponding detectors in the ring. As the source rotates, this procedure is repeated. Tomography consists of algorithms that use the sensed data to construct an image that represents a “slice” through the object. Motion of the object in a direction perpendicular to the ring of detectors produces a set of such slices, which constitute a three-dimensional (3-D) rendition of the inside of the object. Tomography was invented independently by Sir Godfrey N. Hounsfield and Professor Allan M. Cormack, who shared the X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two inventions, nearly 100 years apart, led to some of the most active application areas of image processing today.

Figure 1.4 The first picture of the moon by a U.S. Spacecraft. Ranger 7 took this image on July 31, 1964 at 9: 09 A.M. EDT, about 17 minutes before

Impacting the lunar surface. (Courtesy of NASA.)

浅议数字图像去噪技术及其应用

浅议数字图像去噪技术及其应用 数字图像去噪技术一直以来都是数字图像处理研究领域的一个热点问题,该技术在当代已经越来越重要,并广泛应用到人们生活的方方面面。笔者在数字图像去噪技术方面也做了一点粗浅的研究,本文就结合笔者的认识和体会谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 标签:数字图像;图像噪声;去噪技术;中值滤波;小波滤波 在数字化发展的今天,信息在人们生活和工作中的作用越来越突出,并逐渐改变着人们的生活和工作方式,其中最主要、最直观的信息就是图像信息。然而,在实际应用中数字图像经常会由于元器件、电阻、电磁干扰等设备因素,温度、光照等外界环节因素以及人为因素的影响产生图像噪声,从而使得图像质量不理想,偏离了原始图片。因此,数字图像去噪就成为一个亟待解决的问题,具有很强的现实意义。下面笔者就谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 1 数字图像去噪方法 当前,数字图像去噪的方法有很多,从本质上讲这些方法都是低通滤波的方法。低通滤波既有有利的地方,也有不利的地方,它既能消除图像噪声,又能消除图像中一些有用的高频信息。因而,我们所研究的各种数字图像去噪方法从根本上来说就是权衡去噪和保留高频信息。在数字图像去噪方法中,我们比较常见的有以下几种方法: 1.1 中值滤波算法 中值滤波算法最早是由Turky于1971年提出来的,是一种典型的非线性空间域去噪算法。其算法利用了像素点和噪声点之间的灰度值差别很大这一特性。中值滤波算法的主要原理是:以一个像素为中心取其邻域,然后对邻域中各像素的灰度值进行排序,取中值作为中心像素的灰度值,换句话说就是中心像素点的灰度值被邻域像素点灰度值的中值所替代。这种方法能很好的消灭噪声,但同时也损坏了图像的边缘,造成了部分细节的丢失。因此,部分科学家和学者在此基础上又提出了中心加权中值滤波算法、开关中值滤波算法、极值中值滤波算法等等,这些方法都是针对中值滤波算法的缺陷提出来的,具有很强的实用价值。 1.2 维纳滤波算法 维纳滤波算法是由Wiener提出来的,是一种典型的线性滤波方法。其理论依据是最小均方误差准则,该准则的具体含义是:将含有噪声的信号运用滤波变换后得到的恢复后的估计信号与原信号相比,它们之间有最小的均方差误差。维纳滤波算法既适用于连续平稳随机过程,也适用于离散平稳随机过程。但是,对于非平稳态的随机过程,一般来说,维纳滤波算法不太适用。

数字图像处理练习题

一、基本题目 1. 2.HSI模型中,H I (Intensity) 3.CMYK (Black)。 4. 5. 6. 7. 8.存储一幅大小为M×N,灰度级为2g级的图像需要bit)大小的存 储空间。 9.图像退化是图像形成、传输和记录的过程中,由于成像系统、传输介质和设 10. 行图像的边缘检测。 11.用函数b s+ =来对图像象素进行拉伸变换,其中r表示待变换图像象素灰 kr 度值,若系数0 k >b ,1> 压缩)。 12. 13. 两种。 14. 15.少),所得 16. 17.图像退化的典型表现为图像模糊、失真、噪声等,我们针对退化进行图像复

18.灰度直方图反映一幅图像中各灰度级象素出现的频率之间的关系, 19.因此可以采 20.图像边缘是指图像中象素灰度值有阶跃变化或屋顶状变化的那些象素的集 合。 21. 22. 23.(Y)和色度(U,V)信号,它们之间的关系 为: 24.我国的电视标准是PAL制,它规定每秒 行 25. 26.MPEG是ISO其工作是开发满足各种应用 27.若原始的模拟图像,其傅氏频谱在水平方向的截止频率为 m U,在垂直方向 ,则只要水平方向的空间取样频率 02 m U U =,垂直方向的空 28.CT。 29.人们在观察一条由均匀黑和均匀白的区域形成的边界时,可能会认为人的主 观感受是与任一点的强度有关。但实际情况并不是这样,人感觉到的是在亮度变化部位附近的暗区和亮区中分别存在一条更黑和更亮的条带,这就是所谓的“Mach带” 30.若代码中任何一个码字都不是另一个码字的续长,也就是不能在某一个码字 后面添加一些码元而构成另一个码字,称其为非续长代码。反之,称其为续长代码。 31.对每个取样点灰度值的离散化过程称为量化。常见的量化可分为两大类,一 类是将每个样值独立进行量化的标量量化方法,另一类是将若干样值联合起来作为一个矢量来量化的矢量量化方法。在标量量化中按照量化等级的划分方法不同又分为两种,一种均匀量化;另一种是非均匀量化 32.数学形态学构成了一种新型的数字图像分析方法和理论。它的基本思想是用

最新数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 1 个人信息********* 2 3 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见 4 5 的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值 6 滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪 7 声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得8 出了三种方法各自的适用性特点。 9 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods 10 11 in Digital Image 12 Name:*** 13 (个人信息****) 14 Abstract: Image denoising is one of the most important parts and steps 15 of image processing. Firstly, the paper introduces the common image noise. 16 Then, based on the principle and methods of eliminating image noise, it 17 discusses mean filtering, median filtering, and Wiener filtering which 18 are typical image donoising. Finally, it uses these methods to eliminate 19 image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes 20 21 the applicability of each method in different application.

数字图像处理研研究生课程教学大纲

《数字图像处理》研研究生课程教学大纲 (课程编号S009108 学分-学时-上机 3-54-12) 东南大学计算机科学与工程学院 一、课程的性质与目的 本课程为计算机科学与技术一级学科中图像处理与科学可视化方向的重要专业课,包含了该专业方向学生必须掌握的专业知识。 通过课程学习,学生除了掌握必须的专业技术知识外,还需要了解该方向的研究前沿,提高阅读专业学术资料和解决实际问题的能力。 二、课程内容的教学要求 本课程采用讲课+自学+讨论的教学模式。其中,讲课环节以综述为主,重点介绍各知识点的问题提出、解决思路、主要算法、评估;自学环节需要学生阅读专业论文并进行实验,得出结论;讨论环节由学生进行论文阅读及实验结论的交流,加深理解,并由此了解研究前沿。 讲课课时安排(24课时): 1.数字图像处理概述(3):数字图像处理技术的发展历史,包含的主要内容,应 用,相关的学科方向 2.线性系统分析方法、傅里叶变换(3):复习线性系统基本知识,复习一维傅里 叶变换,掌握二维傅氏变换及性质,线性滤波器设计。 3.图像几何变换及插值(3):图像几何变换应用,重点插值方法 4.图像增强综述(6):图像增强的目的,算法分类,各类算法的基本原理及性能 5.图像分割综述(6):图像分割的目的,算法分类,各类算法的基本原理及性能 6.图像压缩综述(3):图像压缩的目的,算法分类,各类算法的基本原理及性能, JPEG标准简介 实验及讨论课时安排(30课时): 1.图像插值(实验3 +讨论3) 2.图像增强(实验3 +讨论3) 3.图像分割(实验3 +讨论3) 4.图像压缩(实验3+讨论3) 5.课程论文(讨论6) 三、上机实验要求 实现选择算法,并给出实验结果及算法性能评估数据。 四、能力培养的要求 1.自学能力的培养:提高学生自学及查阅学术文献的能力。 2.分析能力和实验能力的培养:要求学生能够实现文献提供的算法,并能自主给出算 法性能的评价。 3.科研和创新能力的培养:培养独立思考、深入钻研问题的习惯,提高学术交流能力。

浅谈地基处理方法

浅谈地基处理方法 发表时间:2016-06-14T14:57:36.590Z 来源:《基层建设》2016年4期作者:熊穗 [导读] 随着我国国民经济的迅速发展,基建规模不断扩大,建筑可用地也变得越来越紧张。 南京市测绘勘察研究院有限公司南京市 210019 摘要:随着我国国民经济的迅速发展,基建规模不断扩大,建筑可用地也变得越来越紧张,地基稳固是保证建筑物安全使用的主要前提和基础,是建筑工程施工的一项主要前期任务。在地基工程处理中,地基加固是建筑技术中的重要组成部分,其施工质量与施工技术的选择尤为重要。地基处理的方案选择,以及加固质量的高低好坏,直接决定着工程整体质量和经济效益。 关键词:地基;处理对象;处理方法 一、地基处理对象 我国地域辽阔,从沿海到内地,平原到山区,分布着各式各样的地基土,因为土的种类不同,其抗剪强度、压缩性能,以及透水性能等存在着很大差异。地基处理的对象包括:软弱地基和不良地基两方面。 1、软弱地基 软弱土的特性:软弱土包括淤泥、淤泥质土、冲填土、杂填土及饱和松散粉细砂与粉土。这类土的工程特性为压缩性高、强度低,通常很难满足地基承载力和变形条件。因此,不能作为永久性大中型建筑物的天然地基。 淤泥和淤泥质土具有以下特性:①天然含水量高w>wL,呈现流塑状态;②孔隙比大,e≥1.0;③压缩性高,一般a1-2=(0.7~1.5)MPa-1,属高压缩性土;④渗透性差,通常渗透系数k≤i×10-6cm/s,这类建筑地基的沉降往往持续几十年才稳定;⑤具有结构性,施工时扰动结构,则强度会变低。冲填土是疏浚江河时,用挖泥船的泥浆泵将河底的泥沙用水力冲填至岸上形成的土,含粘土颗粒多的冲填土往往是强度低、压缩性高的欠固结土。以粉土或粉细砂为主的冲填土容易产生液化。杂填土是城市地表覆盖的,由人类活动堆填的建筑垃圾、生活垃圾和工业废料,结构松散,分布无规律,非常不均匀。 软弱土的分布:淤泥和淤泥质土广泛地分布在上海、天津、宁波、温州、连云港、福州、厦门、广州等东南沿海地区,以及南京、昆明、武汉等内陆地区。此外,各省市都存在小范围的淤泥和淤泥质土;冲填土主要分布在沿江和沿海地区,例如天津市有大面积的海河冲填土。杂填土分布最广,历史悠久的城市,杂填土厚度越大,市区多为建筑垃圾,如南京市城南老城区。 2、不良地基 不良地基包括以下几类:①湿陷性黄土地基。由于黄土的特殊环境与成因,黄土中含有大孔隙和易容盐类,使陇西、陇东、陕北、关中等地区的黄土具有湿陷性,导致房屋开裂。②膨胀土地基。膨胀土中有大量的蒙特石矿物,是一种吸水膨胀,失水收缩,具有加大往复胀缩变形的高塑性粘土。在膨胀土场地上建造建筑物如果处理不当,会使房屋发生开裂等事故。③泥炭土地基。有机质含量wu大于10%且小于或等于60%的土称为泥炭质土;大于60%的土称为泥炭。泥炭土是沼泽和湿地中生长的苔藓、树木等植物分解而形成的,呈黑色或是暗褐色,具有纤维状疏松结构。④多年冻土地基。在高寒地区,含有固态水,且冻结状态持续二年或二年以上的土称为多年冻土。多年冻土的强度和变形有其特殊性。例如,冻土中既有固态冰又有液态水,在长期荷载作用下具有流动性。⑤岩溶与土洞地基。岩溶又称“喀斯特”,它是可溶性岩土,如石灰岩,岩盐等长期被水溶蚀而形成的溶洞、溶沟、裂缝,以及由于溶洞的顶板塌落,使地表发生塌陷等现象和作用的总称。土洞是岩溶地区上覆土层,被地下水冲蚀或是潜蚀所形成的洞穴。⑥山区地基。山区地基的地质条件复杂,主要为地基的不均匀性和场地的稳定性。⑦饱和粉细砂与粉土地基。饱和粉细砂与粉土地基,在强烈的地震作用下,可能产生液化,使地基丧失承载力,发生房屋倾倒、墙体开裂等事故。 二、地基处理方法 1、换土垫层法 换土垫层法就是将基础底面以下一定范围内软弱土层挖去,然后用强度高、压缩性好的岩土材料,如砂、碎石、矿渣、灰土、土工栅格加砂石料等材料分层填筑,采用碾压、振密等方法使垫层密实。通过垫层将上部荷载扩散至下卧层地基中,以达到提高地基承载力和减少沉降的要求。换土垫层法适用于软弱土层分布在浅层且较薄的各类不良地基的处理。换土垫层法施工工艺简单,造价低,具有广泛的适用性,不足之处在于其处理深度有限,仅适用于浅层的不良地基处理。 2、排水固结法 排水固结法是对天然地基,或是先在地基中设置砂井(袋装砂井或是塑料排水带)等竖向排水体,然后利用建筑物本身重量分级逐渐加载;或是在建筑物建造前,对地基先行加载预压,使土体中孔隙水排出,逐渐固结,地基发生沉降,同时强度逐步提高的方法。此方法常用在解决软粘土地基的沉降和稳定问题,可使地基的沉降在加载预压期间基本完成或大部分完成,使建筑物在使用期间不致产生过大的沉降和沉降差。同时,可增加地基土的抗剪强度,从而提高地基的承载力和稳定性。通过工程实践和专门的实验研究,在我国已发展了较为实用的砂井地基设计计算原理。排水固结法的施工工艺和施工机械随着该法的广泛使用也得到了发展,如打设袋装砂井和塑料板的两用设备就具有轻型、简便的优点,各地还因地制宜研制了各种简易的施工设备。 3、强夯法 强夯法指的是为提高软弱地基的承载力,用重锤自一定高度下落夯击土层使地基迅速固结的方法,也称动力固结法。通常是利用起吊设备,将10~40吨的重锤提升至10~40米高处使其自由下落,依靠强大的夯击能和冲击波作用夯实土层。强夯法主要用于砂性土、非饱和粘性土与杂填土地基。对非饱和的粘性土地基,一般采用连续夯击或分遍间歇夯击的方法;并根据工程需要通过现场试验以确定夯实次数和有效夯实深度。对高饱和度的粉土与黏性土等地基,当采用在夯坑内回填块石、碎石或其他粗颗粒材料进行强夯置换时,应通过现场试验确定其适用性。 4、复合地基法 (1)复合地基法是指部分土体被增强或被置换,形成由地基土和竖向增强体(由不同材料构成的桩体)共同承担荷载的人工地基方

盲目图像复原算法研究背景意义现状及趋势

盲目图像复原算法研究背景意义现状及趋势 1图像复原算法的研究意义和背景 (1) 2盲目图像复原方法研究现状 (2) 3盲目图像复原方法发展趋势 (3) 1图像复原算法的研究意义和背景 数字图像处理这门学科的形成也是和社会生产力发展的需要分不开的。早期的图像处理是由于通讯方面的要求而发展起来的,这就是本世纪20年代传真技术的发明和发展。其后,由于宇宙探索方面的要求,需要处理大量在宇宙探测器上拍摄下来的不清楚的其他天体(如月球、火星等)以及地球本身的照片,这些需求大大的促进了数字图像处理技术的发展。到现在,图像处理技术的发展,己经远远突破了这两个领域,被广泛地应用到科学研究、工农业生产、军事技术、政府部门、医疗卫生等许多领域。图像复原算法的研究是数字图像处理中非常重要的一个领域,它的研究成果也被广泛地应用到各个研究和生产领域。在图像成像的过程中,图像系统中存在着许多退化源。一些退化因素只影响一幅图像中某些个别像素点的灰度;而另外一些退化因素则可以使一幅图像中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化器、显示器、时间、彩色,以及化学作用引起的退化。总之,使图像发生退化的原因很多,如果我们把退化模型简化成真实图像与一个卷积算子卷积的结果,那么图像的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图像受噪声的影响,最后对于图像的复原结果可能偏离真实图像非常远。由于以上的这些特性,盲图像复原的过程无论是理论分析或是数值计算都有特定的困难。但由于盲图像复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。随着多媒体技术的发展,计算机网络技术的广泛应用和宽带信息网络的建立,信息在人们的工作、学习和生活中发挥越来越重要的作用,其中最直接最主要的信息是图像信息,在各类图像系统中,由于图像的传送和转换,如成像、复制扫描、传输、显示等,总要造成图像的降质,典型的表现为图像模糊、失真、有噪声等,而在众多的应用领域中,又需要清晰的、高质量的图像。因此,改善图像质量,恢复图像具有非常重要的意义。

图像去噪理论基础.doc

一,背景 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。 图像视频去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二,图像去噪理论基础 2.1 图像噪声概念 噪声可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。例如,一幅黑白图片,其平面亮度分布假定为f(x,y),那么对其接收起干扰作用的亮度分布R(x,y),即可称为图像噪声。但是,噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。但在很多情况下,这样的描述方法是很复杂的,甚至是不可能的。而实际应用往往也不必要。通常是用其数字特征,即均值方差,相关函数等。因为这些数字特征都可以从某些方面反映出噪声的特征。 2.2 常见的图像噪声 在我们的图像中常见的噪声主要有以下几种: (1),加性噪声 加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的。这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和,即: (2),乘性噪声 乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,这类噪声和图像的关系是: (3),量化噪声 量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。 (4),“椒盐”噪声 此类嗓声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。

研究生数字图像处理作业

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。 频域降噪。对图像而言,噪声一般分布在高频区域,而图像真是信息主要集中在低频区,所以,图像降噪一般是利用低通滤波的方法来降噪。边缘增强。图像的边缘信息属于细节信息,主要由图像的高频部分决定,所以,边缘增强一般采取高通滤波,分离出高频部分后,再和原频谱进行融合操作,达到边缘增强,改善视觉效果,或者为进一步处理奠定基础的目的。 1频域降噪,主程序如下: I=imread('lena.bmp'); %读入原图像文件 J=imnoise(I,'gaussian',0,0.02);%加入高斯白噪声 A=ilpf(J,0.4);%理想低通滤波 figure,subplot(222);imshow(J);title('加噪声后的图像'); subplot(222);imshow(A);title('理想低通滤波'); B=blpf(J,0.4,4);%巴特沃斯低通滤波 subplot(223);imshow(B);title('巴特沃斯低通滤波'); C=glpf(J,0.4);%高斯低通滤波 subplot(224);imshow(C);title('高斯低通滤波'); 用到的滤波器函数的程序代码如下: function O=ilpf(J,p) %理想低通滤波,p是截止频率 [f1,f2]=freqspace(size(J),'meshgrid'); hd=ones(size(J)); r=sqrt(f1.^2+f2.^2); hd(r>p)=0; y=fft2(double(J)); y=fftshift(y); ya=y.*hd; ya=ifftshift(ya); ia=ifft2(ya); O=uint8(real(ia)); function O=blpf(J,d,n) %巴特沃斯低通滤波器,d是截止频率,n是阶数[f1,f2]=freqspace(size(J),'meshgrid'); hd=ones(size(J)); r=f1.^2+f2.^2; for i=1:size(J,1) for j=1:size(J,2) t=r(i,j)/(d*d); hd(i,j)=1/(t^n+1); end end y=fft2(double(J)); y=fftshift(y); ya=y.*hd;

地基处理方法

一、施工部署 1、编制依据 (1)、地质勘察报告。 (2)、***地基处理工程施工图纸、设计选用的标准图集,图纸答疑纪要。 (3)、设计图纸所涉及的国家、地方有关工程建设的法律、法规、规定。 (4)、***地基处理工程图纸设计依据的现行设计规范、规程。 (5)、***地基处理工程施工招标文件。 (6)、现行国家、行业、地方(企业)有关工程建设的规范、规程、标准、条例等。 2、工程质量、安全、文明、工期施工目标 (1)、质量目标:本工程质量目标为合格。 (2)、安全目标:工程施工中无重大伤亡事故,轻伤负伤率低于千分之三。 (3)、文明施工目标:本工程达到合格安全文明工地标准。 (4)、总工期90天 3、施工部署 (1)、施工原则:在施工过程中,协调组织专业配合土建施工。 (2)、工程施工顺序:测量放线→土方开挖→3:7灰土换填 (3)、技术准备 由公司和项目部工程技术人员审阅施工图纸,核对结构施工图和建筑施工图相应的部位尺寸、标高、位置,提出设计图纸存在的问题,组织各专业施工队伍进行专业工程的图纸会审,核对土建图纸与各专业图纸存在的疑难问题,由设计负责人核准签证,并做好图纸会审记要。以此修订编制施工方案,预算人员根据图纸及答疑纪要,提出各种材料用料、材料预算、施工预算,提出成品、半成品定货计划,由材料供应部门及工程技术部、质安部组织材料进场的检验。 二、主要部位施工方法 1、施工准备

(一)材料要求: 1土料:采用就地挖出的粘土及塑性指数大于4的粉土,不得含有有机杂质或使用耕植土土料应过筛,其颗粒不应大于15㎜。 2、石灰:应用Ⅲ级以上新鲜的块灰使用前1-2天消解并过筛,其颗粒不得大于5㎜,不得夹有未熟化的生石灰块粒及其他杂质,也不得含有过多的水分。 (二)主要机具设备: 1、机械设备:蛙式打夯机、压路机、小型铲车。 2、主要机具:铁锹、量斗、水桶、胶管、喷壶,手推翻斗车,铁筛(孔径为5㎜-15㎜) (三)作业条件准备: 1施工前应根据工程特点、填料和设计要求的压实系数,施工时进行必要的压实实验,确定填料含水量范围,铺实厚度,夯实或碾压遍数等参数。 2、做好测量放线工作,在基坑的边坡上钉好水平木桩或地坪上钉好标准水平高程木桩。 2、施工操作工艺 1)基坑土方开挖后,经验槽发现基坑底有多处杂填土,要处理杂填土,用三七灰土回填夯实。回填方法详见施工工艺。 2)三七灰土拌和方法: (1)我们采用简捷快速高效的“量方”施工方法。就是在现场占用一半场地让工人规整排开分别同时筛素土和石灰粉然后合并量方。灰土配合比应为3:7(石灰:土,体积比),即以3倍数立方米的过筛石灰粉和7倍数立方的过筛素土就地用人工拌和,或机械拌和两三遍,使之均匀,颜色一致,并适当控制含水量,现场以手握成团,两指轻捏即散为宜,然后铺开。 (2)灰土一般最有含水量为14%-18%;如含水水分过多或过少时,应稍晾干,或洒水湿润。如有球团应打碎,要求随伴随用。 3)施工顺序: (1)施工时以20轴线为分界线,分(东、西)两段施工。先施工楼

快速数字图像修复技术

快速数字图像修复技术

用高斯内核卷积图像(即计算相邻像素的加权平均数),相当于各向同性扩散(线性热传导方程)。我们的算法使用加权平均的内核,只考虑相邻像素的贡献(即内核中心为零)。图2显示了伪码算法和两个扩散内核。本文中所有重建图像是通过该算法获得,或者是该算法经过轻微的变化获得,将在3.1节解释。 3.1保留边缘 当Ω跨越高对比度边缘的边界时(图3(前左)),该算法最简单版本,会带来附加效果(明显的模糊)。在实践中,只有在Ω和高对比度边缘的相交处,需要各向异性扩散,这些区域通常只占整个区域内很小比例。 创建指定待修复区域的遮盖是修复过程中最耗时的步骤,需用户干预。由于我们的算法可以在短短几秒钟内修复图像,它可用于遮盖互动创建。我们利用这个互动通过扩散障碍进行边界重联,这是Ω内扩散过程的边界。这完成一个边界重建和各向异性扩散类似的的结果,但没有相关的开销。在实践中,扩散屏障是两个像素宽的线段。当扩散过程中达到一个障碍,达到像素进行颜色设定,进程终止。图3进行了说明,图3中(左后方)明显的交叉线代表修复区域。简单扩散修复算法在Ω和高对比度边缘之间的相交处产生模糊点(参见图3中的小圆圈(前左))。通过适当增加扩散屏障(整个遮盖线段图3(右后)),用户停止遮盖两边混合信息的扩散过程。由此产生的直线如图3(前右)所示。 4结果 我们已经在C + +中实施了图2描述的算法,并尝试了两种不同的扩散内核。在这两种情况下的结果相似。文中所有的图片都使用128 MB的内存运行Windows98450兆赫奔腾III 电脑和使用图2所示的最左边内核生成。在图5,8,9和10所示的结果是使用无扩散障碍最简单的版本的算法得到。对于图1,使用了遮盖,两个扩散障碍(图4)。三个女孩的例子,使用了四个扩散障碍,以及有遮盖穿过高对比度边缘的区域(图6(右))。在所有情况下,都用100扩散迭代。 所有修复和线装饰删除系统需要手动遮盖。鉴于有一套功能的绘图系统,创建一个遮盖所需的时间,只依赖于可用的功能,也不受所使用修复算法的影响。对于交互式应用程序,在同一系统中拥有屏蔽功能和修复算法是可取的,以避免在不同的环境之间切换。在我们目前的原型中,我们已经实现了一个简单的绘图系统以及导入和导出JPEG文件的功能。 恢复林肯的画像和三个女孩的图片(图4和6(右),分别)使用的遮盖,是我们的绘画系统创建的。在新奥尔良的例子(图5)所使用的遮盖,通过使用Photoshop中选择颜色

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

2013年云南昆明理工大学数字图像处理考研真题A卷

2013年云南昆明理工大学数字图像处理考研真题A 卷 一、单选题(每题3分,共30分) 1、令集合R 代表整个图像区域,则子集R1,R2,…,Rn 是将区域划分为若干个子区域。分割必要条件不包括:( ) A .每个Ri 都是一个连通区域 B .n 21R R R ??? C .对于任意i ≠j ,Ri ∩Rj= Ф D .一致性谓词P (Ri )= TRU E ,i = 1,2,…,n 2、先腐蚀后膨胀的过程称为( )运算。 A 、闭 B 、开 C 、边界提取 D 、去噪 3、下图为一灰度图像,中心0点为一孤立噪声点,可用模板进行平滑滤波,去除该噪声点,在以下滤波器中不能达到效果的是:( ) A .3*3中值滤波器 B .5*5领域平均滤波器 C .3*3最大值滤波器 D .3*3最小值滤波器 4、区分颜色常用三种基本特征量是( )。 A 、亮度、基色和饱和度 B 、亮度、色调和饱和度 C 、亮度、色调和色相 D 、亮度、彩度和饱和度 5、以下特征描述符中哪一个对旋转敏感?( ) A 、轮廓矩 B 、p+q 阶区域矩 C 、形状参数 D 、形状数 6、利用直方图取单阈值方法进行图像分割时:( ) A 、图像中应仅有一个目标; B 、图像直方图应有两个峰; C 、图像中目标和背景应一样大; D 、图像中目标灰度应比背景大。 7、采用4方向链码,则链码010*********表示下列哪个图形?( ) A 、 B 、 C 、 D 、

8、已知用复数u+jv的形式表示一个图形边界上的每个点(x,y)得到的复数序列为:s(0)=0, s(1)=1, s(2)=2, s(3)=2+j, s(4)=2+2j, s(5)=1+2j, s(6)=2j, s(7)=j,该图形为:() A、正方形 B、三角形 C、长方形 D、圆形 9、下列数据冗余方式中,由于象素相关性而产生的冗余方式为:() A、编码冗余; B、象素间冗余; C、心理视觉冗余; D、计算冗余。 10、根据( ),视觉系统总是趋向于过高或过低估计不同亮度区域边界值。() A、马赫带效应 B、亮度适应级 C、同时对比度 D、人眼错觉 二、判断题(每题3分,共30分) 1、BMP图像文件的结构分为如下三个部分:文件头、位图信息数据块以及图像数据。() 2、对同一场景的多幅图像求平均,能有效地降低加性随机噪声。() 3、用理想低通滤波器钝化图像会产生一种非常严重的振铃效果。() 4、有1种常用的图象增强技术是将高频增强和直方图均衡化结合起来以达到使边缘锐化的反差增强效果,以上2个操作的先后次序对增强效果有影响。() 5、f(x,y)空间域的移动对它的傅立叶谱有影响。() 6、分水岭算法中最初和最终的阈值灰度级都必须很好地选取才能准确分割目标。() 7、CIE色度图中三基色(单波长)能混合得到所有的颜色。() 8、有损压缩和无损压缩都具有量化模块。() 9、图像边缘检测中,噪声对一阶和二阶微分都有影响,尤其对二阶导数影响较大,因此,在检测边缘前应该考虑平滑处理。() 10、伪彩色处理中的灰度分层法产生的伪彩色是渐变的。() 三、简答题(每题5分,共45分) 1、数字图像处理系统由哪几部分构成? 2、简述灰度图像、伪彩色图像、假彩色图像以及真彩色图像的区别? 3、一幅图像背景部分的均值为25,方差为625,在背景上分布着一些互不重叠的均值为150,方差为400的小目标。设所有目标合起来约占图像总面积的20%,提出1个基于区域生长的分割算法将这些目标分割出来。 4、请举例说明图像无损压缩编码和有损压缩编码各包括哪些具体的编码方法(各举三例以

地基处理方法与研究

地基处理方法与研究 摘要:黄土地区经常发生水土流失、地基湿陷、水库边坡、路堑及黄土源边滑坡及崩塌等灾害性地质活动,对工农业建设及人民生活经常造成严重危害,所以采用适合的处理方法处理黄土的失陷性对工程具有重要的意义。在进行水工建筑物的基础设计时,时常会碰到软弱地基问题。 关键词:湿陷性黄土;地基处理;强夯法;灰土挤密法 在西北、华北地区常会遇到黄土地基处理问题,通常包括低湿度湿陷性黄土以消除或减小湿陷变形危害为主要目的,同时需提高地基承载力的地基处理问题,以及高湿度软弱黄土(尤其是饱和黄土,多由湿陷性黄土饱水转化而成,饱和度Sr﹥80%)以提高地基承载力、减少有害压缩变形为目的的地基处理问题。由于后者的工程特性多与一般粘性土类似,主要应考虑地基的压缩变形,可按软弱粘性土对待,而前者则主要应考虑地基受水浸湿后的湿陷变形。 一、垫层法 垫层法是先将基础下的湿陷性黄土一部分或全部挖除,然后用素土或灰土分层夯实做成垫层,以便消除地基的部分或全部湿陷量,并可减小地基的压缩变形,提高地基承载力,可将其分为局部垫层和整片垫层。当仅要求消除基底下1~3m湿陷性黄土的湿陷量时,宜采用

局部或整片土垫层进行处理;当同时要求提高垫层土的承载力或增强水稳性时,宜采用局部或整片灰土垫层进行处理。 垫层的设计主要包括垫层的厚度、宽度、夯实后的压实系数和承载力设计值的确定等方面。垫层设计的原则是既要满足建筑物对地基变形及稳定的要求,又要符合经济合理的要求。同时,还要考虑以下几方面的问题: 1.局部土垫层的处理宽度超出基础底边的宽度较小,地基处理后,地面水及管道漏水仍可能从垫层侧向渗入下部未处理的湿陷性土层而引起湿陷,因此,设置局部垫层不考虑起防水、隔水作用,地基受水浸湿可能性大及有防渗要求的建筑物,不得采用局部土垫层处理地基。 2.整片垫层的平面处理范围,每边超出建筑物外墙基础外缘的宽度,不应小于垫层的厚度,即并不应小于2m。 3.在地下水位不可能上升的自重湿陷性黄土场地,当未消除地基的全部湿陷量时,对地基受水浸湿可能性大或有严格防水要求的建筑物,采用整片土垫层处理地基较为适宜。但地下水位有可能上升的自重湿陷性黄土场地,应考虑水位上升后,对下部未处理的湿陷性土层引起湿陷的可能性。 二、重锤表层夯实及强夯

数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 个人信息********* 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得出了三种方法各自的适用性特点。 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods in Digital Image Name:*** (个人信息****) Abstract: Image denoising is one of the most important parts and steps of image processing. Firstly, the paper introduces the common image noise. Then, based on the principle and methods of eliminating image noise, it discusses mean filtering, median filtering, and Wiener filtering which are typical image donoising. Finally, it uses these methods to eliminate image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes the applicability of each method in different application. Key words: image denoising; mean filtering; median filtering; Wiener filtering 0 引言 数字图像是现代人们获取信息的主要来源。由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会收到多种噪声的污染。一般来说,现实中的图像都是带噪图像。噪声使图像变得模糊,甚至淹没图

对粘性素填土地基处理方法的探讨

对粘性素填土地基处理方法的探讨 摘要:通过用机械压实法(强夯法)加固粘性素回填土地基的实例,探讨此法的不优越性。关键词:强夯法;粘性素填土;处理方法 地基处理方法有很多种,如机械压实法、换土垫层法、挤密法、排水固结法、化学加固法。其中机械压实法最常用,强夯法就是其中一种。强夯法自20世纪70年代末就在我国应用以来,已迅速得到推广发展,成为我国最常用和最经济的地基处理方法之一[1,2]。现介绍强夯法固处理粘性素填土地基的工程实例,分析其优越性。 1 工程概况 拟建工程占地约300m2,场地北部地势高,为残丘坡地,南部有一部分土地拟被征用为建筑用地后,将养鱼池、水沟塘的淤泥清除后,用北部残丘坡地的粘性土进行回填平整,回填过程中未进行分层碾压,致使填土层松软不均,欠固结。由于拟建场地北部为挖方区,南部为填方区,且拟建工程生产使用及地坪堆载较大,上部结构为网排架,设计时为了采用独立柱基础,提出强夯法加固填土地基。强夯加固处理后地基承载力要求达到fak=200KPa,强夯有效加固尝试为6.0m,处理面积为300m2。 经详勘钻探揭露,拟建场地地下水主要为上滞水,水位一般在3.00m左右;在设计强夯有效尝试范围内,场区地层自上而下主要分为2部分,其主要岩土特征如下:(1)素填土(Qml):杂色,主要由硬可塑状粘土、粉质粘土组成,间夹少许碎石,局部地段询问夹淤泥质土或粉煤灰等,土质松散不均,欠固结,为新近回填规程,强度低,均一性差。层厚为3.70~5.80m,平均厚度为4.50m,静力触探比贯入阻力标准值Ps为1.94MPa,标贯锺击数平均值为4.5击,属高压缩性土。 (2)-1粉质粘土(Qal):灰褐、灰黄色,软可塑,土质较均匀,局部夹薄层粉土、粉砂及碎石。层厚为0~5.60m,平均厚度为2.15m静力触探比贯入阻力标准值ps为1.11MPa,属中高压缩性土。 2 地基加固设计参数的确定与施工 此次强夯分为两遍点夯和一遍满夯。第一遍点夯按6m×6m方格网布置夯点,单点夯击数为3击,第二遍点夯在网格中心插点,单点夯击数为2。夯锤选用直径2.0的圆柱体铸钢锤,锤重12t,落锺高度为12m。点夯夯坑内回填碎石,两遍夯击之间时间间隔为15d。满夯采用搭接夯,夯击能量为前期夯击能的0.25倍。碎石垫层厚300mm。 施工机械选用50t履带式起重机,起重机臂杆端部增设辅助龙门支架,采用自动脱钩夯锺装置。 3 强夯效果检测 在完成满夯后15天,对强夯地基进行了夯后检测。检测手段为浅层平板静载荷试验、室内土工试验、现场标贯入试验及静力触探试验等。 根据检测结果,素填土经强夯处理后依据其加固的效果可分为两层,第1~1层填土(起夯面下0.40~3.50m)受高冲击能的直接作用,土粒重新排列较密实,压缩性、孔隙比大幅度变小,承载力提高较大,该层地基土比贯入阻力标准值ps为3.19MPa,承载力特征值为195MPa,压缩模量平均值为9.3MPa;第1~2层填土受上层土的间接挤压,密实程度的提高不及1~1层,但承载力也有所提高,该层地基土比贯入阻力标准值ps为1.43MPa,承载力特征值为130MPa,压缩模量平均值为6.0MPa。 4 强夯效果分析 分析强夯检测结果,第1~2层及第2~1层地基强度显然不能满足设计要求,有效加固尝试未达到预期目标,且地基均匀性较差。致使强夯效果不优越的原因: (1)强夯夯施工前,未进行试验,强夯选定不合理;夯击次数一般通过现场试确定,常以

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

相关文档
最新文档