1311中工作面

1311中工作面
1311中工作面

1311中工作面回采地质说明书编写:

科长:

总工:

时间:

1311中工作面回采地质说明书

132运输巷迎头掘进地质说明书编制:

科长:

总工:

时间: 年月日

倾角传感器原理重点

一、倾角传感器原理倾角传感器经常用于系统的水平测量,从工作原理上可分为“固体摆”式、“液体摆”式、“气体摆”三种倾角传感器,下面就它们的工作原理进行介绍。 1、“固体摆”式惯性器件固体摆在设计中广泛采用力平衡式伺服系统,如图1所示,其由摆锤、摆线、支架组成,摆锤受重力G和 摆拉力T的作用,其合外力F为:(1) 其中,θ为摆线与垂直方向的夹角。在小角度范围内测量时,可以认为F 与θ成线性关系。如应变式倾角传感器就基于此原理。 2、“液体摆”式惯性器件液体摆的结构原理是在玻璃壳体内装有导电液,并有三根铂电极和外部相连接,三根电极相互平行且间距相等,如图2所示。当壳体水平时,电极插入导电液的深度相同。如果在两根电极之间加上幅值相等的交流电压时,电极之间会形成离子电流,两根电极之间的液体相当于两个电阻RI和RIII。若液体摆水平时,则RI=RIII。当玻璃壳体倾斜时,电极间的导电液不相等,三根电极浸入液体的深度也发生变化,但中间电极浸入深度基本保持不变。如图3所示,左边电极浸入深度小,则导电液减少,导电的离子数减少,电阻RI增大,相对极则导电液增加,导电的离子数增加,而使电阻RIII 减少,即RI>RIII。反之,若倾斜方向相反,则RI<RIII。在液体摆的应用中也有根据液体位置变化引起应变片的变化,从而引起输出电信号变化而感知倾角的变化。在实用中除此类型外,还有在电解质溶液中留下一气泡,当装置倾斜时气泡会运动使电容发生变化而感应出倾角的“液体摆”。 3 “气体摆”式惯性器件气体在受热时受到浮升力的作用,如同固体摆和液体摆也具有的敏感质量一样,热气流总是力图保持在铅垂方向上,因此也具有摆的特性。“气体摆”式惯性元件由密闭腔体、气体和热线组成。当腔体所在平面相对水平面倾斜或腔体受到加速度的作用时,热线的阻值发生变化,并且热线阻值的变化是角度q或加速度的函数,因而也具有摆的效应。其中热线阻值的变化是气体与热线之间的能量交换引起

传感器技术在交通检测中的应用

传感器技术在交通检测中的应用 传感器技术在交通检测领域的应用交通信息是城市交通规划和交通管理的重要基础信息,通过全面、丰富、实时的交通信息不但可以把握城市道路交通的发展现状,而且可以对未来发展进行预测。因此,交通信息采集与处理技术无论对城市的规划、路网建设、交通管理,还是对未来智能交通系统功能的实现都非常重要。 动态交通信息采集系统的目标是全面、自动、连续地从路网上获得不同地点和路段上的交通流信息。而要实现这一目标,就离不开信息传感器。 一、传感器的涵义及组成国家标准(GB7665—1987)对传感器下的定义是:能感受到规定的被测量的量,并依据一定的规律转换成可用于输出信号的器件或装置。在现代科学技术的发展过程中,非电量(例如压力、力矩、应变、位移、速度、流量、液位等)的测量技术(传感技术)已经成为各领域的重要组成部分,但传感技术最主要的应用领域是自动检测和自动控制,它将诸如温度、压力、流量等非电量变化为电量,然后通过电的方法进行测量和控制。因此,传感器是一种获得信息的手段,它获得的信息正确与否,关系到整个测量系统的精度。传感器一般是利用物理、化学、生物等学科的某些反应或原理,按照一定的制造工艺研制出来的。因此,传感器的组成将随不同的情况而有较大

差异。但是,总的来说,传感器是由敏感元件、传感元件、信号调节与转换电路和辅助电路组成。敏感元件是直接感受非电量,并按一定规律转换成与被测量有确定关系的其他量(一般仍为非电量)的元件。传感元件又称变换器,一般情况下,它不直接感受被测量,而是将敏感元件输出的量转换成为电量输出。这种划分并无严格的界限,并不是所有的传感器都必须包含敏感元件和传感元件。如果敏感元件直接输出的是电量,它同时兼作为传感元件。信号调节与转换电路一般是指把传感元件输出的电信号转换成为便于显示、记录、处理和控制的有用信号的电路。辅助电路通常包括电源,有些传感器系统采用电池供电。 二、交通检测中常见的传感器技术 1、红外线传感器红外传感器是波束检测装置的一种,有主动和被动两种形式。主动式发射器和接收器分别为半导体激光器和光电二极管,将两者对中,水平安装在车道旁边。无车通过时,接收器接收细束线状红外光,有信号输出;车辆通过时,遮断光束,接收器无输出,通-断转换是对车辆的检测信号。新型主动反射式红外检测器的原理为:在相同的红外光辐射下,反射物的大小、材料和结构不同,反射能量就不一样。 被动式红外检测没有发射器,只有接收器。接收器感受路面和车辆以红外波长为主的辐射能量。路面和车体的材料温度和表面光洁度都不一样,它们的辐射能量也必然不相等。现代红外测温的分辨率已达到0、1%℃,因此区分道路和车辆己不存在困难。

8实验八锑化铟磁电阻传感器的磁阻特性测量及应用

实验八 锑化铟磁阻特性测量 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测,导航系统、伪钞检测、位置测量等,其中最典型的锑化铟(InSb )传感器是一种价格低廉、灵敏度高的磁电阻,有着十分重要的应用价值。本实验装置结构简单、实验内容丰富,使用两种材料的传感器:利用砷化镓(GaAs )霍尔传感器测量磁感应强度,研究锑化铟(InSb )磁阻传感器的电阻随磁感应强度的变化情况。 一、实验目的 1 、测量锑化铟传感器的电阻与磁感应强度变化的关系。 2 、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。 3 、对此关系曲线的非线性区域和线性区域分别进行曲线和直线拟合。 二、实验仪器 FD-MR-Ⅱ型磁阻效应实验仪(直流双路恒流电源、 0~2V 直流数字电压表、电磁铁、数字式毫特仪、锑化铟磁阻传感器、电磁铁及双向单刀开关等)、示波器、电阻箱、正弦交流低频发生器及导线若干。 三、实验原理 在一定条件下,载流导体或半导体的电阻值 R 随磁感应强度 B 变化的规律称为磁阻效 应。如图 43-1 所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场,如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大出现横向磁阻效应。如果将图43-1中的 a 端和 b 端短路,磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用 )0(/ρρ?表示。其中)0(ρ为零磁场时的电阻率,设磁阻在磁感应强度为B 的磁场作用下的电阻率为 )B (ρ,则 )0()B (ρρρ-=?。由于磁阻传感器电阻的相对变化率 △R/R(0)正比于)0(/ρρ?,这里△R = R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。测量磁阻电阻值R 与磁感应强度 B 的关系所用实验装置及线路如图 43-2 所示。

原子的壳层能量的计算与电子排布

原子的壳层能量与电子排布 李涛(安庆师范学院物理与电气工程学院安徽安庆 246011) 指导教师:张青林 摘要:各种元素的化学性质和物理性质的变化,显示出高度的规律性,这实际放映了原子结构的情况。 原子的电子排布并不是杂乱无章而是有规律可循,其遵循最低能量定理,泡利不相容原理以及 洪定则。掌握了这些,对原子的核外电子排布就会有一个清醒的认识。原子壳层能量是随原子 序数而变化的,随着原子序数的增加原子逐一增加的,电子填入支壳层的次序可由经验n+0.7L 描叙,其中n是主量子数,对应于主壳层,L是角动量量子数,对应于支壳层。 关键词:壳层能量,泡利原理,电子排布,轨道能量交错 引言:早在1803年道耳顿根据质量守恒及定比定律提出原子的学说,原子的研究就正式开始,到1912年柯塞尔提出多电子原子中的电子分布主壳层模行,即主量子数相同的电子处于同一主壳层中。对应于n=1,2,3,4…的主壳层分别用K,L,M,N….来表示在同一主壳层中,不同的轨道角量子数1又分成几个不同的分壳层,常用s,p,d,f,…..表示1=0,1,2,3,…的各种转动态。 1原子壳层能量随原子序数的变化 众所周知,随着原子的增加和壳层电子的逐一填充,原子的壳层能量会下降。对此可在电磁学理论基础上做出定性的解释。当一正电荷位于球心并有等量负电荷均匀分布于球壳上时,球内形成一沿径向向外的电场,凡原在球壳内的负电荷都会因这一电场的作用而引起能量的下降。原子序数为Z的原子变为 Z+1的原子时,新加入电子的电荷沿径向和角向按一定几率分布,核新增的单位正电荷和新加入的电子在核外一定范围内形成一类似的附加电场,使有一定几率分布处于该场中的原有电子能量下降。电子处于附加电场中的几率越大和离核越近,则将其移到无穷远时需要更多的功,因而这些电子的能量越低。显见,当考虑库仑相互作用能时,随着原子序数的增加原子的壳层能量下降。 事实上,影响原子的壳层能量的因素很多,除电子的动能外,还有吸引能和其他电子的排斥作用能,自旋相关效应能,相对论效应能和旋一轨相互作用能,要精确计算这些影响是困难的,所以我们仅准备在原子物理学范畴内定性讨论原子的壳层能量随原子序数Z增加的增加而下降的规律。 根据光谱的实验数据总结和计算得出:在不违背泡利原理和最低能量的情况下,随着原子序数的增加,原子逐一增加的电子填入支壳层的次序可由经验则n+0.7L【1】描述,其中n是主量子数,对应于主壳层;L 是角动量量子数,对应支壳层。按该经验规则各支壳层如表1所示。 表1 周期表中元素排列的先后,原子逐一增加电子的次序[2】 电子填 补次序1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d n+0.7L1.0 2.0 2.7 3.0 3.7 4.0 4.4 4.7 5.0 5.4 5.7 6.0 6.1 6.4 6.7 7.0 7.1 7.4 但从X射线表示谱和吸收限的情况【1.2】可知:原子的内支壳层的能量顺序与原子逐一增加电子的能量顺序不同,内支壳层的能量顺序是n越小,能量越低;n相同时,L越小,能量越低。内支壳层能量的高低次序按从小到大排列如表2所示。 随着原子序数的增加和电子的逐一填充,原子的外支壳层逐渐过渡到内支壳层,支壳层能量次序由表1过渡到表2。比较表1和表2的能量次序不难发现,表2中某些n小L大的支壳层能量次序相对于表1

水质监测设备中常用的5种传感器

水质监测设备中常用的5种传感器 水质监测设备中常用的5种传感器。在越来越看重环境保护的今天,水质检测仪对于一些行业来讲是必不可少的设备。而不同行业对检测的需求也不一样,因此检测人员相应的操作也不同,对于检测设备的选择也不一样。比如说工业废水大部分检测的是重金属含量,饮用水厂可能就需要检测微生物、有机物、重金属、消毒剂等多种参数。而这些参数的检测工作主要是由水质检测仪的各种传感器来完成的。 水质多参数检测探头 今天我们就为大家介绍一些水质检测仪常用的传感器 1.余氯传感器 余氯 氯是最广泛的消毒剂,尤其是在饮用水的杀菌消毒过程中。而余氯传感器可以检测出水体样本中游离氯、一氯胺和总氯的含量。 2.TOC传感器 TOC也被称为总有机碳,它是分析水体样本中有机物污染情况的重要指标,而TOC传感器也多用于制药行业的水质分析中。 2.电导率传感器 电导率 电导率传感器可以说是水质检测仪中使用最多的传感设备,它主要用于检测水体中总离子的浓度,而且根据测量原理的不同可以分为电极型、电感型以及超声波型。

3.PH传感器 PH PH传感器主要通过检测氢离子来获取水体的酸碱值,而PH值是水体的一个重要指标,在多个行业中对水体PH值都有严格的要求。 4.ORP传感器 氧化还原反应计 ORP传感器主要用于溶液的氧还原电位,它不仅能多针对水体进行检测,还可以对土壤和培养基中的ORP数据进行检测,因此它也是应用领域最多的传感器,通常它会跟PH传感器一起使用。 5.浊度传感器 浊度检测探头 浊度传感器是通过测量透过水的光量来测量水中的悬浮固体,而这些悬浮固体可以反映出水体受污染的情况。因此在水质检测仪对河流、污水以及废水的测量中会经常使用到。 总的来说传感器是水质检测仪用来测量水体数据的重要设备,正确的操作和使用可以帮检测人员获得更有价值的数据信息。 安徽省碧水电子技术有限公司成立于2004年3月,以研发、生产、销售及托管运营环境保 护监测仪器仪表为主要业务。目前拥有员工130余人,其中高级工程师4名,运维工程师90人, 专业运维车辆60余辆。2006年取得国家环保部颁发的水质、烟气在线运营维护证书,目前接受

传感器整理

一、引言 目前,我国传感器行业规模仍然较小,应用范围较窄。为此,我们亟须转变观念.将传感器的研发由单一物性型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键.它将成为21世纪信息产业新的经济增长点。 二、传感器行业发展趋势及展望 目前,传感器行业呈现八大发展趋势,即传感器的产业化发展模式、传感器产品全面、协调、持续发展、企业生产规模(年生产能力)向规模经济发展、生产格局向专业化方向发展、传感器大生产技术向自动化方向发展、企业的重点技术改造向引进技术的消化吸收与自主创新的方向转变、企业经营要加快从国内市场为主向国内与国外两个市场相结合的国际化方向发展、企业将向“大、中、小并举”、“集团化、专业化生产共存”的格局发展。但是,由于经济发展水平和生产研发资金的限制,我国传感器行业总体技术水平还是相对比较落后的,规模和应用领域都较小。今天活跃在国际传感器市场上的仍然是德国、日本、美国、俄国等老牌工业国家的企业。在这些国家里,传感器的应用范围很广,许多厂家的生产都实现了规模化,有些企业的年生产能力已达到几千万只甚至几亿只。相比之下,中国传感器的应用范围还比较窄,更多的应用仍然停留在工业测量与控制等基础应用领域。 可以预见,未来中国传感器市场的总需求将继续扩大。国内品牌将通过增加投资、合资等方式逐步渗透到高端市场。而中低端产品出口将成为国内品牌厂商的选择。国外新技术输人和应用技术将会带动市场需求向更个性化、分散化的方向发展,国内厂商之间的并购与整合也将很快形成趋势。 三、传感器原理与结构概述 1、传感器原理 无线传感器的组成模块封装在一个外壳内,在工作时,它将由电池或振动发电机提供电源,构成无线传感器网络节点。它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。 (原理图) 无线通讯模块采用基于IEEE802.15.4标准的无线协议进行数据传输。IEEE802.15.4主要针对工业,建筑,传感器的无线数据采集和监控,油田,电力,矿山和物流管理等应用领域。它具有低功耗,传输可靠性高,抗干扰能力强,网络容量大,能够自动组网等特点。

第七章 原子的壳层结构 - 71 有两种原子,在基态时其电子壳层是

第七章 原子的壳层结构 7.1 有两种原子,在基态时其电子壳层是这样添充的:(1)n=1壳层、n=2壳层和3s 次壳层都填满,3p 次壳层填了一半。(2)n=1壳层、n=2壳层、n=3壳层及4s、4p、4d 次壳层都填满。试问这是哪两种原子? 解:每个壳层上能容纳的最多电子数为,每个次壳层上能容纳的最多电子数为。 22n )12(2+l (1)n=1壳层、n=2壳层填满时的电子数为: 10221222=×+×3s 次壳层填满时的电子数为:2)102(2=+× 3p 次壳层填满一半时的电子数为:3)112(22 1=+×× 此种原子共有15个电子,即Z=15,是P(磷)原子。 (2)与(1)同理:n=1,2,3三个壳层填满时的电子数为28个 4s、4p、4d 次壳层都填满的电子数为18个。 所以此中原子共有46个电子,即Z=46,是(钯)原子。 Pd 7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么? 答:根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个 电子具有完全相同的四个量子数。对每一个次壳层,最多可以容纳个电 子。3d 次壳层的,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。 l )(122+l 2=l 7.3 原子的S、P、D 项的量子修正值Na 01.0,86.0,35.1=Δ=Δ=ΔD p s 。把谱项表达成2 2 )(n Z R σ?形式,其中Z 是核电荷数。试计算3S、3P、3D 项的σ分别为何值?并说明σ的物理意义。 解:用量子数亏损表征谱项时 形式为 22) (*Δ?=n R n R 用有效电荷表征时 形式为 2 2 22)(*n Z R n RZ σ?= 两种形式等价。令二者相等,则得到 Δ 与 σ 之间的关系 Δ?=?n n Z σ Δ ??=n n Z σ 用 Z = 11 和 n = 3 代入上式得 3S、3P、3D 项的σ值分别为:

倾角传感器的应用

倾角传感器的应用 1、什么是倾角传感器? 倾角传感器可以用来测量相对于水平面的倾角变化量。理论基础就是牛顿第二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。所以它其实是运用惯性原理的一种加速度传感器。 2、倾角传感器有哪些类型? 种类粗分:单轴的和双轴两种。 从工作原理上可分为“固体摆”式、“液体摆”式、“气体摆”三种倾角传感器。 就基于固体摆、液体摆及气体摆原理研制的倾角传感器而言,它们各有所长。在重力场中,固体摆的敏感质量是摆锤质量,液体摆的敏感质量是电解液,而气体摆的敏感质量是气体。 气体是密封腔体内的唯一运动体,它的质量较小,在大冲击或高过载时产生的惯性力也很小,所以具有较强的抗振动或冲击能力。但气体运动控制较为复杂,影响其运动的因素较多,其精度无法达到军用武器系统的要求。 固体摆倾角传感器有明确的摆长和摆心,其机理基本上与加速度传感器相同。在实用中产品类型较多如电磁摆式,其产品测量范围、精度及抗过载能力较高,在武器系统中应用也较为广泛。 液体摆倾角传感器介于两者之间,但系统稳定,在高精度系统中,应用较为广泛,且国内外产品多为此类。 3、倾角传感器有哪些用途? 倾角传感器用于各种测量角度的应用中。例如,高精度激光仪器水平、工程机械设备调平、远距离测距仪器、高空平台安全保护、定向卫星通讯天线的俯仰角测量、船舶航行姿态测量、盾构顶管应用、大坝检测、地质设备倾斜监测、火炮炮管初射角度测量、雷达车辆平台检测、卫星通讯车姿态检测等等。下面就广泛应用的几个做简略介绍。 l 海事地理 山体滑坡,雪崩——双轴倾角传感器,如NA5200系列倾角传感器配合液位传感器用于山体滑坡或雪崩监测,通过无线传感系统将数据传输到中央控制系统,实时监测山体状态,可以有效减小 山体滑坡带来的损失。

监测设备各类传感器布置

第三节监测设备各类传感器布置 一、回采工作面传感器选型及配置 (一)采煤工作面 1、瓦斯传感器 本矿井为煤与瓦斯突出矿井,在回采工作面靠近上隅角回风顺槽内小于10m处布置1台高低浓度组合式瓦斯传感器T l,在工作面上隅角设置便携式甲烷检测报警仪T3。 报警浓度:Tl为≥1.0%; 断电浓度:Tl为≥1.5%; 复电浓度:Tl为<1.0%。 断电范围: T1—工作面及回风巷道中全部非本质安全型电气设备 2、粉尘传感器 在回采工作面的上、下出口各安装粉尘传感器各1台(共两台)。 3、温度传感器 在采煤工作面安设1台温度传感器。 4、CO传感器 在回采工作面上出口安设1台瓦斯传感器。 (二)采面运输顺槽 1、瓦斯传感器 在运输顺槽内设置一台瓦斯传感器T; 报警浓度:T为≥0.5%; 断电浓度:T为≥0.5%; 复电浓度:T为<0.5%。 断电范围: T—进风巷内全部非本质安全型电气设备 2、风速传感器 在工作面运输顺槽断面无变化,能准确计算测风断面的地点各安装1台风速传感器。 3、馈电传感器 在采煤工作面运输顺槽安装1台馈电传感器。 (三)采面回风顺槽 1、瓦斯传感器 在回采工作面回风侧布置1台高低浓度组合式瓦斯传感器T2,T2距回风石门约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%;

复电浓度:T2为<1.0%。 断电范围:T2—回风巷道中全部非本质安全型电气设备 2、CO传感器 在回风顺槽内距回风石门10~15m安设1台CO传感器。 3、风速传感器 风速传感器安设在回风顺槽内(1台) 4、风门开关传感器 在回风顺槽与1455联络巷连接附近的回风顺槽内安设2个风门开关传感器。 (四)胶带运输机机头 在运输顺槽内的胶带运输机机头1台烟雾传感器、1台粉尘传感器、1台开停传感器和1 台CO传感器。 二、掘进工作面传感器类型及配置 该矿井属于煤与瓦斯突出矿井,掘进工作面传感器的类型、数量和位置均按煤与瓦斯突出矿井的要求进行安设和配置。 矿井达产时配备二个掘进头,每个掘进头传感器类型及配置如下: (一)掘进工作面 1、瓦斯传感器 在掘进工作面布置1台高低浓度组合式瓦斯传感器T1,Tl靠近掘进头,其间距不大于5m。 报警浓度:T l为≥1.0%; 断电浓度:T l为≥1.5%; 复电浓度:T l<1%。 断电范围:T l一掘进工作面中全部非本质安全型电气设备。 2、风尘传感器 在掘进工作面布置1台风尘传感器; 3、风速传感器 在掘进工作面距迎头不大于6米的位置布置1台风速传感器。 4、CO传感器 在掘进工作面布置1台CO传感器。 (二)掘进工作面回风流中 1、瓦斯传感器 在掘进工作面回风流中布置1台高低浓度组合式瓦斯传感器T2,1T2为掘进头回风流靠近回风石门(斜巷、平巷)约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%; 复电浓度:T2<1%。 断电范围:T2一掘进工作面中全部非本质安全型电气设备。

煤矿监控常用传感器设计说明

煤矿监控常用传感器设计 第一节 GJ40A型甲烷传感器 一、产品用途 GJ40A型甲烷传感器能用于煤矿井下或其他有甲烷气体的场所,监测环境甲烷浓度,并连续自动地将甲烷浓度值转换成标准电信号传送给关联设备。该传感器可与国内各类型监测系统及断电仪、风电瓦斯闭锁装置等配套,适宜在煤矿采掘工作面、机电硐室,回风巷道等地点固定使用。传感器结构设计充分考虑了恶劣的环境条件,在结构强度和防水性能方面都采取了有效的措施,同时还特别加大了接口连接器的尺寸,保证传感器能稳定可靠地工作。 二、技术特征 1、适用条件 环境温度:0℃~40℃ 相对湿度:≤98% 大气压力:80kPa~110kPa(相对海拔高度-1000m~1500m) 风速:0m/s~8m/s 矿井环境中H2S气体小于6×10-6 2、主要技术指标: 测量范围:0.00%CH4~40.0%CH4 基本测量误差: 0.00%CH4~1.00%CH4≤±0.10%CH4 1.00%CH4~ 2.00%CH4≤±0.20%CH4 2.00%CH4~4.00%CH4≤±0.30%CH4 4.00%CH4~10.0%CH4 ≤±1.00%CH4 10.00%CH4~40.00%CH4 ≤±10.0%(相对误差) 显示方式:四位红色数码管显示 第一位:功能显示; 1-热催化调零 2-调热催化灵敏度 3-热导调零 4-调热导灵敏度

5-调报警点 6-调断电点 7-调复电点 8-自检 后三位:测量数值显示;(%CH4) 信号输出:低浓度段200Hz~1000Hz 线性对应0%CH4~4.00%CH4 高浓度段1200Hz~2000Hz线性对应4.00%CH4~40.0%CH4 信号有效带负载能力:0Ω~500Ω 报警方式:二级间歇式声光报警 声强≥85dB 光强:能见度>20m 采样方式:扩散式 元件检测反应速度:≤30S 热催化元件寿命:一年以上 整机工作电压:8V.DC~24V.DC 整机工作电流:≤100mA(18V.DC) 防爆等级:ExibdⅠ矿用本质安全兼隔爆型 三、工作原理 该传感器以多功能超低功耗单片机MSP430为中央处理单元,由放大电路、数字显示、声光报警、信号输出等单元电路组成,框图如下: 图 1. 传感器电路原理框图 传感器电路采用单片机设计,能就地检测显示甲烷浓度值,同时输出频率信号(电流信号、485通讯),供远程采集;能遥控调校零点和灵敏度,并具备故障自检功能,给使用和

电子传感器在电子设备监测中的应用

电子传感器在电子设备监测中的应用 发表时间:2018-06-27T10:07:26.830Z 来源:《电力设备》2018年第7期作者:杨丽伟 [导读] 摘要:电气设备是电力系统中非常重要的一个组成部分,为了保障电力系统更加稳定、安全的运行,电子设备中的监测系统就必须扮演重要的角色,电子设备监测系统中,电子传感器是整个监测系统的主要部件。 摘要:电气设备是电力系统中非常重要的一个组成部分,为了保障电力系统更加稳定、安全的运行,电子设备中的监测系统就必须扮演重要的角色,电子设备监测系统中,电子传感器是整个监测系统的主要部件。电子传感器能够将异常信号转换从横电信号进行传输,同时利用电子传感器的原理,还能够对对应的数据进行分析与处理,从而将其准确的显示出来,为电子设备稳定的运行提供有力的参考依据。 关键词:电子传感器;电子设备;监测;应用 1电子传感器及其特点 电子传感器,其实质是利用电子技术改造成的一个优质、新型检测装置,将它装置在相关设备中能够辅助设备感受并检测出相关信息。同时结合电子技术对电子信号进行处理,根据一定规律将检测信息转换成电信号,或以其他形式完成信息输出。电子传感器在使用过程中表现出2个特殊的功能特点,具体如下: 1.1数字性 数字性是电子传感器的首要功能特点,尤其是近些年传感器产品开始新一轮的更新换代,在原有传感器处理功能上引用数据技术,推出以网络为平台的传递形式,从而大大提高了新型电子传感器的应用价值。新型电子传感器不仅具有对信息的传输、处理、存储、显示、记录、控制等功能,而且在自动检测、自动控制方面的功能更为优化。 1.2安全性 安全性是电子传感器的显著功能特点。由于传统电力系统没有配备专用的监控调度系统,这令本就承受较大工作负荷的传统电力系统安全性难以保障,系统中电气设备使用过程中常发生故障进而导致意外事故的频发。不过,若将电子传感器应用于电力系统中并构建自动化监控系统,这可增强系统的安全防御功能,进而保障系统调度的安全性。 2电气设备监测的必要性 在电力系统中,其需要多种设备构成,如发电机、变压器、断路器、电力线路等,而这些设备有一个专业统称,即电气设备。近些年,电力行业发展迅速,相关电网工程规划配套的设施陆续推出,电气设备的应用越来越广泛,而对于电气设备的使用也提出了两点要求,一是保障用电效率,二是保障用电安全。但是,传统电力系统中的电气设备监控功能不强,故而系统安全防御难以做到位,常常因电路发生短路、断线、接地、漏电等故障而引发设备事故、电气火灾、爆炸事故等。因此,重视电气设备监测,提高电气设备使用及电力系统的安全性十分必要。 2电子传感器在电子设备监测中的具体应用 2.1摄像监控方面的具体应用 电气设备监测系统中摄像监控主要是负责图像视频监控。电气设备监测系统的前段,需要安装摄像监控的主要部件,例如:图像采集器、视频摄像机等等,因此,摄像监控是整个系统信号源的输入。但是,摄像监控图像采集器或者视频摄像机的经过固定之后,所能监控的范围就非常受限制,要解决这个问题就需要对这些部件进行转向,通过变焦的方式让摄像监控的范围更加广阔,同时也能提升捕捉影像的分辨率,进一步保障电气设备监控系统中信息源的收集。将电子传感器应用到摄像监控方面,针对电气设备的监测方面,能够进一步改善图像视频的监控方式,能够让整个电气设备全面获得图像信息,更加重要的是能够在极短的时间之内进行传输,通过远程控制系统完成监测。及时地发现异常情况,在最短的时间将其修复,为电气设备监测与维护实现自动化控制系统打下坚实的基础。随着互联网技术的发展,电子传感器在摄像监控方面的应用,在整个电气设备监测系统的完善之下,与互联网通信技术全面结合在一起,通过计算机系统能够对电气设备实现远程监测与控制,逐步提升电力系统中电气设备的监测实效性。 2.2数据传输方面的具体应用 随着科学技术的日新月异,无论是无线通信技术,还是计算机系统都有了前所未有的发展,但是无论怎么进步,数据信息的传输是基础。而电气设备的监测系统中,需要涉及到的信号特别多,例如:数字信号、电子信号、声音信号、图像信号等这些信号种类的传输。在整个传输系统中,或者整个传输网络中,每一个重要的环节都需要设置电子传感器。然后充分发挥电子传感器的功能,将各类信息准确无语的传输到制定的核心处理系统当中。基于电子传感器的内部结构的优势,根据数据传输的需求改善电子传感器的内部结构,能够更好地提升各类信号传输的实效性。例如:随着科学技术的发展,人工智能时代已经逐渐被人所熟知,而人工智能也是利用电子传感器的原理对网络数据进行传输与处理来实现的。人工智能系统需要电子传感器对传输信息进行判断、校准、处理、决策等方面的操作,并且提升数据网络传输的有效性和智能性,进一步为人工智能系统中的数据智能传输与处理部件打下坚实的发展基础。 2.3信息显示方面的具体应用 电力系统中的电气设备信息显示也非常重要,信息显示能够直观监测各种设备的运作过程。而将电子传感器运用到电力系统电气设备的信息显示方面,能够加强监测的实效性。例如:信息显示方面主要涉及到各种DLP大屏显示器、液晶显示器等,将电子传感器设置在这些显示器的重要部件当中,便能够实现各种有效的操作的指令,将不同的电气设备实际运作的状态准确无误,及时的传输给信息显示器,例如:维护信号灯、报警信息、状态信息。传输的信息的过程中主要是利用无线通信网络,或者根据实际需求设置专用的高速网络通道,加强信号的传输。在特有的网络通道中将这些信号进行转码,通过分析与处理,再全部传输到显示屏的显示器中进行正确的显示。 2.4自动化控制方面的具体应用 在自动化控制系统中,电子传感器是使用最为广泛的一个领域。随着时代的进步,电力系统设备的管理、保养、维护等方面,基本上在科学技术的支撑下都是由电气设备自动化控制系统来进行管理的。电子传感器能够实现动态实时监控,能够及时将电气设备的实际运行情况传输到中心处理系统中,中心处理系统根据控制指令对电气设备运行的情况进行分析,然后通过对应的指令进行判断并且利用电气设备系统中的驱动装置颁布对应的任务,对电气设备进行操作、管理与控制,这就是电气设备自动化管理。我们日常生活中所使用的空调,尤其是最近几年变频空调的盛行,变频空调也是根据电子传感器的原理来进行操作的,变频空调内部的电子传感器能够感应周围环境的温

8实验八 锑化铟磁电阻传感器的磁阻特性测量及应用

实验八 锑化铟磁阻特性测量 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测,导航系统、伪钞检测、位置测量等,其中最典型的锑化铟(InSb )传感器是一种价格低廉、灵敏度高的磁电阻,有着十分重要的应用价值。本实验装置结构简单、实验内容丰富,使用两种材料的传感器:利用砷化镓(GaAs )霍尔传感器测量磁感应强度,研究锑化铟(InSb )磁阻传感器的电阻随磁感应强度的变化情况。 一、实验目的 1 、测量锑化铟传感器的电阻与磁感应强度变化的关系。 2 、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。 3 、对此关系曲线的非线性区域和线性区域分别进行曲线和直线拟合。 二、实验仪器 FD-MR-Ⅱ型磁阻效应实验仪(直流双路恒流电源、 0~2V 直流数字电压表、电磁铁、数字式毫特仪、锑化铟磁阻传感器、电磁铁及双向单刀开关等)、示波器、电阻箱、正弦交流低频发生器及导线若干。 三、实验原理 在一定条件下,载流导体或半导体的电阻值 R 随磁感应强度 B 变化的规律称为磁阻效 应。如图 43-1 所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场,如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大出现横向磁阻效应。如果将图43-1中的 a 端和 b 端短路,磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用 )0(/ρρ?表示。其中)0(ρ为零磁场时的电阻率,设磁阻在磁感应强度为B 的磁场作用下的电阻率为)B (ρ, 则 )0()B (ρρρ-=?。由于磁阻传感器电阻的相对变化率 △R/R(0)正比于)0(/ρρ?,这里△R = R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。测量磁阻电阻值R 与磁感应强度 B 的关系所用实验装置及线路如图 43-2 所示。 图43-1 磁阻效应 实验证明,当金属或半导体处于较弱磁场中时,磁阻传感器电阻相对变化率△R/R(0)正比于磁感应强度B 的二次方,而在强磁场中△R/R(0)与磁感应强度B 呈线性函数关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。

倾角传感器

倾角传感器JRTD-X02-75 1特点 ·高稳定性的MEMS传感器 ·数字滚动和俯仰输出 ·RS-232通信接口 ·高分辨率和设置时间 2应用 ·水平平台 ·精确倾斜测量 ·机械水平 3工作原理 倾角传感器JRTD-X02-75通过感知地球重力加速度在其测量轴上的分量大小,对载体倾斜角度的反应,产生相应变化的电信号,从而测量出物体角度信息。倾角传感器一般有较稳定的零位置,可以较准确的测量绝对角度(相对零位),而不是通过积分计算而来,可以较大程度的避免误差积累。其原理框图如图1所示。

AY=g*sin(β) 其中AX、AY代表加速度传感器输出,g是以重力作为参考的加速度值,α、β是倾角。 α=sin-1(AX/g) β=sin-1(AY/g) 加速度传感器输出的模拟信号经A/D转换器变换成数字信号,由微处理器进行计算出倾角α、β,通过RS232接口输出。 加速度传感器的灵敏度和零点漂移随着工作温度的变化而发生变化,但是这个变化是有规律的,加速度传感器的灵敏度随着温度的升高而减少,零点漂移随着温度的升高而增加或减少,倾角传感器内部增加一个温度传感器,对灵敏度和零点漂移进行补偿,由微处理器进行矫正,由于用微处理器会占用大量CPU时间和资源,节省资源常用EEPROM进行查表方法实现。 4技术指标 倾角传感器JRTD-102-75技术指标如表1所示。 性能指标JRTD-102-75JRTD-202-75单位备注精度±0.4±0.2o()常温25oC 角度范围±75±75(o)水平方向角度飘移w/Temp 1.50.7(o)达到±20oC倾 角角度分辨率0.0320.032(o) 设定时间0.140.14s 零位角度补偿<0.5<0.5(o) 非线性度(±45o)<11%<0.3%常温25oC 横向灵敏度1%1%典型值 温度范围0~+700~+85oC RS2329600bps9600bps bps 电源电压8~308~30VDC 电源电流6060mA 外型尺寸10.21X5.74X3.1510.21X5.74X3.15cm 重量9090g 5外型结构 倾角传感器JRTD-X02-75的外型结构如图2所示。

倾角传感器芯片参数

参数名称条件SCA100T-D01 SCA100T-D02 单位工作电压 4.75…5.25 4.75…5.25 V 工作电流VDD=5V;无负载 4 4 mA 工作温度-40…125 -40…125 degC 倾角传感器测量量程+/-30 +/-90 度 +/-0.5 +/-1.0 G 频率响应-3dB 8…28 8…28 Hz 零点输出环比输出VDD/2 VDD/2 V 零点校正误差+/-0.11 +/-0.23 度 零点数字输出1024 1024 LSB 灵敏度 4 2 V/g 在0…1度范围内70 35 mV/度 灵敏度校正误差+/-0.5 +/-0.5 % 数字灵敏度1638 819 LSB/g 零点温漂-25…85degC +/-0.008 +/-0.0008 度/degC -40…85degC +/-0.86 +/-0.86 度 灵敏度温漂-25…85degC +/-0.014 +/-0.014 %/degC -40…85degC -2.5…+1 -2.5…+1 % 线性度测量范围内+/-0.11 +/-0.57 度 数字分辨率11 11 Bits 在0…1范围内0.035 0.07 度/LSB 噪声密度DC…100Hz 0.0008 0.0008 度/√Hz 模拟输出分辨率带宽10Hz 0.0025 0.0025 度环比误差VDD=4.75…5.25V +/-1 +/-1 %

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/0513895737.html,/

位移检测传感器应用

位移检测传感器的应用 实验课程: 实验名称: 姓名: 学号: 班级: 指导教师: 实验日期:

位移检测传感器应用 一、实验类型 综合性实验。 二、实验目的和要求 1.了解微位移、小位移、大位移的检测方法。 2.运用所学过的相关传感器设计三种位移检测系统。 3.对检测系统进行补偿和标定。 三、实验条件 本实验在没有加速度、振动、冲击(除非这些参数本身就是被测物理量) 及环境温度一般为室温(20±5℃)、相对湿度不大于85% ,大气压力为101±7kPa的情况下进行。 四、实验方案设计 为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2为单位。进行试验后,用MATLAB处理数据,分析结论。 (一):电涡流传感器测位移 电涡流式传感器是一种建立在涡流效应原理上的传感器。电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图所示。根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图中的等效电路。

电涡流传感器原理图电涡流传感器等效电路图 图1 (二):光纤传感器测位移 实验原理:反射式光纤传感器工作原理如下图所示,光纤采用Y型结构,两束多模光纤合并于一端组成光纤探头,一束作为接受,另一束为光源发射,近红外二极管发出的近红外光经光源光纤照射至被测物,由被测物反射的光信号经接受光纤传输至光电转换器转换为电信号,反射光的强弱与反射物与光纤探头的距离成一定的比例关系,通过对光强的检测就可得知位置量的变化。 图2 (三):差动电感式传感器测位移 实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。下图为差动式位移检测传感器原理图。

桥梁动态监测前沿传感器应用解读

一、支座监测: 测量仪器:表面应变计 测量原理:振弦式传感器;仪器以点焊或者粘贴的方式安装到支座表面,仪器能根据支座的受力变化测量出支座相对应的应变量。 组网方式:此传感器输出为模拟信号,一个应变计需接一个弦式高智能采集模块,进行数据转换后直接接到系统总线进行无线远程传输。仪器介绍: 表面应变计 YH—0200系列智能型表面应变计

采集方式: 远程无线自动化数据采集 利用GPRS或CDMA等无线公用网络进行数据传输,完成对传感器数据的采集和监控。传感器通过GPRS或CDMA接入INTERNET网,主机只要接入INTERNET 网就可进行数据采集和监控。

安装方法: 1)表面应变计安装前检验:首先,仔细阅读表面应变计与测试仪说明书,了解表面应变计具体参数,熟悉测试仪使用操作;再将表面应变计与测试仪连接,按测试仪“开/关”键开机进行测量,检测表面应变计是否工作正常;检查传感器数量及导线长度是否正确。以确定传感器在运输过程中是否损坏或丢失。 2)具体安装方式 1、选择测量点。 2、把应变计、安装座安装好。 3、将安装座用螺栓(或胶水)固定在被测物体上,两端之高度应平衡。 4、将保护罩罩上。 5、通过读数仪读出表面应变计的编号,并与安装位置一起做记录。 6、待浇注水泥凝固后,两三天待稳定后,用读数仪或电脑对表面应变计进行调零。 以后测量出的偏差值就是相对调零时的沉降量了。 3)观测与数据记录、整理 1 作好传感器的安装记录,存档。其内容包括,该段面里程、 表面应变计的具体位置、实验编号、传感器编号、安装日期、 天气状况及安装人员。 2 制作好相应的标示牌,插在输电缆布线位置,以作标示。 在每次工序转换施工时要安排专人负责看管,以防表面应变 计因施工或自然因素而破坏。 如果忽略这些安全注意事项,可能导致本产品受损,不能

倾角传感器sca60c 应用

角度传感器简单应用系统 时间:2011-04-24 09:42:20 来源:数学小论文作者:秩名 论文导读:传感器在现代信息技术中有着举足轻重的地位,传感器为系统提供进行处理和决策所必需的原始信息,很大程度上影响和决定着系统的性能,本设计采用以单片机为控制单元,用单轴倾角传感器检测平衡板倾斜角度,采取步进电机控制平衡板角度自动旋转目的。本设计以C8051F005单片机为控制核心,通过把单轴倾角传感器SCA60C水平的固定在平衡板上,达到了实时检测平衡板倾斜角度的目的,并通过对步进电机驱动电路的控制实现了平衡板的转动。 关键词:角度传感器,C8051F005单片机,角度预置,步进电机,显示联动 0.引言: 传感器在现代信息技术中有着举足轻重的地位,传感器为系统提供进行处理和决策所必需的原始信息,很大程度上影响和决定着系统的性能,本设计采用以单片机为控制单元,用单轴倾角传感器检测平衡板倾斜角度,采取步进电机控制平衡板角度自动旋转目的。 1.硬件电路设计 角度传感器硬件连接图如图1所示,当步进电机带动平衡板倾斜到使角度传感器SCA60C处于水平位置时,Vo端输出+0.5V的模拟电压。传感器SCA60C仅可精确检测到0~90度的角度范围,当平衡板转到使角度传感器与水平面成90度的角度时,此时Vo端输出+5V的模拟电压。在0~90度的倾角范围内,Vo端输出的是正比于倾角大小的+0.5~+5V的模拟电压信号,当平衡板转动到使角度传感器与水平面间的角度从90度到180度的范围变化时,输出端Vo输出的是从+5V依次变化到+0.5V 的模拟电压信号[1][2],因此通过测定传感器SCA60C输出端Vo电压的大小即可确定平衡板与水平面的夹角。 步进电机驱动电路的设计本系统中,我们选择4相5线步进电机,其驱动电路主要由L297+L298组成,该驱动电路集驱动与保护于一体。L297是脉冲分配器,只要步进电机A、B、C、D四项依次连接到J1的1、2、3、4各点,且将剩下的一条线接地,L297就会自动的将输入到端口CW/CCW的脉冲分配给步进电机的各个相序,此时步进电机便可转动[3][4]。控制电机时只需单片机通过I/O口向L297的cw/ccw和clock端发送控制信号即可控制它的转速和正反转。驱动电路原理如下图2。论文参考。论文参考。

相关文档
最新文档