航天锂电池

航天锂电池
航天锂电池

锂离子电池代表了航天器储能设备的发展方向,是航天器的第三代储能器。它具有轻重量、体积小、无记忆效应、适应温度广等优点,是目前主流应用的镉镍、氢镍电池的替代产品。航天用锂离子电池的能重比为90~110Wh/kg,相对于氢镍电池45~60Wh/kg的指标,优势明显。但锂离子电池的电化学特性要求充电过程必须严格控制,因此,要设计专门的充电管理电路来控制航天器锂离子电池的充电过程。

锂离子电池充电关键技术

用锂离子电池替代镉镍、氢镍电池不能套用简单的“即插即用”方式,这是因为锂离子电池与镉镍、氢镍电池有一个最大的不同点:锂离子电池严禁过充电。因此,必须结合锂离子电池特性设计新的充电管理电路。锂离子电池充电管理电路的关键点(与镉镍、氢镍电池充电管理电路主要不同点)主要包括两方面:充电方式和均衡充电。

在工程应用中,锂离子电池单体或由单电池并联组成的电池模块必然要串联成电池组,故必须考虑充电过程中各电池单体或电池模块的失衡现象,而且随着时间的推移,这种失衡现象会愈加严重,严重影响电池寿命和可靠性,因此均衡充电也是锂离子充电的关键技术。

1 恒流-恒压(TAPER)型充电控制

在采用镉镍、氢镍电池的卫星电源系统中,基本上都采用恒流充电方式,当达到V-T

曲线、电子电量、压力、第三电极等控制方式的控制点时停止充电,完成一个充电过程。锂离子电池不适合采用这些充电控制方式,因为这些充电方式不能保证锂离子电池的充电终压始终限定在规定的范围内,即使充电终压有保证,往往是到达充电终压后立即停止充电,而锂离子电池在到达充电终压后仍然需要补充30%左右的电量。从锂离子电池多年发展来看,恒流-恒压充电控制是最普遍、最适合采用的充电控制方式。在此方式下,充电器首先对锂离子电池进行恒定电流充电,这时电池电压逐渐抬高,当电池电压达到设定值时进行恒定电压充电,这时充电电流近似指数规律减小,所以这种充电方式也称为TAPER型充电控制。

2 均衡充电技术

航天用锂离子电池必须采用均衡充电技术,这种观点在国内外已经得到完全认同。均衡充电技术主要解决锂离子电池单体长期充电过程中的电化学特性偏差现象,因此均衡充电方式的优劣需要一定的时间、资金、人力投入才能得到有效验证。

锂离子电池均衡充电在民用产品中还没有得到广泛重视和应用,因为多节单电池串联的应用较少,可靠性、寿命要求不高。在电动车锂离子电池系统中,单电池串联的节数较多,已经采用均衡充电技术,一般是采用单片机系统控制并在单电池上的分流电阻上实行通断,从而控制单电池的充电量。这种方法控制复杂、效率低、热耗大、均衡时间长,在早期的航天产品方案中移植了这种方法,现在国内外的技术人员正在探讨更加理想方案。

均衡充电的意义就是使锂离子电池单体电压偏差保持在预期的范围内,从而保证每个单电池在卫星寿命期间不受到过应力冲击而发生损坏。若不进行均衡充电控制,随着充放电循环的增加,各单电池电压逐渐分化。

一般情况下,充电时锂离子电池单体电压的偏差在50mV之内是完全可以接受的。我们可以认为造成偏差的主要原因是单电池充电效率、自放电率存在差异。另一方面,单电池中的测量电路电流消耗的影响也必须认真考虑,有时测量电路消耗的电流已经达到电池自放电电流的量级。在做锂离子电池寿命实验时,有的技术人员反映串联电池组的第一只或最后一只常常最先损坏,这往往是由于测量电路消耗造成的。

充电控制电路

1 旁路式充电控制

如图1所示,光照期太阳电池充电阵通过二极管直接给锂离子蓄电池组充电,蓄电池组的每只电池都设置了充电旁路电路。当某一单电池的电压到达设定值时,充电旁路电路中的功率三极管开始导通,分流掉部分充电电流,保持该单电池电压恒定在很窄的一个范围内。蓄电池的特性决定了充电电流逐渐减小(近似指数规律),直至光照期结束。这种充电方法能够保证每只单电池均衡充电,但旁路电路功耗较大,充电电流很难测量。

图1 旁路式锂离子电池充电控制电路

2 分流式充电控制

单电池循检电路分别采样各个电池电压,经过或门电路取出单电池电压最大值,在信号变换电路中与基准信号进行比较产生误差信号,误差信号送入分流调节器电路,控制锂离子蓄电池组中的单体电压。任一只电池电压到达设定值时,蓄电池组的平均充电电流逐渐减小。若采用开关型分流调节器,则在单体恒压充电时,充电电流是脉动的,所以采用这种充电控制方法需要锂离子蓄电池组能够适应脉动充电电流。

主误差放大器(MEA)采样母线电压信号,产生误差信号后送到分流调节器。也就是说,分流调节器同时受母线电压和蓄电池单电池电压控制。分流式锂离子电池充电控制电路如图2所示。

图2 分流式锂离子电池充电控制电路

3 分段式充电控制

单电池循检比较电路采样单电池电压,任何一只单电池电压超过设定值,或门电路就会产生个一过压信号,通过锁定电路断开一路充电阵,使得充电电流减小1/3,当再次产生一个过压信号时关掉第二个充电阵,直至关掉最后一个充电阵。当脉冲负载来临或者进入地影期时,解锁电路产生解锁信号,使得充电控制电路能够进行下一个充电过程。很显然,当恒压充电时,充电电流不是近似指数规律,而是阶梯型逐级递减。分段式锂离子电池充电控制电路见图3。

图3 分段式锂离子电池充电控制电路

单电池循检电路分别采样各个单电池电压,经过或门电路取出单电池电压最大值,经过信号变换电路送入限压控制电路,限压控制电路通过动态调整功率管的阻抗控制锂离子蓄电池组中的单电池电压。当任一只单电池电压都未到达设定值时,太阳电池阵以相对稳定的电流通过限压控制电路中的功率管对锂离子蓄电池组充电,功率管的阻抗接近于零;当任一只单电池电压到达设定值时,功率管的阻抗逐渐增大,蓄电池组的充电电流逐渐减小,充电电流减小的规律由锂离子蓄电池组的特性决定(近似指数规律)。这种电路的优点是充电恒压阶段充电电流连续减小,基本上是指数规律,较适应锂离子蓄电池的充电习惯,充电电路的功耗也不大。单电池峰值电压限制型线性充电控制电路如图4所示。

图4 单电池峰值电压限制型线性充电控制电路

几种均衡充电技术

1 恒定分流电阻均衡充电

电阻分流均衡充电原理如图5所示。

图5 恒定分流电阻均衡充电原理

每个锂离子电池单体上都并联一个分流电阻。从电路中可以看出,电阻上的分流电流必须远大于电池的自放电电流,才能达到均衡充电的效果。一般锂离子电池的自放电电流为C/20000左右,所以流过分流电阻上的电流取C/200是比较合适的。

另外,每个分流电阻的偏差也是影响均衡效果的重要因素。经过一定次数的充放电循环后,单电池的偏差可以用下面的公式确定:

V电池电压偏差=R分流×I自放电+2×V单电池×K电阻偏差

若分流电阻取20Ω±0.05%,则电池电压偏差能够控制在50mV范围内。每个电阻的平均功率为0.72W,但是无论电池充电过程还是电池放电过程,分流电阻始终消耗功率。

2 通断分流电阻均衡充电

通断分流电阻均衡充电原理如图6所示。

图6通断分流电阻均衡充电原理

通断分流电阻均衡充电与电阻分流均衡充电的区别就是增加了一个通断开关,这个开关的控制可以由单片机系统软件来实现,也可以通过简单的逻辑电路来实现。采用这种控制方式的均衡电路只在TAPER充电的恒压充电段工作,其他时间通断开关始终断开,这样需要电池组放电时,分流电阻不消耗宝贵的能量。在光照期,太阳电池发电功率是有富余的,这时均衡电路消耗一定的能量对于电源系统来说具有一定的合理性。在LEO轨道,这种均衡电路的工作时间只占10%左右,所以要达到上面论述的均衡效果,电阻值需减小10倍,可见峰值热功耗是相当大的,这是这种电路的主要缺点。另外,通断开关的实效是致命故障,所以必须采用冗余手段。

3 开关电容均衡充电

开关电容均衡充电原理如图7所示,从图中可以看出,顺序开关驱动电路主要由时钟电路构成,它驱动多路开关顺序闭合,顺序把锂离子电池单体接入传送电容器,通过传送单电池之间的不平衡能量,达到均衡充电的目的。同时,通过测量传送电容器上的电压来监测各个单电池的电压。若某个单电池发生短路故障,低电压比较器输出开关禁止信号,禁止短路的单电池接入传送电容器,防止影响其他单电池的正常工作,同时给恒流恒压变换器送入电池低电压报警信号,使恒流恒压变换器根据单电池短路的情况确定正确的恒定电压。这种均衡电路的最大优点是能源浪费极低,缺点是电路复杂,多路开关的通态电阻、高共模限制都会影响均衡充电的实现。另一方面,参数选取比较困难,针对不同的电源系统配置,电路参数需详细的设计与验证,这对研制周期是不利的。

图7 开关电容均衡充电原理

4 降压型变换器均衡充电

降压型变换器均衡充电原理如图8所示。

图8 降压型变换器均衡充电原理

降压型变换器均衡充电方案也是一种低消耗的均衡方案。它的思路很清晰,主回路是标准的降压式调节器,在储能电感上增加多组相同的次绕组,用于电池单体的辅助充电。显然,电压低的单电池会从次绕组上得到更多的能量,电压高的得到能量少,这样就达到了均衡充电的目的。为了得到良好的均衡效果,次绕组的一致性需要严格控制。但电感绕组的一致性是非常难于控制的,因此这是这种控制方法的一个最大缺点。这种充电方式的研究刚刚起步,充电效率、均衡效果、可靠性分析等需要进一步的深入研究。

5 平均电池电压均衡充电

平均电池电压均衡充电原理如图9所示,图中只给出了一只单电池的均衡电路,其他各单电池也配备相同的均衡电路,其中,放大器由单电池供电。

图9 平均电池电压均衡充电原理

这种均衡充电控制电路的思路是:单电池电压与平均单电池电压相比较,控制功率开关将电池电压高于平均电压的单电池分流。因此,所有单电池电压在均衡电路的作用下趋向平均电池电压。

此电路初看起来是开环控制,实际上由于电池内阻的作用,均衡电路工作在具有负反馈特性的闭环状态。为了防止均衡电路在电池组放电时工作,可以在功率开关下端串联稳压二极管,这样在电池放电时,电池电压较低而失去分流回路。

平均电池电压均衡充电电路模式已经深入研究,被认为是效果非常好的方案。这种电路被列入LEO轨道锂离子电池应用的首选方案,已经申请了法国和欧洲的专利。

结语

以上讨论了锂离子电池充电管理电路的关键技术:恒流-恒压(TAPER)充电方式和均衡充电技术。通过比较,我们认为,“单电池峰值电压限制型线性”充电控制方案比较适应小卫星的使用,可避开“旁路式”控制巨大热耗、“分流式”控制巨大脉动充电电流、“分段式”恒压充电阶段充电电流减小不连续的缺点;平均电池电压均衡充电电路适应性强,各方面指标均比较理想。

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

三/四节串联锂电池保护系统设计

三/四节串联锂电池保护系统设计 1 系统概述 该保护系统采用精工电子三/四节串联锂离子可充电电池专用充、放电保护IC S-8254构建一级保护。S-8254系列内置高精度电压检测电路和延迟电路,针对各节电池进行高精度电压检测,实现单节过充电保护和单节过放电保护,并具备三段过电流检测功能,通过外接电容可设置过充电检测延迟时间、过放电检测延迟时间和过电流检测延迟时间1(过电流检测延迟时间2和过电流检测延迟时间3在芯片内部被固定)。该系统采用精工电子S-8244系列内置高精度电压检测电路和延迟电路的锂离子可充电电池二级保护专用IC实现电池的单节二级充电保护,其保护延迟时间可通过外接电容的容值来设置。 图1为四节电池串联使用时的保护系统原理图。 S-8254通过SEL端子可以实现电池三节串联用或四节串联用的切换;S-8244则通过电阻R22短路第四节电池电压检测端子VCC3和VSS即可用作三节电池串联使用时的二级保护。 2 各保护功能的实现 S-8254系列充、放电保护电压和过电流检测电压以50 mV为进阶单位,S-8244系列过充电检测电压以5 mV为进阶单位,系统根据不同场合的使用需求,可以选择相应适合的型号。现以图1保护系统为例,采用S-8254AAVFT和S-8244AAPFN作为保护IC,具体说明各保护功能的实现过程。 2.1 过放电保护 通常状态下,S-8254放电控制用端子DOP为VSS(电池4的负电压)电位,放电MOS管QDISl,QDIS2处于导通状态,系统可正常进行放电工作。当检测到某节电池电压低于2.7 V(VDLn),且这种状态保持在TDL(TDL时间由过放电检测延迟端子CDT外接电容CS决定)以上时,DOP端子的电压变为VDD(电池1的正电压)电位,放电MOS管关闭,停止放电,这种状态称为过放电状态。进入过放电状态后,VMP端子电压经电阻R3由负载下拉至VDD/2以下,S-8254转为休眠状态;断开负载后,VMP端子电压经电阻R9、充电MOS管QCHRl和QCHR2由VDD上拉至VDD /2以上且低于VDD,S-8254退出休眠状态。当所有电池电压都在3.0 V(VDUn)以上时,过放电状态被解除,系统恢复正常放电工作。 2.2 过电流、短路保护 该系统采用2个并联的20 mΩ功率电阻RS1,RS2用于过电流检测。当放电电流大于20 A时,过电流1,2检测端子VINI和VSS之间的电压差大于过电流检测电位1 VI0V1(O.2 V),且这种状态保持在TIOVl(TIOVl时间由过电流1检测延迟端子CDT外接电容C3决定)以上时,DOP端子的电压变为VDD电位,放电MOS管关闭,停止放电,进入过电流1保护状态。在过电流状态下,VMP端子电压经电阻R3由负载下拉至VSS;断开负载后,VMP端子电压经IC内部RVMD电阻被上拉至过电流检测电位3 VIOV3(电池1的正电压VC1~1.2 V)以上,过电流状态解除,系统恢复正常放 电。当放电电流大于50 A时,VINI和VSS之间的电压差大于过电流检测电位2 VIOV2(0.5 V),且这种状态保持在TIOV2(1 ms)以上时,进入过电流2保护状态。当负载出现短路时,过电流3检测端子VMP的电压被瞬间拉至VIOV3以下(检测延迟时间TI0V3为300μs),系统进入短路保护(过电流3保护)状态。

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

燃料电池汽车余热驱动的吸附式制冷系统结构设计

文章编号:ISSN1005-9180(2007)02-0001-06X 燃料电池汽车余热驱动的吸附式制冷系统结构设计 杨培志 (中南大学能源科学与工程学院,湖南长沙410075) [摘要]为了有效利用燃料电池汽车的余热,本文建立了燃料电池汽车余热驱动的吸附式制冷系统。该吸 附式制冷系统由三个主要的回路构成:吸附床加热冷却回路、吸附质循环回路以及热水循环回路。针对吸 附式制冷系统的核心部件吸附床,在分析比较了各主要吸附床结构的前提下,最终确定采用单元吸附管组 合结构,并进行了相应的设计计算。本文的研究结果对于低温热源驱动吸附式制冷的研究起到一定的指导 作用。 [关键词]吸附式制冷,余热利用,吸附床,燃料电池汽车 [中图分类号]TK51113;U47314[文献标识码]A The Design of Adsorption Refrigeration System Driving by Fuel Cell Electrical Vehicle Waste Heat YANG Pei-zhi (School of Energy Science and energy Engineering,Central South University,Changsha410075,China) Abstract:In order to utilize waste heat of fuel cell electrical vehicle,adsorption refrigeration system is established driven by waste heat of fuel cell1T he system is consti tuted by three loops:adsorption bed calefaction and cooling loop,refrigerant loop and hot water loop1Based on analyzing the main adsorption bed configuration,cell adsorp tion duct combination config- uration is confirmed1Then the adsorption bed is designed1Textual study will offer guidance for the research of adsorption re- frigeration driven by low temperature thermal source1 Keywords:Adsorp tion refri geration,Waste heat recovery,Adsorp tion bed,Fuel cell electrical vehicle 1引言 由于燃料电池汽车在环保方面的突出优势,使得燃料电池汽车的开发和研究成为各国开发绿色汽车的主流[1-5]。燃料电池工作温度是70~80e,工作效率一般在50%左右[6],即用来驱动汽车的能量仅占一半,其余以废热的形式排放。若利用该废热制冷,将大大提高燃料电池系统的能源效率,同时也能使汽车空调系统符合节能和环保的要求。吸附式制冷技术作为一种利用余热的新技术,其研究开发日益成熟。本文主要是进行与燃料电池汽车配套的吸附式制冷系统的设计,对系统的主要设计方案、部件结构、技术参数等进行说明和分析。 2连续回质型吸附式制冷系统的描述 图1是本文所设计的利用燃料电池汽车余热驱动的吸附式制冷系统原理图,此时吸附床A正处于加热解吸阶段。 整个系统可以分为两个部分。第一部分包括吸附床A、吸附床B、燃料电池组散热装置和冷却器,相当于传统制冷系统中的压缩机,吸附态床吸附蒸发器中低温低压的吸附质蒸汽,解吸态床则向冷凝 X收稿日期:2007-2-5 基金项目:湖南省自然科学基金项目(04J J3086) 杨培志(1977-),男,湖南浏阳人,讲师,主要从事制冷空调方面的研究,E-mail:yang_peiz hi@csu1edu1cn

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

动力电池的主要问题与发展方向

首先看我们国家的发展现状。我们的判断第一个是基本掌握了车用动力电池的关键技术,我们国家动力电池的开发,和整车基本同步,十五期间开展了镍氢电池,、锰酸锂氧化物锂离子电池、燃料电池的研发,"十一五"期间加大了磷酸铁锂电池研发与产业化,"十二五"期间推进三元材料电池的研发与产业化。目前是处于这样一个阶段。 从技术上来讲,我们国家开发了镍氢电池,锂离子燃料电池,关键技术指标达到了国外同类产品的一个先进水平,目前我们锂电池可以做到系统的比能量800-1000瓦时,比功率可以做到500-100瓦时,循环寿命也能做到突破一千次,使用寿命大概是可以达到五年,成本大概是说可以低于每瓦时三块钱。 第二个从产品层面来看,磷酸铁锂电池已经趋于成熟了,过往来看,我们国家供应电池支撑了产业的发展,目前在大规模示范这一块用的电池基本上都是国产。根据目前工信部发布的新能源汽车推广目录,我们国家车用电池,绝大多数是磷酸铁锂电池,也就是说近两年来,三元材料的动力电池开始在电动汽车上进行示范应用。大家比较清楚的比亚迪的汽车用的是盐酸铁力电池,像上汽,北汽这些电池系统都是磷酸铁锂。一汽奔腾目前是示范车,他用的电池是168,采用了三元材料。 第三个来说是我们国家建立了比较完善的产业体系,昨天我们听到了2014年我们国家电动汽车的销量大概是8.4万辆左右,如果按照每辆车在20-30,大概应该说我们电池达到了20亿千瓦时以上,销售收入应该超过了50亿元,2015年会超过100亿瓦时。我们国家现在推进动力电池产能建设,估计2015年会超过一百亿千瓦时。第二个我们国家建立了比较完整的产业体系,关键材料、单体电池、电池系统和电池装备、检测仪器等都有一定的生产能力,像北大先行、天津巴莫、北京当省,这是正极材料,负极材料像贝特瑞,杉杉等在国际上还是有一定的竞争力。 从发展趋势上来看,我们全世界的情况来看,第一个是锂离子电池已经成为动力电池的主要方向。目前大家都很清楚,目前日本,美国、欧洲、韩国商业化的电池主要是采用燃料电池。目前混动这一块也是在推动力锂电池的应用。韩国、日本、中国在全球锂电池占主导地位,排序是韩国第一、日本第二,中国第三。 最近三星、LG和SK先后宣布在中国设立合资公司,我们国家主流的车厂也准备在他的自主品牌汽车中采用韩国生产的电池。 第二个特点是我国政府大力支持新一代动力电池的研发,2012年日本实施蓄电战略,提出2020年蓄电池市场要占到世界份额的50%,就是重新夺回世界第一的位置。根据2013年NEDO发布的技术路线图,他的技术路线在2020之前大概还是以先进的锂离子电池为主,达到实用化,系统的比能量达到250瓦每公斤成本达到1.5元以下,2030年叫做革新电池,能量达到500瓦每公斤,成本达到八毛钱以下。 美国在2013年提出来EV蓝图,提出目标是2022年生产的插电式混合动力的电动汽车使用的电力成本与传统汽车相当,根据2013年发布的技术路线图是2022年下一代电池实现实用化,系统的比能量达到250瓦每公斤,成本降到八毛以下,2013年以后锂离子电池实现实用化。 从新一代锂离子电池来讲主要是在我们国家大概一般的叫做新一代动力电池的研发主要围绕新一代锂离子动力电池和新体系电池。新一代锂离子电池和目前现有的体系不一样,正极材料,负极材料,电极都要发生发生变化,电池比能量可以达到三百瓦每公斤,成本可以达到一块钱以下。这个表里面列了两件事,一个是最近日立公司宣布采用镍系的正极和负极单电池的比能量作330每公斤,寿命有50次,另外是福利蒙基,作为正极,归制作为负极,寿命可以达到100。但是目前这一电池体系的成本和安全有待进一步的验证。

南大强芯锂电池保护系统(PCM)

产品特点: ●使用自主设计的电源管理芯片,确保整个系统运行稳定,同时为客户提供自由度更大的选择空间●可灵活对应5串到26串范围内,任意锂离子电池保护板(完全覆盖锂电池电动车的全部电压范围)●高精度电压检测,检测精度为±25mV ●芯片内置均衡管理,均衡电流最大可达100mA ●低功耗设计,通常工作消耗电流<0.3mA;休眠模式消耗电流<0.1mA ●能够灵活对应充放电回路分开,同一的要求 ●完备的保护功能,包括充放电电压,充放电电流,短路,高低温的保护 ●提供自主开发的监测软件,便于客户搜集数据以及故障解析 ●使用库仑计法计算电量,提高了电量计算精度 ●记录充电次数,为售后服务提供依据 ●保护芯片内置温度传感器,同时可控制两路外部温度传感器,保证电池包工作在安全的温度范围内 80V高耐压工艺,提高了系统耐压可靠性 ●芯片采用 南大强芯自主研发电源管理芯片 监控软件:BMSXX System Monitor

护功能: 电池M )的关键在对各项目的细节保护:强芯锂电池保护系统,可以根据客户要求,为您可选项目 要求 可选范围 保保护系统(PC 量身打造完善的保护系统功能。包含但不限于以下参数: 过充保护电压(V) 3.80 ±25(mV) 过充保护延时(mS) 1400 ±100(mS) 过充保护 V) 过充保护解除电压( 3.50 ±25(mV) 过放保护电压(V) 2.10 ±25(mV) 过放保护延时(mS) 500 ±100(mS) 过放保护 V) 过放保护解除电压( 2.30 ±25(mV) 过流保护闸值(A) 20 ±2(A) 过流保护延时(mS) S) 400±100(m 过放电流保护 负载 过流保护恢复条件 断开 充电过流保护值(A) 8 ±1(A) 过充电流保护 S) 400 S) 过充电流保护延时(m ±100(m 短路保护值(A) 40 ±4(A) 短路保护延时(uS) S) 300±100(u 短路保护 负载 短路保护恢复条件 断开 温度检测通道 1 高温放电保护值 55℃ ℃ ±3高温充电保护值 50℃ ±3℃ 高温保护解除值 45℃ ±3℃ 低温充电保护值 0℃ ±3℃ 低温充电保护解除温度保护 值 5℃ ±3℃ 低温放电保护值 -20℃ ±3℃ 低温放电保护解除值 -10℃ ±3℃ 温度保护延迟(s) 5 ±1(s) 南大强芯为客户提供的锂电池保护系统(PCM ),目标在于: 选择时: 自 由 自 在 应用时:“芯”安“锂”得

用巴掌大的燃料电池驱动汽车

用巴掌大的燃料电池驱动汽车 疯子精灵王2011-12-09 18:20:16 近日,美国马里兰大学的研究人员就宣布他们研制出了一种固体氧化物燃料电池,效率远高于汽油发动机的燃料电池,而且反应温度从900℃降至了650℃,如果再降低至350℃,就可以在汽车中应用了。 若你想要开着电动车进行远途旅行,光靠汽车内部储存的那点电力恐怕无法将你带到目的地,这时你还是得向传统汽油发动机寻求帮助。但问题是,这类汽车在靠发动机驱动的时候,由于驮着一个厚重的电池套件,其行驶效率要低于普通的汽车。那么,有更高效的发电方法吗? 近日,美国马里兰大学的研究人员就宣布他们研制出了一种效率远高于汽油发动机的燃料电池,与其他燃料电池相似,这种燃料电池通过化学反应来产生电能,因此它的发电效率是燃烧式发电机的2倍。 其实研究人员研发的这种燃料电池是一种名为固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)的升级版,与在汽车里使用的氢燃料电池不同,SOFC可以使用诸如柴油、汽油和天然气之类的燃料来发电。目前,这种电池已经被应用到建筑物供电上,但是人们普遍认为,将SOFC应用到汽车上有点不切实际,因为它体积过于庞大且通常需要在900℃下才可反应。 通过改变固体电解质的材料和电池的设计,研究人员现在可以制造出体积更加紧凑的SOFC了。由于之前的SOFC主要靠固体电解质来进行电池的结构性支撑,所以电解质通常要比较厚。但过厚的电解质又不利于电的产生,于是研究人员就设计了一种不需要靠电解质进行

支撑的方案,这时,变薄的电解质就能在低温时产生更高的能量输出,进阶版的多层电解质设计则能产生更多的电能。新电池在同等体积下的发电效率是普通固体氧化电池的10倍,在产生相同电量的情况下体积又要比汽油发电机小,换算下来,一颗10厘米×10厘米的新电池就可以替代原先体积庞大的电池组驱动电动车了。 除此之外,研究人员还将新电池的反应温度降至了650℃。高温是商业化应用的主要障碍,因为要想汽车在高温下运行,制造商就必须采用昂贵的耐温材料来制作配套设备,否则廉价材料将因忍受不了频繁的升降温而老化最终失效,而且操作温度过高还将延长汽车的发动时间。因此,研究人员希望能将反应温度降低至350℃以便在汽车中应用。 这项研究是美国能源部一个计划中的一部分,它旨在使固体氧化物燃料电池变得更加实用。马里兰大学能源研究中心主任艾瑞克.瓦克斯曼(Eric Wachsman)认为,新电池的诸多优势使之可以与汽油发电机相竞争。目前他仅仅制作出了体积较小的燃料电池而已,离真正的工程应用还远着呢。 图片和信息来源:dvice

智能锂电池充电管理方案

智能锂电池充电管理方案(1) 2012-07-30 21:59:37 来源:21ic 关键字:智能锂电池充电管理 1 引言 锂离子电池是上世纪九十年代发展起来的一种新型二次电池。由于锂离子电池具有能量密度高和循环寿命长等一系列的优点,因此很快在便携式电子设备中获得广泛应用,也获得了锂电池生产商的青睐。 锂离子电池主要由正极活性材料,易燃有机电解液和碳负极等构成。因此,锂离子电池的安全性主要是由这些组件间的化学反应引起。 在使用中,根据锂电池的结构特性,最高充电终止电压应低于4.2 V,绝对不能过充,否则会因正极锂离子拿走太多,产生危险。其充放电要求较高,一般应采用专门的恒流、恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电,当恒压充电至0.1 A 以下时,应停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短,因此在放电时需要严格控制放电终止电压。 因此,设计一套高精度锂离子充电管理系统对于锂离子电池应用是至关重要的。本文介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子/镍氢/铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统。 2 系统构成与设计 充电系统主要由n 个(可扩充)充电模块和上位PC 机监控软件组成。支持充电过程编程,可按恒流充电、恒压充电等多种工况进行相应组合设置工作步骤,除了具有硬件过压过流保护,还允许用户定义每个通道的过电压、过电流等参数值,具备数据采集、存储、通讯及分析功能,具有掉电保护功能,不丢失数据。另外还配置锂电池管理系统,它主要由充电机、主控单元、数采单元和人机界面组成,硬件组成框图如图1 所示。

浅析动力电池系统国内外发展趋势

浅析动力电池系统国内外发展趋势 常见的动力电池目前在车用动力源方面,主要有四种技术路线:锂离子电池、氢燃料电池、超级电容和铝空气电池。其中锂离子电池、超级电容和氢燃料电池得到广泛的应用,而铝空气电池尚处于实验室研究阶段。能源补给方面,锂离子电池、超级电容适用于纯电动汽车,但是需要外部充电,而氢燃料电池汽车则需要外部氢气加注,铝空气电池则需要补充铝板和电解液。就目前来看,锂离子电池在未来相当长的一段时间内还是要占据主要发展空间的。 国外动力电池产业发展现状当前,日本在锂离子电池领域居技术领先地位,已制订至2030年发展规划,系统地安排研发课题,以维持长期的领先地位,松下、NEC、索尼等著名公司都建有大规模锂离子电池生产线。韩国LG化学供应的锂电池已驱动超过30万辆电动汽车上路,三星SDI也已成为全球主要的动力电池供应商,提供电池给宝马、菲亚特、法拉利等。 几年前奥巴马政府曾通过经济刺激方案,将20亿美元专门用于支持美国车用锂离子电池产业的发展,特斯拉汽车与松下联手正在内华达州兴建投资20亿美元的超级锂离子电池工厂。 美国制定了动力蓄电池研发路线,包括由金属锂、硅合金等材料作为负极,高电压材料、空气、硫作为正极的新体系结构动力电池,以及非锂体系动力电池等。 随着中国新能源汽车产业的快速发展,越来越多的国外动力电池企业在中国投资建厂。三星SDI、LG化学已经分别在中国西安和南京合资建厂投产,松下大连工厂正在建设中,博世和SK也筹划在中国建设动力电池工厂。 国内动力电池产业发展现状我国的锂离子电池研究项目一直是“863”的重点项目,经过二十多年的持续支持,大部分材料实现了国产化,由追赶期开始向同步发展期过渡,本土总产能居世界第一,支撑了我国新能源汽车的示范推广。

基于智能化锂电池充电管理系统的研究

摘要 本文主要介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子、镍氢、铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统[ 1]。 关键词:智能化锂电池恒流恒压充电系统SMBus1.1 引言 随着社会经济的迅速发展,移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时, 能够尽量减轻重量, 提高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池[ 2], 因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理系统对于锂电池应用至关重要。 1 锂电池充放电原理 锂电池主要由正极活性材料、易燃有机电解液和碳负极等组件构成[ 3]。因此,锂电池的安全性能主要是由这些组件间的化学反应所决定的。 根据锂电池的结构特性,锂电池的最高充电电压应低于4.2 V[ 4],不能过充,否则会因正极锂离子拿走太多,发生危险。其充放电要求较高,一般采用专门的恒流恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电状态,当恒压充电至0.1 A以下时[ 5],应立即停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极[ 6],以保证下次充电时锂离子能够畅通地嵌入通道。否则电池寿命会缩短,因此在放电时需要严格控制放电终止电压。

设计动力锂电池组的的智能管理系统

动力锂电池组智能管理系统设计 锂电池由于具有体积小、质量轻、电压高、功率大、自放电少以及使用寿命长等优点,逐渐成为动力电池的主流。但是由于锂离子电池具有明显的非线性、不一致性和时变特性,因此在应用时需要进行一定的管理。另外锂电池对充放电的要求很高,当出现过充电、过放电、放电电流过大或电路短路时,会使锂电池温度上升,严重破坏锂电池性能,导致电池寿命缩短。当锂电池串联使用于动力设备中时,由于各单节锂电池间内部特性的不一致,会导致各节锂电池充、放电的不一致。一节性能恶化时,整个电池组的行为特征都会受到此电池的限制,降低整体电池组性能。为使锂电池组能够最大程度地发挥其优越性能,延长使用寿命,必须要对锂电池在充、放电时进行实时监控,提供过压、过流、温度保护和电池间能量均衡。 本文设计的动力锂电池组管理系统安装在锂电池组的内部,以单片机为控制核心,在实现对各节锂电池能量均衡的同时,还可以实现过充、过放、过流、温度保护及短路保护。通过LCD显示电池组的各种状态,并可以通过预留的通信端口读取各节锂电池的历史性能状态。 系统总体方案设计 动力锂电池智能管理系统主要由充电模块、数据采集模块(包括电压、电流、温度数据采集)、均衡模块、电量计算模块、数据显示模块和存储通信模块组成。系统框图如图1所示。 图1 管理系统结构框图 整个系统以单片机为主控制器,通过采集电流信息,判断出电池组是在充电、放电还是在闲置状态及是否有过流现象,并对其状态做出相应处理。对各节电池电压进行采集分析后,系统决定是否启动均衡模块对整个电池组进行能量均衡,同时判断是否有过充或过放现象。温度的采集主要用于系统的过温保护。整个系统的工作状态、电流、各节电压、剩余电量及温度信息都会通过液晶显示模块实时显示。下面对其各个模块的实现方法进行介绍。 微控制器ATmega8

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图 锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。 1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。 2、电流能力(过流保护电流,短路保护) 保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。 3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。 由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70m,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。 4、自耗电流定义:IC作业电压为3。6V,空载状况下,流经保护IC的作业电流,一般极小。 保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。 5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受15KV的非触摸ESD静电测验。 锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。

基于单片机的智能锂电池充电管理系统设计

题目:基于单片机的智能锂电池充电管理系统设计系部:电子信息系 专业:应用电子技术 学号: _ 学生姓名: ___ ____ 指导教师: _____ ___ 职称: ______ ___ 目录 1摘要 (2) 1.1 课题研究的背景 (3) 1.2镍氢电池、镍镉电池与锂离子电池之间的差异 (4) 1.3 课题研究的意义 (5) 2 电池的充电方法与充电控 (6) 2.1电池的充电方法和充电器 (5) 2.1.1 电池的充电方法 (5) 2.2 充电控制技术 (9) 2.2.1 快速充电器介绍 (9) 2.2.2 快速充电终止控制方法 (10) 3锂电池充电器硬件设计 (12) 3.1 AT89C51 (13) 3.2 电压转换及光耦隔离电路部分 (15)

3.3 充电控制电路部分 (17) 3.3.1 MAX1898充电芯片充电芯片充电芯片充电芯片 (17) 4 锂电池充电器软件设计 (22) 4.1程序功能 (22) 4.2 主要变量说明 (22) 4.3 程序流程图 (23) 致谢 (28) 参考文献 (29) 1摘要 本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C语言为开发工具,进行了详细设计和编码。实现了系统的可靠性、稳定性、安全性和经济性。 该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,延长了它的使用寿命。 关键词:充电器;单片机;;锂电池;MAX1898 Abstract:This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

2020年新能源汽车动力电池发展四大趋势

2020年新能源汽车动力电池发展四大趋势 附骥于中国新能源汽车的高速发展,国内动力电池产业过去五年复合增长率超150%。经历了2019年的市场降速,在2020年新能源补贴归零前夜,动力电池领域硝烟弥漫且充满变局。2020年是新能源上下游产业发展的大考之年。开年的新冠肺炎疫情,更是让行业出师不利。变量更加多变,情况更加复杂,企业继续在压力中求生存。为了透过层层艰难险阻的迷雾,汽车之家推出《预见2020》系列话题内容,借由资深行业人士的视角,了解2020年汽车产业的种种可能性。本期我们将重点分析动力电池发展趋势。本期行业评论员——墨柯,真锂研究CE0 兼首席分析师。在产研领域,墨柯主要以数据分析和经济学的眼光来研究产业发展,致力于寻找微观锂电产业、市场、技术之间的关系以及与宏观经济、国家政策等的内在联系,以求准确把握产业和技术发展脉络。 60秒快速了解核心论点: ●出于恢复市场信心考虑,2020年新能源汽车政策总体将比较积极,这也将带动动力电池需求量的增长;●根据2016-2019年中国电动汽车市场电池装机的实际情况,以及比亚迪等企业动力电池领域规划等可以预见,2020年磷酸铁锂电池装机量依然会有一定增长;●当前动力电池产业正在加速洗牌,强者愈强,这一定程度上将有利于电动成本的降低、电池技术的进步;●从全球市场装机情况来看,中国分别做到了电池包能量密度最高和电池成本最低,随着未来技术的进一步改善,中国动力电池领域有望超越日韩,后来者居上。 01 2020年中国电动汽车市场电池需求总量可望达到110G W h 动力电池的需求总量跟新能源汽车的产量息息相关。由于2020年的新能源市场依然会在很大程度上取决于政策扶持力度,这就需要我们先对政策做一个大致判断。2020年的新能源汽车政策总体上会比较积极,原因无它,市场信心必须修复,否则会影响到新能源汽车发展规划(2021-2035)的实施。预计政策主要会从两方面做工作:①努力回到电池采购成本和补贴总体额度大致相当的轨道上来,这里的补贴既包括政府补贴,也包括非政府补贴(积分收益补贴);②努力推动集团采购(营运)更上一层楼。以纯电动乘用车为例,2020年每辆车的电池采购成本大约在5万元左右,如果国补能在2-2.5万元区间,默许地补有条件回归,同时调整积分办法以提升积分收益,①是完全有可能实现的。在集团采购方面,如果能好好总结过去几年的经验,在四大市场——出租车、网约车、公务用车、城区物流——推出更有针对性的、不损害参与各方利益的管理办法,也是完全有可能取得好成绩的。毕竟,这四大市场的容量高达900万辆,按照运营车辆大致6年更换一批来看,2020年有150万辆需要更换。综之,如果上述两方面工作能基本做到位,那么2020年200万辆目标大概率能实现。

相关文档
最新文档