烧结砖化学成份及物理性能与土粒化学平均成份

烧结砖化学成份及物理性能与土粒化学平均成份
烧结砖化学成份及物理性能与土粒化学平均成份

简述烧结砖化学成份及物理性能

化学成份及物理性能是烧结砖厂家所必须掌握的基本知识面

一、原料化学成份

评价某种物料是否能生产出烧结砖,其主要取决于它的物理性能,而化学成份对制品的性能具有间接的影响。在判断原料性能时,化学的成份分析可以作为判断的参考依据。化学分析通常测定二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化镁、硫矸和烧失量等。

SiO2(二氧化硅)是烧结砖原料中的主要成份,含量在55~70%之间,超过此含量时,原料的塑性大为降低制品的强度极限。

Al2O3(三氧化二铝)在制品原料中的含量以10~20%为宜,低于10%时制品的力学强度降低,高于20%时,虽然制品强度较高,但烧成温度也高,耗煤量加大,并使制品的颜色变淡。

Fe2O3(三氧化二铁)是制砖原料中的着色剂,一般含量为3~10%为宜,含量过高时会降低制品的耐火度。

CaO(氧化钙)在原料中的石灰石(CaCO3)的形成出现,是一种有害物质,含量不宜超过10%,如含量过高时将缩小烧结温度的范围。当氧化钙含量大于15%时,烧结范围将缩小25℃,给焙烧操作造成困难,其颗粒较大于2mm时更易形成酥砖或引起制品爆裂,可导致坯体严重变形,如吸潮、松解、粉化等。MgO(氧化镁)原料中的含量不超过3%,越少越好,其化合物如硫酸镁在制品中会产生一种白色的泛霜,影响产品的质量。SO3(硫矸)在原料中的含量一般不超过1%,越少越好。硫矸在焙烧过程中的逸出,使制品发生膨胀和产生气泡的原因。其它的含硫物也对制品有害,如硫酸钙引起制品泛白和起霜,硫酸镁能引起制品泛霜和膨胀。

原料化学成份的要求范围一览表

二、原料物理性能

原料物理性能测试时,通常测定颗粒组成、可塑性、收缩率、干燥敏感性,烧结性等项目名称。

1、颗粒组成:原料的颗粒组成就是不同角度的颗粒在制砖原料中含量的数量化。原料颗粒的组成直接影响制砖的可塑性、收缩率和烧结性等性能影响很大,如果颗粒越细则可塑性越高,但收缩率也越大,干燥敏感性系数也越高。

原料粒径在小于0.05mm粉料称塑性颗粒,粒径在0.05~1.2mm称为填充颗粒,粒径在1.2~2mm 称为粗颗粒(骨架颗粒)。合理的颗粒组成应该是塑性颗粒占35~50%,填充颗粒占20~65%,骨架颗粒<30%。

2、可塑性:原料加适量水分经搅拌和碾练之后,可以塑成任何形状,这种特性称为可塑性,原料的塑性指数表示原料是可塑状态时含水率的变化范围,并表示原料的可塑程度,其值等于液限与塑限之差。可塑性虽有利于挤出成型,但干燥和焙烧时容易产生裂纹,低塑性虽有利于干燥和焙烧,但又会给成型带来困难。如果可塑性在小于7时,不仅挤出成型困难,而且影响强度极限。一般适合塑性指数为7~15。但如果制品孔洞率越高,孔型复杂,壁薄成型时需要的指数也越高。粘土的塑性指数较高,有的可达25以上,煤矸石较低,有的不到7,泥质页岩常为7~18。

3、收缩率:砖坯在干燥过程中,由于机械结合水的蒸发,使砖坯内的粒子互相靠拢,坯布体的体积有收缩的现象,此种情况称为干燥收缩。这常以其收缩的长度结坯体原长度的百分比来表示,称为干燥线收缩率。如果将干燥过的坯体加以焙烧,则在烧成过程中产生一系列物理化学反应和易熔杂质生成液态填充于颗粒之间,因而使坯体产生收缩,这种现象称为烧成收缩,以其收缩的长度对干燥坯体长度的百分比来表示,称为烧成收缩率。在生产中,要求原料的线收缩率小于6%,否则应对原料进行瘦化处理。坯体的收缩率是一种重要的性质,收缩过大的制品干燥时不宜过急过快,否则容易产生开裂,影响产品质量。

4、干燥敏感性:砖瓦坯体含有大量水分,在干燥过程中,逐渐蒸发、干燥,其体积也逐渐缩小。但由于坯体内外干燥快慢不一致,外部干的快,内部干的慢,收缩也一致,外部收缩快,内部收缩慢。因此,坯体内部产生压缩应力,坯体表面产生伸张应力,如干燥过程处理不当,坯体表面会出现开裂现象,这种现象称为干燥敏感性。一般情况,泥料的塑性指数越高,其干燥的线收缩率和干燥敏感系数也越高。原料的干燥敏感性程度一般按照干燥敏感性系数的大小来表示的。

土粒化学平均成份

土壤类别粒级(MM) SiO2 R2O3 CaO

(制压适宜) (55~70) (13~30) (0~15%)

砂性土粗中砂粒1~0.2 94% 3% 0.4% 不宜制砖

砂性土细砂粒0.2~0.04 94% 3% 0.5% 不宜制砖

砂性土粗粉粒0.04~0.01 90% 7% 0.8% 不宜制砖

砂性土细粉粒0.01~0.002 74% 18% 1.6% 非常适宜制砖砂性土粘性土<0.002 53% 34% 1.6% 不宜制砖

石灰性细砂粒0.25~0.05 84% 8% 3.2% 不宜制砖

石灰性粗粉粒0.05~0.01 80% 10% 3.3% 不宜制砖

石灰性中粉粒0.01~0.005 62% 8% 3.2% 不宜制砖

石灰性细粉粒0.005~0.001 43% 25% 12.7% 不宜制砖

石灰性粘粒<0.001 40% 30% 14.1% 不宜制砖

常用材料标准及化学成分表 (1)

常用材料所用标准及化学成分表 标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Cu Ni Cr Mo V Nb 备注 1 ASTM A216 WCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件① 2 WCC 0.25 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.0 3 … 铸件① 3 ASTM A352 LCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 4 LCC 0.2 5 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 5 LC3 0.15 0.50~ 0.80 0.04 0.045 0.60 … 3.00~ 4.00 … … … … 铸件 6 LC9 0.13 0.90 0.04 0.045 0.45 0.30 8.50~ 10.0 0.50 0.20 0.03 … 铸件 7 ASTM A105 A105 0.35 0.60~ 1.05 0.035 0.04 0.10~ 0.35 0.40 0.40 0.30 0.12 0.08 …锻件②

标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Ti Ni Cr Mo V W 备注 8 ASTM A182 304 0.08 2.00 0.045 0.03 1.00 … 8.00~ 11.0 18.0~ 20.0 … … … 锻件 9 316 0.08 2.00 0.045 0.03 1.00 … 10.00~ 14.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 10 316L 0.03 2.00 0.045 0.03 1.00 … 10.00~ 15.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 11 321 0.08 2.00 0.045 0.03 1.00 0.70 9.00~ 12.0 17.0~ 19.0 …… …锻件③

第一章植物纤维原料的化学成分及生物结构

第一章植物纤维原料的化学成分及生物结构 第一节植物界的基本类群 授课学时:2 学时授课类别:理论课 ●教学目的及要求 让学生了解制浆造纸专业要学习的课程;了解制浆造纸的过程、制浆造纸业在我国经济中的地位以及世界制浆造纸业的发展状况;了解植物的分类,植物的拉丁学名、组成及含义。 要求学生掌握的内容有:现代植物的基本类群及其与制浆造纸的关系;造纸植物纤维原料的分类及其代表性植物。 ●教学内容提要 一、绪论部分 1、造纸史话 2、现代造纸 3、造纸的发展趋势 4、我国的造纸原料方针 二、造纸纤维原料种类 1、植物纤维原料 2、非植物纤维原料 三、植物纤维原料的分类 1、木材纤维原料 2、非木材纤维原料 3、半木材纤维原料 ●教学重点、难点及处理办法 教学重点、难点: 1、制浆造纸在国民经济中的地位 2、制浆造纸的过程 3、造纸纤维原料种类 4、植物纤维原料的分类 处理办法: 对于本次课涉及到的重点和难点均采用多媒体辅助教学和举例子的方法,使学生掌

握这两个知识要点。 ●教学组织与设计 1、教学过程的组织 本次课,重在让学生掌握制浆造纸用的植物纤维原料、制浆造纸的过程,了解植物纤维化学这门课程与制浆造纸的关系,所以在讲这节课时,要先讲制浆造纸的发展历程,现代造纸的过程,国内外发展概况,制浆造纸业在国民经济发展中的地位、意义,纸的功能;再讲植物纤维化学这门课与制浆造纸的关系,让同学们知道这门课的重要性;最后讲第一章第一节的内容造纸用纤维原料以及造纸用植物纤维原料的种类等等。 本门课程采用多媒体教学,在举例子或讲授制浆造纸过程等知识的时候,多给学生展示相关的图片,可以加深学生对知识的理解。 2、讨论、练习、作业的布置与安排 讨论:问题1:你们知道纸用什么造出来的吗? 问题2:你们知道纸是怎么样造出来的吗? 问题3:你知道我们平时生活中用到的纸有哪些种类吗? 3、教学手段 采用多媒体教学。 ●参考资料 1、谢来苏,詹怀宇.制浆原理与工程,中国轻工业出版社. 2、卢谦和,造纸原理与工程,中国轻工业出版社. 3、邬义明,植物纤维化学,中国轻工业出版社. ●教学实施小结 第一章植物纤维原料的化学成分及生物结构 第二节植物纤维原料的化学成分 授课学时:2 学时授课类别:理论 ●教学目的及要求 本次教学的目的是让学生掌握制浆造纸用纤维原料的化学成分,其中包括主要成分、次

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途1 《信息来源:无缝钢管》

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

各种材质的化学成份

AL5052-H32的主要合金元素为镁,具有良好的成形加工性能、抗蚀性、焊接性,中等强度,用于制造飞机油箱、油管、以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品、电器外壳等。 化学成分(Chemical Composition Limits wt%) Cu Si Fe Mn Mg Zn Cr Ti Pb.Bi Al 0.1 0.25 0.4 0.1 2.2-2.8 0.1 0.15-0.35 / / 余量 典型合金5052-H32机械和物理性能(Typical Mechanical & Physical Properties) 焊接性切削性耐蚀性电导率20℃(68 ℉) (%IACS) 密度 (20℃)(g/cm3) 很好一般很好30-40 2.68 抗拉强度(25°C MPa) 屈服强度(25°C MPa) 硬度 500kg力10mm 球 延伸率 1.6mm(1/16in)厚 度 最大剪应力 MPa 230 195 60 10 140 SPCC宝钢有生产,宝钢牌号应该是402 SPCC.含碳量为0.10,日本的含碳量为0.05,对应还有SPHC,为热轧.性质差不多. SPCD—相当于中国08AL(GB/T13237-1991)优质碳素结构钢。 普通及机械结构用钢板中常见的日本牌号 1、日本钢材(JIS系列)的牌号中普通结构钢主要由三部分组成:第一部分表示材质,如:S(Steel)表示钢,F(Ferrum)表示铁;第二部分表示不同的形状、种类、用途,如P(Plate)表示板,T(Tube)表示管,K(Kogu)表示工具;第三部分表示特征数字,一般为最低抗拉强度。如:SS400——第一个S表示钢(Steel),第二个S表示“结构”(Structure),400为下限抗拉强度400MPa,整体表示抗拉强度为400MPa的普通结构钢。 2、SPHC——首位S为钢Steel的缩写,P为板Plate的缩写,H为热Heat的缩写,C为商业Commercial的缩写,整体表示一般用热轧钢板及钢带。 3、SPHD——表示冲压用热轧钢板及钢带。 4、SPHE——表示深冲用热轧钢板及钢带。 5、SPCC——表示一般用冷轧碳素钢薄板及钢带,相当于中国Q195-215A牌号。其中第三个字母C为冷Cold的缩写。需保证抗拉试验时,在牌号末尾加T为SPCCT。 6、SPCD——表示冲压用冷轧碳素钢薄板及钢带,相当于中国08AL(GB/T13237-1991)优质碳素结构钢。 7、SPCE——表示深冲用冷轧碳素钢薄板及钢带,相当于中国SC1(GB5213-2001)深冲钢。需保证非时效性时,在牌号末尾加N为SPCEN。冷轧碳素钢薄板及钢带调质代号:退火状态为A,标准调质为S,1/8硬为8,1/4硬为4,1/2硬为2,硬为1。表面加工代号:无光泽精轧为D,光亮精轧为B。 如SPCC-SD表示标准调质、无光泽精轧的一般用冷轧碳素薄板。再如SPCCT-SB表示标准调质、光亮加工,要求保证机械性能的冷轧碳素薄板。 8、JIS机械结构用钢牌号表示方法为:S+含碳量+字母代号(C、CK),其中含碳量用中间值×100表示,字母C:表示碳K:表示渗碳用钢。如碳结卷板S20C其含碳量为0.18-0.23%。 C Mn P S SPCC 0.15以下0.60以下0.100以下0.050以下 SUS

常用材料的化学成分

常用材料的化学成分20号钢 化学成分质量分数%|C: 0.17~0.23 化学成分质量分数%|Si: 0.17~0.37 化学成分质量分数%|Mn: 0.35~0.65 化学成分质量分数%|Cr≤: 0.25 化学成分质量分数%|Ni≤: 0.30 化学成分质量分数%|Cu≤: 0.25 推荐热处理/℃|正火: 910 推荐热处理/℃|淬火: 推荐热处理/℃|回火: 力学性能|σb/MPa≥: 410 力学性能|σs/MPa≥: 245 力学性能|δ5(%)≥: 25 力学性能|ψ(%)≥: 55 力学性能|AKU/J≥: 45号钢 化学成分质量分数%|C: 0.42~0.50 化学成分质量分数%|Si: 0.17~0.37 化学成分质量分数%|Mn: 0.50~0.80

化学成分质量分数%|Cr≤: 0.25 化学成分质量分数%|Ni≤: 0.30 化学成分质量分数%|Cu≤: 0.25 推荐热处理/℃|正火: 850 推荐热处理/℃|淬火: 840 推荐热处理/℃|回火: 600 力学性能|σb/MPa≥: 600 力学性能|σs/MPa≥: 355 力学性能|δ5(%)≥: 16 力学性能|ψ(%)≥: 40 力学性能|AKU/J≥: 39 钢材交货状态硬度HBS10/3000,≤|未热处理钢: 229 钢材交货状态硬度HBS10/3000,≤|退火钢: 197 Q235分A、B、C、D四级(GB700-88) Q235A级含C0.14~0.22% Mn0.30~0.65 Si≤0.30S≤0.050 P≤0.045 Q235B级含C0.12~0.20% Mn0.30~0.670 Si≤0.30S≤0.045P≤0.045 Q235C级含C≤0.18% Mn0.35~0.80 Si≤0.30S≤0.040P≤0.040 Q235D级含C≤0.17% Mn0.35~0.80 Si≤0.35S≤0.040P≤0.035

常用金属材料化学浸蚀剂.

常用金属材料化学浸蚀剂 浸蚀剂名称成份适用范围及使用要点 硝酸酒精溶液硝酸2-4ml 酒精100ml 各种碳钢、铸铁等 苦味酸酒精溶液 苦味酸4g 酒精100ml 珠光体、马氏体、贝氏体、渗碳体 盐酸苦味酸盐酸5ml 苦味酸1g 水100ml 回火后马氏体或奥氏体晶粒 氯化铁盐酸水溶液氯化铁5g 盐酸50ml 水100ml 奥氏体-铁素体不锈钢 奥氏体不锈钢 混合酸甘油溶液硝酸10ml 盐酸30ml 甘油30ml 奥氏体不锈钢 高Cr Ni耐热钢 王水酒精溶液 盐酸10ml 硝酸3ml 酒精100ml 18-8型奥氏体钢的δ相 三合一浸蚀液 盐酸10ml 硝酸3ml 甲醇100ml 高速钢回火后晶粒 硫酸铜盐酸溶液盐酸100ml 硫酸5ml 硫酸铜5g 高温合金 氯化铁溶液氯化铁30g 氯化铜1g 氯化锡0.5g 盐酸50g 铸铁磷的偏析与枝晶组织

苦味酸钠溶液苦味酸1g 水100ml 区别渗碳体和磷化物 氯化铁盐酸水溶液氯化铁5g 盐酸15ml 水100ml 纯铜、黄铜及铜合金 绿化铜盐酸溶液氯化铜1g 氯化镁4g 盐酸2ml 酒精100ml 灰铸铁共晶团 硫酸铜-盐酸溶液硫酸铜4g 盐酸20ml 水20ml 灰铸铁共晶团 硫酸铜-盐酸溶液硫酸铜5g 盐酸50ml 水50ml 高温合金 盐酸-硫酸-硫酸铜溶液 硫酸铜5g 盐酸100ml 硫酸5ml 高温合金 复合试剂 硝酸30ml 盐酸15ml 重铬酸钾5g 酒精30ml 苦味酸1g 氯化高铁3g 高温合金 硬质合金试剂A饱和的三氯化铁盐酸溶液 B新配置的20%氢氧化钾水 溶液+20%铁氰化钾水溶液 硬质合金先在A试剂中浸蚀1min,然 后在B试剂中浸蚀3min,WC相(灰 白色),TiC-WC相(黄色)Co(黑色) 氢氧化钾-铁氰化钾水新配置的10%氢氧化钾水溶 液+10%铁氰化钾水溶液 硬质合金的n相 混合酸硝酸2.5ml 氢氟酸1ml 盐酸1.5ml 水95ml 显示硬铝组织 氢氟酸水溶液氢氟酸0.5ml 水99.5ml 显示一半铝合金组织 苛性钠水溶液苛性钠1g 水100ml 显示铝与铝合金组织 一、钢 1、钢的原始奥氏体晶粒 序号用途成份腐蚀方法附注

常用金属材料中各种化学成分的作用及影响

常用金属材料中各种化学成分的作用及影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达 1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性.减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06% (车轮生铁除外)。 o.p3x o jg 2 .钢: 元素在钢中的作用 常存杂质元素对钢材性能的影响

钢除含碳以外,还含有少量锰(M n)、硅(Si)、硫(S)、磷(P)、氧(0)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶 炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1 )硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985 C )化合物。而钢材的热加工温度一般在1150?1200 C以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为热脆”含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S V 0.02%?0.03% ;优质钢:S V 0.03%?0.045% ;普通钢:S V 0.055% ?0.7% 以下。 2 )磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢:P V 0.025% ;优质钢:P V 0.04% ; 普通钢:P V 0.085%。 3 )锰 锰是炼钢时作为脱氧剂加入钢中的。由于锰可以与硫形成高熔点(1600 C ) 的MnS , —定程度上消除了硫的有害作用。锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。因此,锰在钢中是一种有益元素。一般认为,钢中含锰量在0.5%?0.8%以下时,把锰看成是常存杂质。技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%? 0.8% ;而较高含锰量的结构钢中,其量可达0.7%?1.2%。 4 )硅 硅也是炼钢时作为脱氧剂而加入钢中的元素。硅与钢水中的FeO能结成密度较 小的硅酸盐炉渣而被除去,因此硅是一种有益的元素。硅在钢中溶于铁素体内使钢的强

相关文档
最新文档