基于运行数据人工神经网络的空调系统逐时负荷预测_李帆

基于运行数据人工神经网络的空调系统逐时负荷预测_李帆
基于运行数据人工神经网络的空调系统逐时负荷预测_李帆

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

基于BP神经网络的电力系统负荷预测

基于人工神经网络的负荷预测 1.人工神经网络概述 人工神经网络类似于一个“多输入-多输出”的黑匣子,由一些能并行操作的简单单元组成,整个网络的功能是由单元之间的互连所决定的。 人工神经网络是通过“训练-调整-再训练-再调整”的过程,使得一个特定的输入能够通过网络得到一个特定的输出,其实质是通过调整单元之间的相互影响参数。其结构如下图1: 图1 神经网络结构图 2.题目要求及说明: 以广东某城市的2004年7月20日到7月30日的负荷值以及2004年7月 21日到7月31日的气象特征状态作为网络的训练样本,来预测7月31日的电

2.程序源代码 P=[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7015 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0; 0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325 0.2385 0.3125 0; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156 0.2216 0.2701 1; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895 0.2352 0.2506 0.5; 0.2115 0.1201 0.1312 0.2019 0.5532 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025 0.2542 0.3125 0; 0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221 0.2601 0.3198 0; 0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217 0.2579 0.3099 0; 0.2342 0.1368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.8126 0.2301 0.2867 0.5; 0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956 0.2234 0.2799 1; 0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6553 0.6673 0.6798 0.7023 0.7521 0.7756 0.2314 0.2977 0]'; T=[0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)西安工业大学北方信息工程学院 题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级 B070307 姓名宋亮 学号 B07030716 导师张荷芳焦灵侠 2011年6月 毕业设计(论文)任务书 系别电子信息系专业电气工程自动化班 b070307 姓名宋亮学号 b07030716 1.毕业设计(论文)题目: 基于bp神经网络的短期电力负荷预测题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济2. 地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有 其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡, 否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研 究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中,

负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力 系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户 的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 *? 实验(时数)或实习(天数): 100天 *? 图纸(幅面和张数):A4×2 ? 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年月日 学生签名: 年月日 系主任审批: 年月日

数据中心维护_精密空调CRAC

为什么需要精密空调? 现在,恒温恒湿环境控制要求已经远远超出了传统数据中心或计算机室的围,包括更大的一套应用,称为“技术室”。典型的技术室应用包括: ?医疗设备套件(MRI、CAT 扫描) ?洁净室 ?实验室 ?打印机/复印机/CAD 中心 ?服务器室 ?医疗设施(手术室、隔离室) ?电信(交换机室、发射区) 为什么需要精密空调? 在许多重要的工作息处理是不可或缺的一个环节。因此,贵公司的正常运转离不开恒温恒湿的技术室。 IT硬件产生不寻常的集中热负荷,同时,对温度或湿度的变化又非常敏感。温度和/或湿度的波动可能会产生一些问题,例如,处理时出现乱码,严重时甚至系统彻底停机。这会给公司带来大量的损失,具体数额取决于系统中断时间以及所损失数据和时间的价值。标准舒适型空调的设计并非为了处理技术室的热负荷集中和热负荷组成,也不是为了向这些应用提供所需的精确的温度和湿度设定点。精密空调系统的设计是为了进行精确的温度和湿度控制。精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证技术室四季空调正常运行。 温度和湿度设计条件 保持温度和湿度设计条件对于技术室的平稳运行至关重要。设计条件应在72-75°F (22-24°C)以及 35-50% 的相对湿度 (R.H.)。与环境条件不合适可能造成损坏一样,温度的快速波动也可能会对硬件运行产生负面影响。这就是即使硬件未在处理数据也要使其保持运行状态的一个原因。相反,舒适型空调系统的设计只是为了在夏天 95°F

(35°C)的气温和48% R.H.的外界条件下,使室的温度和湿度分别保持80°F (27°C)和 50% R.H.的水平。相对而言,舒适型空调系统的设计只是为了在夏天95°F (35°C)的条件和48% R.H.的外界条件下,保持80°F (27°C)和50% R.H.。舒适空调没有专用的加湿及控制系统,简单的控制器无法保持温度所需的设定点的整定值(23±2°C),因此,可能会出现高温、高湿而导致环境温湿度场大围的波动。 环境不适合所造成的问题 如果技术室的环境运行不当,将对数据处理和存储工作产生负面影响。结果,可能使数据运行出错、宕机,甚至使系统故障频繁而彻底关机。 1、高温和低温 高温、低温或温度快速波动都有可能会破坏数据处理并关闭整个系统。温度波动可能会改变电子芯片和其他板卡元件的电子和物理特性,造成运行出错或故障。这些问题可能是暂时的,也可能会持续多天。即使是暂时的问题,也可能很难诊断和解决。 2、高湿度 高湿度可能会造成磁带物理变形、磁盘划伤、机架结露、纸粘连、MOS 电路击穿等故障发生。 3、低湿度 低湿度不仅产生静电,同时还加大了静电的释放。此类静电释放将会导致系统运行不稳定甚至数据出错。 欲了解更多APC相关容,请登录.apc./cn 技巧:精密空调系统工作原理及维护过程解析 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。

基于BP神经网络的短期电力负荷预测

西安工业大学北方信息工程学院 本科毕业设计(论文)题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级B070307 姓名宋亮 学号B07030716 导师张荷芳焦灵侠 2011年6月

毕业设计(论文)任务书 系别 电子信息系 专业 电气工程自动化 班 b070307 姓名 宋亮 学号 b07030716 1.毕业设计(论文)题目: 基于bp 神经网络的短期电力负荷预测 2.题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中, 负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室 1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab 对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 ① 实验(时数)*或实习(天数): 100天 ② 图纸(幅面和张数)*:A4×2 ③ 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年 月 日 学生签名: 年 月 日 系主任审批: 年 月 日 说明:1本表一式二份,一份由学生装订入册,一份教师自留。 2 带*项可根据学科特点选填。

数据中心空调系统应用白皮书

数据中心空调系统应用白皮书

目录 一引言 (5) 1.1目的和范围 (5) 1.2编制依据 (5) 1.3编制原则 (6) 二术语 (6) 三数据中心分级 (8) 3.1概述 (9) 3.2 数据中心的分类和分级 (9) 四:数据中心的环境要求 (10) 4.1 数据中心的功能分区 (10) 4.2 数据中心的温、湿度环境要求 (11) 4.2.1 数据中心环境特点 (11) 4.2.2 国标对数据中心环境的规定和要求 (12) 4.3 数据中心的其它相关要求 (16) 五: 数据中心的机柜和空调设备布局 (18) 5.1 机柜散热 (19) 5.1.1数据中心机柜 (19) 5.1.2 机柜的布局 (21) 5.2 机房空调及其布置 (23) 5.2.1 机房空调概述 (23) 5.2.2 机房空调送回风方式 (25) 5.2.3 机房空调布局 (25) 六:数据中心空调方案设计 (26) 6.1 数据中心的制冷量需求确定 (26) 6.2 数据中心的气流组织 (29) 6.2.1 下送上回气流组织 (29) 6.2.2 上送下(侧)回气流组织 (33) 6.2.3 局部区域送回风方式 (36) 6.3 空调系统的冷却方式选择 (37) 6.4 空调设备的选择 (46) 七: 数据中心中高热密度解决方案 (48) 7.1 区域高热密度解决方案 (48) 7.2 局部热点解决方式 (50) 7.3高热密度封闭机柜 (52) 7.4其它高热密度制冷方式 (54) 八: 数据中心制冷系统发展趋势 (54) 8.1数据中心发展趋势: (54) 8.2 数据中心制冷系统发展趋势 (57) 九机房环境评估和优化 (58) 附件一:数据中心要求控制环境参数的原因 (62) 附件二:机房专用空调机组 (70)

系统试运行与调试记录

送排风系统 系统联动试运转中,设备及主要部件的联动符合设计要求,动作协调、正确,无异常现象; 系统经过平衡调整,各风口或吸风罩的风量与设计风量的允许偏差不大于15%,系统运行正常。 防排烟系统 同上

编号:001 单位工程名称广西康复医疗中心大楼施工单位广西建工集团第五建筑工程有限责任公司 分包单位/ 监理(建设)单位南宁品正建设咨询有限责任公司 设备名称组合式空调机组型号规格 试运转时间自2014年6月12日8时30分至2014年6月13日16时0分 试运转过程及各参数记录: 1、系统正常,畅通无渗水现象。电源线连接正确,安全、紧固。 2、各机组中的风机叶轮旋转正确,运转平稳,无异常振动与声响,其电机运行功率符合 设备技术文件的规定。 3、皮带张紧得当,且风机皮带轮与电机皮带轮置于同一平面上。 4、该型号机组的风机轴承的润滑状况良好,轴承外壳温升为60℃~68℃,滚动轴承温 升为65℃~75℃,符合产品说明书的规定。 5、空调机组的试运转符合设备技术文件要求。 6、运转时产生的噪声符合性能说明书的规定要求。 7、该型号各种机组的减震装置工作正常。 8、机组风量的测试结果与设计风量的偏差为5%,符合要求。 试运转调试结论调试合格,符合设计要求。 施工单位监理(建设)单位 专业工长专业质量检查员:项目技术负责人:监理工程师: (建设单位项目技术负责人)

编号: 单位工程名称广西康复医疗中心大楼施工单位广西建工集团第五建筑工程有限责任公司 分包单位/ 监理(建设)单位南宁品正建设咨询有限责任公司 设备名称离心泵型号规格 试运转时间自2014年6月12日8时30分至2014年6月12日12时0分 试运转过程及各参数记录: 1、叶轮旋转方向正确,无异常振动与声响,紧固连接部位无松动,其电机运行功率符合 设备技术文件的规定。 2、轴承温升为65℃,符合产品说明书的规定。 3、减震装置工作正常。 4、克体密封处无渗漏。 试运转调试结论调试合格,符合设计要求。 施工单位监理(建设)单位 专业工长专业质量检查员:项目技术负责人:监理工程师: (建设单位项目技术负责人)

人工神经网络在电力负荷预测上的分析与探讨

人工神经网络在电力负荷预测上的分析与探讨 作者:赵宇红胡玲刘旭宁 来源:《科技创新导报》2011年第02期 摘要:电力负荷的预测是电力系统规划的基础,对配变系统和新发电厂的建立具有重要意义。传统的预测方法是通过数学模型来分析电力负荷与其影响因素之间的关系,但由于实际工作中的不可预见因素较多,因此很难建立一个适用于任何情况的表达式。本文通过对人工神经网络在短期电力负荷预测中应用的分析,对其优缺点进行了探讨。 关键词:电力负荷预测人工神经网络应用人工神经网络的分析与探讨 中图分类号:TM76 文献标识码:A 文章编号:1674-098x(2011)01(b)-0090-01 对电力系统负荷的预测对于实现安全发供电、电力系统的自动化运行以及制定工作计划都有着非常重要的意义。传统的预测方法是将线形或分段线形表达作为负荷的预报函数,通过对其进行概率及数理统计的方式对其进行计算,并最终得出预测值。这种方法存在着建模所需的数据量大、适应性不强以及精度不高的问题,因此正逐渐被人工神经网络预测所取代。 1 日负荷模型的构成 电力系统负荷变化的周期性较强,因天气的变化而出现的负荷波动是导致电力系统负荷变化的主要因素,也就是说,N时刻负荷的变化量可以反映出天气的变化情况。因此,用向量的方式来表示负荷型,从而使全部的自变量相对于神经网络来说都属于输入量的中间分量,进而在自变量中隐含负荷与天气变化之间的函数关系。因此,日负荷模型的构成主要包括日基础负荷型和负荷影响因子模型。 1.1 日基础负荷模型 日基础负荷具有明显的周日性和周期性特征,代表了负荷的连续性,是负荷变化的基本规律。 ML[n,t]=∑(1-w)w(i-1)·L[n-(i·7),t] 其中ML[n,t]代表的是日基础负荷; L[n,t]代表的是第n天t时刻的实际负荷; W代表的是加权系数,取指小于1大于0;

数据中心机房制冷空调系统运维技术考核题目答案参考

数据中心(机房)制冷空调系统运维技术考核题目答案参考 类数据机房温湿度范围?单点温湿度波动范围? A类机房温湿度要求:23±1℃,40--55% ;单点温度波动小于5℃/h,湿度波动小于5%/h 参考:GB50174《电子信息系统机房设计规范》 2.空调回风参数:温度25℃,相对湿度50%;求露点温度? ℃参考:标准大气压湿空气焓湿图;此题关注会查空气状态点对应的露点温度和湿球温度 3.自然冷却模式、预冷模式、普通制冷模式的切换依据,对应的环境湿球温度值是多少? 湿球温度<10℃适合自然冷却模式,10--15℃之间适合预冷模式,>15℃适合普通制冷模式 参考:水冷自控系统供冷模式转换控制逻辑 4.机房空调送风距离多少米为宜?6-10m为宜 5.数据机房采用地板送风,风速范围多少m/s为宜? ( m/s最佳)参考:GB50174《电子信息系统机房设计规范》 6.数据机房新风正压要求数值? 机房与走廊;机房与室外参考:GB50174《电子信息系统机房设计规范》 7.数据机房新风量:人均参考值?每平米参考值?按机房换气次数每小时几次为宜? 按工作人员每人40m3/h;每平米25--30 m3/h;机房换气次数次/h(人员进出的机房取4次/h) 8.计算:900个标准机柜(13A)需要多大面积的机房合适?如选用艾默生冷水型机房空调P3150G至少需要多少台?按4-5台以上备份1台的标准,最多需要多少台?需要多大冷量的冷水机组提供冷源?需要多大风量的新风空调提供机房正压? 每个机柜加上冷热通道,平均面积取;×900=2070㎡(可分成4个㎡模块间,每个模块225台机柜) 每平米可用制冷量不能小于+每平米维护结构热负荷=每平米冷量需求 总冷量需求:×2070=3312KW 查艾默生冷水型空调样本:P3150G标准冷量为;需留有20%的预留(使用系数取) 艾默生P3150G冷水型空调单机净冷量:×= ○标准需求台数:3312÷≈28台;冗余配置(4+1):28÷4=7台(需配备机7台);含备机需28+7=35台 ○IT设备功耗转换成热量系数(取计算);13A机柜功耗,转换为热量÷≈ 总热负荷:×900=3429KW,除以P3150G空调单机净冷量≈29台,按冗余配置(4+1),需配备机7台;含备机需29+7=36台 ○空调系统制冷量取IT负载的倍;IT总负载:×900=2574KW;空调系统总制冷量:2574×= 除以P3150G空调单机净冷量≈28台,按冗余配置(4+1),需配备机7台;含备机需28+7=35台 ●需要冷量为3429KW(约1000RT)的冷水机组(离心式)1台提供冷源 新风量每平米25--30 m3/h(取30 m3/h);总新风需求30×2070=62100 m3/h,建议规划4个模块间单独提供新风62100÷4=15525 m3/h,需要新风量15525 m3/h的组合空调4台 9.制冷设备能效比EER是如何计算的? EER即制冷设备的制冷性能系数,也称能效比,表示制冷设备的单位功率制冷量。EER值越高,表示制冷设备中蒸发吸收的热量较多,压缩机耗电较少。数学计算公式:EER=制冷量(KW)/制冷消耗功率(KW) 单位:W/W或KW/h/W 10.冷站(动力站)COP是如何计算的? 冷水机组实际制冷量和配套设备(压缩机-马达+冷冻水循环泵+冷却水循环泵+冷却塔风机-马达)实际输入功率之比 11.数据机房PUE是如何计算的?绿色节能机房PUE标准? PUE是评价数据中心能源效率的指标,是数据中心消耗的所有能源(电能)与IT负载使用的能源(电能)之比PUE=数据中心总设备能耗/IT设备能耗;基准是2,越接近1表明能效水平越好 绿色节能机房PUE标准:以下 12.接题目8,匹配适合该冷水机组的冷却塔参数(流量)?冷却塔设在楼顶距冷站(动力站)20米,匹配适合该冷水机组的冷却循环泵参数(扬程和流量)?匹配适合该冷水机组和机房空调的冷冻循环泵参数(扬程和流量)(注:水泵出口至管网最高点垂直高度15米)? 水量需求:冷凝器()/RT 蒸发器(3/h)/RT

基于BP神经网络的短期负荷预测

基于BP神经网络的短期负荷预测 基于BP神经网络的短期负荷猜测 摘要:基于人工神经网络原理,设计了一个三层的BP网络来实现电力系统的短期负荷猜测。经过仿真验证,利用BP神经网络进行电力系统短期负荷猜测是可行和有效的,其预告结果正确性很高。 要害词:短期负荷猜测;BP神经网络;电力系统 0前言 电力系统负荷猜测是电力生产部门的重要工作之一,通过正确的负荷猜测,可以经济合理地安排机组启停,减少旋转备用容量,合理安排检修计划,降低发电成本,提高经济效益。很多学者对此进行了研究,提出了很多种猜测方法,并且及时地将数学上的最新进展应用到猜测中去,使猜测的水平得到迅速提高,负荷猜测研究取得了很大的进展。 1负荷的分类及其短期猜测的方法 1.1负荷的分类 负荷猜测按猜测时间可以分为长期、中期和短期负荷猜测。其中,在短期负荷猜测中,周负荷猜测(未来7天)、日负荷猜测(未来24小时负荷猜测)及提前小时猜测对于电力系统的实时运行调度至关重要。因为对未来时刻进行预调度要以负荷猜测的结果为依据,负荷猜测的结果的正确性将直接影响调度的结果,从而对电力系统的安全稳定运行和经济性带来重要影响。 1.2负荷短期猜测的方法 电力系统负荷短期预告问题的解决办法和方式可以分为统计技术、专家系统法和神经网络等3种。统计技术中所用的短期负荷模型一般可归为时间系列模型和回归模型。时间系列模型的缺点在于不能充分利用对负荷性能有很大影响的气候信息等因素,但需要事先知道负荷与气象变量之间的函数关系,这是比较困难的。并且为了获得比较精确的预告结果,需要大量的计算,这一方法不能处理气候变量和与负荷之间的非平衡暂态关系。专家系统法利用了专家的经验知识和推理规则,使节假日或有重大活动日子的符合预告精度得到了提高。但是,把专家知识和经验等正确地转化为一系列规则是非常不轻易的。 众所周知负荷曲线是与很多因素相关的一个非线性关系函数。对于抽取盒逼近这种非线性函数,神经网络是一种合适的方法。神经网络的优点在于它具有模拟多变量而不需要对输入变量做复杂的相关假定的能力。它不依靠专家经验,只利用观察到的数据,可以从练习过程中通过学习来抽取和逼近隐含的输入/输出非线性关系。近年来的研究表明,相对于前两种方法,利用神经网络技术进行电力系统短期负荷预告可获得更高的精度。本文主要采纳BP神经网络来对电力系统短期负荷进行猜测。 2BP神将网络 2.1BP学习算法的思想 BP算法的基本思想是,学习过程由暗号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师暗号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差暗号,此误差暗号即作为修正各单元权值的依据。这种暗号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习练习过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行预先预定的学习次数为止。 2.2BP神经网络的组成及作用

基于人工神经网络的电力系统短期负荷预测

龙源期刊网 https://www.360docs.net/doc/0a16190638.html, 基于人工神经网络的电力系统短期负荷预测作者:李晶 来源:《科学与技术》2018年第26期 摘要:随着智能电网技术的发展,电网问题的管理变得尤为重要,负荷预测是电网管理的主要内容之一。针对电力负荷预测随机性强、稳定性低、影响因素复杂等特点,具有非线性特性的神经网络可以极大地提高预测精度。 关键词:电力系统;负载预测;神经网络;反向传播算法 引言 电力系统负荷预测按预测的时间可分为长期、中期、短期、超短期以及特殊日,然而其中的短期负荷预测对电力系统来说有着很重要的地位,也是现有电力市场环境下编排发电计划、交易计划、调度计划的基础。随着电力行业的发展,分布式电源的接入和电动汽车等新负荷的加入,电力系统负荷预测的精确度就显得尤其重要。因此负荷预测成为了电网运行和管理的一个重要研究领域。由于负荷预测在电网中占有很重要的地位,所以对负荷预测初始数据的处理、预测方法的选择就显得尤其的重要。对短期负荷预测的研究已有很长的历史,国内外专家和学者在预测方面做了很多工作,提出很多预测模型。 1 负荷预测方法比较 1.1 神经网络法 目前神经网络广泛应用于图像识别、自然语言处理、机器翻译、自动驾驶等方面。谷歌、百度、阿里等企业最主要的人工智能算法都是神经网络。神经网络在能源领域大量应用于电力负荷预测、电力现货市场价格预测、风电发电预测等方面。神经网络法在负荷预测上的应用主要分为人工神经网络和递归神经网络。神经网络法选取过去一段时间的负荷作为训练样本,构建适宜的网络结构,用某种训练算法对网络进行训练,使其满足精度要求之后,此神经网络作为负荷预测模型。神经网络对大量非结构性、非精确性规律具有自适应能力,能够信息记忆、自主学习、知识推理和优化计算,具有很强的计算能力、复杂映射能力、容错能力及各种智能处理能力。江西负荷预测表明,其短期负荷预测精度高于中长期预测精度,日前负荷预测精度可达99.3%,5年规划负荷预测精度约为95.4%。 1.2 模糊预测法 模糊预测法是建立在模糊数学理论上的一种负荷预测技术,可以描述负荷预测中的一些关键因素,如天气状况的评判、经济发展的不确定性等。模糊负荷预测可分为模糊聚类法、模糊相似优先法和模糊最大贴近度法等。江西负荷预测表明,短期负荷模糊预测的精度约为

人工神经网络在电力负荷预测中的应用

人工神经网络在电力负荷预测中的应用 发表时间:2019-07-29T14:17:21.220Z 来源:《基层建设》2019年第14期作者:吕海霞南家楠 [导读] 摘要:随着我国电力行业逐步推进智能电网建设,电网管理问题变得愈发重要,电网管理的主要内容就是负荷预测。 内蒙古电力经济技术研究院内蒙古呼和浩特 010090 摘要:随着我国电力行业逐步推进智能电网建设,电网管理问题变得愈发重要,电网管理的主要内容就是负荷预测。通过分析电力负荷预测的重要性,分析电力负荷预测中人工神经网络的应用。 关键词:电力负荷预测;人工神经网络;应用分析 电力系统由发、输、变、配和用电 5 个基本环节组成,电网的运行需要保证其运行的经济性、供电可靠性、以及良好的电能质量。但由于电能生产的实时性,不能被大量储存,这就要求电能在发电和用电之间需要时刻保持着供需平衡,避免电能供电不足或生产过剩等问题。因此为了解决上述问题就需要我们时刻掌握负荷的变化情况,准确的电力负荷预测能够成为满足电力负荷供需平衡研究的重点。 1、电力系统负荷预测方法分类 时间序列法:时间序列的预测算法,是一种处理随机数列并进行预测的有效方法,它是按照一定时间间隔进行采集和记录的时间序列数据,该数据具有较强的随机性和不确定性。将该方法引入到电力系统负荷预测中,则是通过采集、分析电力系统历史负荷数据信息,通过历史数据建立相应的数学模型,发现隐含其中的规律,进而对未来电力负荷进行预测。时间序列法的优点:所需历史数据量少,建立模型的复杂程度低,计算速率快,能够反映负荷变化连续性特点。缺点:对采集得到的历史电力负荷数据随时间的平稳性要求较高,过于集中对数据的拟合而忽略对负荷变化规律的考虑,使得预测精度不高。 支持向量机:SVM 算法是在创建一个新的实例并分配给两个类别之一的模型,即主要是一种二元线性分类器,解决了算法模型预测时会出现的局部最优解的问题,通过该方法最终可以得到一个全局最优解。支持向量机在早期的科研中占据了非常重要的地位,在引入到电力系统负荷预测中,使用 SVM 预测算法,可以取得比传统方法更有效的预测结果。该方法的优点:该算法较为成熟,有坚实的数学理论基础,预测方法收敛速度较快,能够快速求得全局最优解。缺点:实际应用开发较为困难,对于历史数据依赖较大,对历史数据的要求也较高,在预测电力系统负荷波动较小的情况下可以取得很好的效果,但是当负荷波动较大时,预测效果往往较差。 BP 神经网络算法:BP 算法包括正向传播和计算误差的逆向传播过程,即正向传播是训练数据通过输入层,经过隐含层,作用于输出层,产生输出信号得到相应的输出误差,并将该输出误差经过隐含层向输入层逐层逆向反传,将误差分摊给各层所有单元,并调整网络的权值和阈值,使误差沿梯度方向下降,经过反复多次的训练,最终得到误差最小的网络模型,此时的BP 神经网络可以作为电力系统负荷预测的数学模型。优点:具有很强的非线性映射能力和柔性的网络结构,预测结果的精准度较高。缺点:学习速度慢,容易陷入局部最小值,网络层数、神经元数没有理论指导。 2、人工神经网络作用与分类 人工神经网络的研究是从人脑的生理结构出发来研究人的智能行为,模拟人脑信息处理的功能。它是根植于神经科学、数学、统计学、物理学、计算机科学及工程等学科的一种技术。人工神经网络是由大量处理单元广泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为神经元模型应具备连接权值、信号整合、激励函数三个要素。人工神经网络具有非线性、并行性、自学习性、联想存储性和实时性等特点。 人工神经网络的主要类型有感知机、线性神经网络、径向基(RBF)函数网络、BP 神经网络、随机神经网络、竞争神经网络等,其中BP 神经网络是应用得最广泛的一种类型。BP 神经网络是指误差反向传播算法(Error Back Propagtion,BP)网络,是一种有监督学习的前向多层感知机结构,由一种误差计算沿着与网络计算方向相反方向传递的算法求解神经元连接权值。BP 神经网络由多层构成,层与层之间全连接,同一层之间的神经元无连接,包含一个或多个隐层,可以实现复杂的映射关系。 BP 网络采用误差反向传播算法(Back - Propagation Algo-rithm)进行学习。在 BP 网络中,数据从输入层经隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值。误差反向传播算法是一种近似最速下降方法,采用均方误差作为性能指标。 由于 BP 网络具有计算简单、非线性映射性强、网络泛化性好,在电力负荷预测、神经生物现象模拟、农业样本检测等多个方面有着广泛的应用。 3、神经网络在电力负荷预测中的应用 电力负荷预测的方法主要有灰色预测法、线性回归法等传统预测方法、神经网络法、支持向量机、模糊系统等人工智能预测算法。由于电力负荷预测具有随机性强、稳定性低、影响因素复杂等特点,很难建立精确的模型。由于传统模型难以充分利用其他影响因素的数据,使得预测精度往往不能满足电力部门的需求,人工智能预测算法是国内外学者们研究的热点问题。电气负荷数据通常为一个时间序列数据,因此可以使用统计或软计算方法进行分析和预测,Wang等提出了一种 BP 神经网络方法(BPNN),采用反向传播神经网络的精确电力负荷预测算法用于短期电力负荷预测,综合考虑了天气特征,如最高摄氏度,最低摄氏度和天气类型等参数。陈刚等将非负荷因素输入前级 BP 网络中,得出的负荷类型数据作为后级RBF 网络的输入,通过 BP -RBF 的级联神经网络得到准确的整点负荷预测。 由于 BP 神经网络收敛速度慢、易陷于局部极值点的缺点,许多学者结合模糊推理、遗传算法等其他智能算法对电力负荷预测模型进行了进一步完善。基于神经网络的模糊推理方法是通过神经网络的自主学习机制完成模糊化、模糊推理和反模糊化。Ali 等采用模糊逻辑方法研究了长期负荷预测问题,建立了一个电力负荷模糊预测模型,采用温度、湿度和历史负荷数据作为模型,实验结果表明了模糊理论可以较好地应用于负载长期预测。Panapakidis 等利用人工神经网络和聚类方法建立了公交车负荷预测模型,通过聚类的方法提高了人工神经网络模型的预测精度,适用于短期预测。Mordjaoui 等提出了一种预测每日负荷的动态神经网络,获得的结果表明精度和效率优于广泛使用的传统方法。He 等提出了一种基于三角核函数(QRNNT)的分位数回归神经网络的概率密度预测方法,用于短期电力负荷预测。为了构造概率预测方法,应用神经网络对分位数回归模型进行变换,通过对加拿大和中国的负荷数据测试证明了该方法有效性。张平、白杨等针对天气因素采用聚类和神经网络相结合的方法进行了负荷预测 4 结语 总之,电力负荷预测对国民经济、电网稳定和电力安全都有着非常重要的意义。如何提高预测速度、降低预测误差是电力负荷预测研

通风与空调系统试运行记录.

通风与空调系统试运行记录 共页 检验(通)表5.5.1 第页 单位(子单位)工程名 称 八字桥周边地块A区二期-越府名园(地下室 分部(子分部)工程名 称通风与空调(防排烟系统) 分 项 工 程 工 程 系 统 调 试 系统名称地下车库防排烟系统施 工 单 位 浙 江 中 实 建 设 集 团 有 限 公 司 分包单位杭州天宇消防安全技术工程有限公司调 试 单 位 杭 州 天 宇 消 防 安 全 技

术工程有限公司 连续试运行时间8小时试 运 行 日 期 年 月 日 系统概况地下停车库、地下室配电房等设备用房均设计机械通风、排烟系统 试运 行情况防排烟工程系统联运试运转中,设备及主要部件、系统运行平稳、正常、动作协调,无异常,无噪音,系统经过平衡调整,总风量与设计风量的允许偏差不大于10%。 存在问题处理情况无 结 论施工质量符合设计及规范要求 专业监理工程师施质

(建设单位项目专业技术负责人)工 单 位 检 员 施工员 试验员 防排烟系统联合试运行与调试记录 GB50242-2002 技08-37-□□ 工程名称八字桥周边地块A区二 期越府名园(地下室) 子分部工程 名称 防排烟系统 施工单位杭州天宇消防安全技术 工程有限公司 试运行及调 试人员 系统名称及 编号防排烟系统-0802 试运行及调 试日期 联动试验内 容1、防排烟系统电控防火、防排烟风阀(口)的手动、电动操作逐个测试,保证其动作灵活、可靠,信号输出正确。

2、防排烟系统双速见机与正反转风机按功能试运转,测定风量和风压,并重点检查电动机及轴承工作是否正常。 3、排烟风机运转时,按防烟分区检测其排烟口处排风量是否符合设计要求。 余压测试楼层防烟楼梯间 (Pa) 前室(合用 前室) (Pa) 试运行与调 试结论 施工单位监理(建设)单位

相关文档
最新文档