The influence of cellulose nanocrystal additions on the performance of cement paste

The influence of cellulose nanocrystal additions on the performance of cement paste
The influence of cellulose nanocrystal additions on the performance of cement paste

The in?uence of cellulose nanocrystal additions on the performance of cement

paste

Yizheng Cao a ,Pablo Zavaterri b ,Jeff Youngblood a ,Robert Moon c ,Jason Weiss b ,a ,?

a

School of Materials Science and Engineering,Purdue University,West Lafayette,IN 47907,USA b

School of Civil Engineering,Purdue University,West Lafayette,IN 47907,USA c

Forest Products Laboratory,US Forest Service,Madison,WI 53726,USA

a r t i c l e i n f o Article history:

Received 12February 2014Accepted 3November 2014

Available online 18November 2014Keywords:

Cellulose nanocrystal CNC

Degree of hydration

Ball-on-three-ball ?exural test Steric stabilization Short-circuit diffusion

a b s t r a c t

The in?uence of cellulose nanocrystals (CNCs)addition on the performance of cement paste was inves-tigated.Our mechanical tests show an increase in the ?exural strength of approximately 30%with only 0.2%volume of CNCs with respect to cement.Isothermal calorimetry (IC)and thermogravimetric analysis (TGA)show that the degree of hydration (DOH)of the cement paste is increased when CNCs are used.The ?rst mechanism that may explain the increased hydration is the steric stabilization,which is the same mechanism by which many water reducing agents (WRAs)disperse the cement particles.Rheological,heat ?ow rate measurements,and microscopic imaging support this mechanism.A second mechanism also appears to support the increased hydration.The second mechanism that is proposed is referred to as short circuit diffusion.Short circuit diffusion appears to increase cement hydration by increasing the transport of water from outside the hydration product shell (i.e.,through the high density CSH)on a cement grain to the unhydrated cement cores.The DOH and ?exural strength were measured for cement paste with WRA and CNC to evaluate this hypothesis.Our results indicate that short circuit dif-fusion is more dominant than steric stabilization.

ó2014Published by Elsevier Ltd.

1.Introduction

One of the new engineering frontiers is the design of renewable and sustainable infrastructure materials with novel combinations of properties that radically break traditional engineering para-digms.One promising family of materials are the nano-reinforced materials that can exhibit improvement in properties such as elas-tic modulus,tensile strength,?exural strength,fracture energy,and impact resistance [1].On one hand,nano-reinforced materials offer remarkable opportunities to tailor mechanical,chemical,and electrical properties.On the other hand,the intense research in the use of nano-reinforcements has been criticized due to perceived environmental,cost,health and safety issues [2].Currently,there is a growing push for ‘‘greener’’products,which includes materials made from renewable and sustainable resources.In addition,there is a goal of minimizing the carbon footprint of infrastructure mate-rials driving interest in biodegradable,non-petroleum based and low environmental impact materials.By increasing the perfor-mance of infrastructure materials,it may be possible to greatly

reduce the volume of these materials that are used thereby reduc-ing the demand on raw materials.The use of higher performance materials is one way to ‘do more with less’.

Nano-?bers have recently been of interest in the studies of cementitious materials,among which,carbon nanotube (CNT)reinforced cement composites have been investigated in the last decade.Due to their high aspect ratio,CNTs are believed to be able to bridge microcracks thereby increasing strength [3].Li et al.[4,5]showed an improvement of 25%in ?exural strength and a 19%increase in compressive strength with a 0.5wt.%loading of pro-cessed multi-walled carbon nanotubes (MWCNTs).Metaxa et al.[6]found the presence of CNTs increased ?exural strength of cement paste by 25%and improve the elastic modulus by 50%.Konsta-Gdoutos et al.[3]reported that the ?exural strength of cement pastes reinforced with MWCNTs showed an improvement of 30–40%with respect to the plain system.However,reinforcing brittle cement matrices has been a challenge due to reinforcing materials degradation,dif?culty to add a suf?cient volume without causing dif?culties in mixing,enabling ?ber dispersion,and the high costs of the reinforcing materials [7].

Cellulose nanocrystals (CNCs)are rod-like nanoparticles (typi-cally,0.05–0.5l m in length and 3–5nm in width)that can be extracted from plants and trees [2].CNCs are promising nanoscale

https://www.360docs.net/doc/0516670342.html,/10.1016/j.cemconcomp.2014.11.0080958-9465/ó2014Published by Elsevier Ltd.

?Corresponding author at:School of Civil Engineering,Purdue University,West

Lafayette,IN 47907,USA.

reinforcing materials for cements in that they have several unique characteristics,such as high aspect ratio,high elastic modulus and strength,low density,reactive surfaces that enable functionaliza-tion and are readily water-dispersible without the use of surfactant or modi?cation[2].It is considered here that CNCs can offer new possibilities for cementitious composites for improved mechanical performance,in which the small size of CNCs allows for reduced inter?ber spacing,more interactions between cellulose and the cement system,and as a result the CNCs have a greater potential

to alter micro-cracking and can therefore increase the strength of the system.Additionally,other bene?ts of CNCs include,but are not limited to,their renewability,sustainability,low toxicity,low cost(estimated production costs of<$10/lb)[2,8].Moreover,CNCs are extracted from sources(e.g.,plants and trees)that are them-selves sustainable,biodegradable,carbon neutral,and the extrac-tion processes have low environmental,health and safety risks [2].In this work,CNCs are added into cementitious materials to modify the microstructure and improve the mechanical performance.

The majority of previous?ber-reinforced cement composites work,regardless of the dimension of the?bers,attributes the improvement in the mechanical performance to the mechanism of?ber bridging[7].Most claims are based on the fact that?bers can help delay the crack propagation or even lead to crack arrest. However,the length of CNCs is signi?cantly smaller than most of ?bers used to date,and therefore,their ability to reinforce the material needs to be carefully examined.This work systematically studies the effect of CNCs on cement pastes and its implications on the mechanical properties at the macroscopic level.To investigate the CNC–cement pastes,two fundamental questions to be answered are:(1)where are the CNCs located in the cement matrix?(2)How do CNCs interact with the cement particles in both the fresh state and the hardened state after setting?To answer the two questions,a series of experiments were designed and performed to study how the CNCs affect the hydration process, rheological and mechanical properties of the cement pastes,and what mechanisms are responsible for the variation in the mechan-ical performance.An integrated approach that combines material preparation,experiments,and microscopy to better understand the physical mechanisms that underpin CNCs use in cementitious materials is presented in the following sections.

2.Materials and experimental testing procedures

The CNC–cement paste composites evaluated in this paper were prepared by mixing CNC suspensions,water and cement powder to obtain mixtures with different concentrations of CNC.After prepar-ing the CNC–cement paste mixture,three main aspects of the resulting material were investigated:(1)the curing process,(2) the mechanical properties and(3)the microstructure.While iso-thermal calorimetry(IC)and thermogravimetric analysis(TGA) were used to determine the DOH of cement pastes;zeta potential, water adsorption and rheological measurements were used to investigate the interaction and af?nity of CNCs with cement parti-cles.Additionally,ball-on-three-ball(B3B)?exural testing was per-formed to measure the?exural strength of the cement pastes at four different ages.

2.1.Cement pastes preparation

A Type V cement was used in this investigation due to its com-positional purity(i.e.,low aluminates and ferrite phases),the Bogue compositions and Blaine?neness of which are shown in Table1.

The CNC materials used in this work were manufactured and provided by the USDA Forest Service-Forest Products Laboratory, Madison,WI(FPL)[9].The as-received CNC materials were in a form of dispersed suspension(5.38wt.%CNCs in water).The CNCs were extracted via sulfuric acid hydrolysis of Eucalyptus dry-lap cellulose?bers,resulting in a0.81wt.%CNC surface-grafted sulfate content.

The cement pastes were mixed with a vacuum mixer(Twister Evolution18221000from Renfert USA Inc.[10]).This particular mixer is programmable for consistency and provides a low vacuum environment during cement mixing which can help reduce the entrained air that may develop in mixtures.The following proce-dure was used for the preparation of the cement pastes:(1)the cement,CNC suspension and water were measured in the mixer bowl;(2)the mixer was set to mix at a speed of400rpm for 90s;(3)a spatula was used scrape the wall and bottom of the bowl (this typically lasted15s);(4)Another90s of mixing was done at 400rpm.After the mixing was complete,the fresh cement pastes were cast in plastic cylinders(5.1cm in diameter and10.2cm in height)and sealed at23±1°C for curing.At the age of24±1h, the cylinder samples were demolded and cut with a water saw into disc specimens with thickness of about0.7cm.To avoid end effects,two end pieces were discarded(0.7cm was removed from the bottom and about2cm from the top).Any excess of moisture on the surface was removed with a towel and the specimens were sealed in plastic bags at23±1°C until the age of testing.Table2 shows a summary of the cement pastes that were tested along with CNC concentrations.The CNC concentrations were calculated based on their volume fraction with respect to cement.To avoid confusion,both the quantities in mass and volume are listed here. Cement pastes were prepared at a water to cement ratio(w/c)of 0.35with seven different CNC concentrations.For consistency, the discussion will be based on the volume fraction in this paper.

2.2.Isothermal calorimetry

To obtain the degree of hydration(DOH)of the cement pastes, the heat?ow rate and cumulative heat release were measured with a TAM Air isothermal calorimeter[11].Immediately after mixing,25–35g of the paste sample was transferred to a glass ampoule(22mm in diameter and55mm in height),which was then sealed and placed into the chamber(maintained at 23±0.1°C)for measurement.Before the data collection started, the isothermal condition was held for45min to reach equilibration and the subsequent steady heat measurement was performed for approximately200h.

2.3.Thermogravimetric analysis

The thermogravimetic analysis(TGA)was performed using a TA Instruments SDT2960Simultaneous DTA–TGA instrument[12]as a complimentary method to obtain the DOH of CNC–cement pastes at three different ages:7,14and28days.At the ages of testing,the paste samples were demolded from the sealed plastic containers and ground into powders with mortar and pestle while evaporation was minimized,approximately65mg of powder was transferred Table1

Bogue compositions of Type V cement.

C3S(%)63.8 C2S(%)13 C3A(%)0

C4AF(%)–

C4AF+C2F(%)12.6 Blaine?neness(m2/kg)316

74Y.Cao et al./Cement&Concrete Composites56(2015)73–83

into the TGA chamber for measurement.First the temperature in chamber was increased from ambient temperature to140°C(the critical temperature reported in reference[13])by20°C/min.For the second step the chamber was kept at140°C for25min to remove the evaporable water in the sample.Subsequently,the sam-ple was heated,from140°C to1100°C at a rate of20°C/min,in an attempt to extract all chemically bound water(CBW).TGA was per-formed to obtain the DOH because at later ages the heat release rate from IC is so small that the measuring error might be considerably large.The TGA measurements were also performed on the individ-ual materials of CNC and cement for corrections.

2.4.Zeta potential

The zeta potential f is the potential between the liquid layer adjacent to the solid phase and the liquid layer constituting the bulk liquid phase[14]and is a measure of the magnitude of the electrostatic repulsion or attraction between particles[15,16].In this work,the zeta potentials of the CNC and cement particles were measured to investigate the af?nity between them in the fresh cement paste from the point of view of colloidal chemistry.The measurements were taken with a Zetasizer Nano ZS equipment from Malvern Instruments Ltd.[17].The CNC and cement particles were,respectively,diluted in DI water or simulated pore solution (introduced in later section)to a concentration of about0.2wt.% for measurements.

2.5.Water adsorption

Due to the high surface area of CNCs,the adsorption of water may result in a lowered effective water to cement ratio(w/c)in cement mixing and hence a change in the rheological properties of the fresh CNC–cement paste.To study this possible effect,the water adsorption of the dry CNC materials was measured with a Q5000SA absorption/desorption equipment from TA instruments [18].The CNC?lm was obtained by allowing the CNC suspension to dry in an oven at50±2°C for24h.After the?lm was weighed, the?lm was kept in the oven at the same temperature for another 12h leading to a mass change of less than0.5%.Then the CNC?lm was allowed to dry for36h in the desorption analyzer at0%RH. After an initial equilibrium period,the initial relative humidity (RH)in the chamber was increased to97.5%in steps of10%incre-ments,with a?nal step of7.5%.

2.6.Rheology

The rheological behavior was measured with a Bohlin Gemini HR nano rheometer from Malvern Instruments Ltd.[19].The test-ing geometry consisted of two40-mm parallel plates with serrated surface,which helped to avoid the slippage[20],separated with a gap of1mm.Fig.1shows the nominal surface geometry of the plates and the testing set-up with the fresh cement paste sample. All the tests were started at an age of about12±1min.As the cement pastes are in the dormant period it is expected that the material behavior does not change signi?cantly during the testing period due to hydration.A cover was placed around the fresh cement during the test to mitigate the edge drying/water evapora-tion.The?ve mixtures with low CNC concentration(0–0.5vol.%) were measured with a shear stress controlled ramp from5to 200Pa in6min with a logarithmic increase.The two systems with high CNC concentrations(1.0and1.5vol.%),had a much higher yield stress than the previous?ve,therefore the testing ramp was set from20to1000Pa,also in6min with a logarithmic increase.

2.7.Optical and scanning electron microscopy

To further investigate the interaction between CNCs and cement matrix and to obtain direct evidence of the CNCs location in the cement matrix,optical and backscattered scanning electron (BSE–SEM)microscope images of hardened cement pastes were obtained and investigated.The samples were demolded at the age of7days and cut into2cm?2cm?0.5cm specimens with a water cooled diamond tipped saw blade,and subsequently soaked in acetone for48h to replace the pore water and cease hydration.After oven-drying at55°C for24h,the samples were epoxy-saturated at low vacuum for4h and the epoxy solidi?cation was done at70°C for8h.As the BSE–SEM imaging requires a?at surface,the epoxy-impregnated samples were cut with a low-speed oil saw to expose a fresh surface and a polishing procedure was conducted on the sample surfaces using15,9,3,1,0.25l m diamond paste for4min each on top of Texmet paper.The polished samples were?rst imaged with an Olympus BX51optical micro-scope,and then coated with gold/palladium for subsequent BSE–SEM imaging using an FEI Quanta3D FEG equipment.

2.8.Ball-on-three-ball?exural test

The characterization of the?exural strength of the cement pastes was carried out with a multi-axial ball-on-three-ball(B3B)?exural test.In this testing set-up,the load is given by one ball pressuring downward at the center of the disc sample.Three ball supports are located beneath the sample in the corners of an equi-lateral triangle.Fig.2(a)shows a photo of one sample being tested with this?xture.There are several advantages of the B3B?exural tests over other,more traditional,?exural tests performed on beam specimens[3].For instance,the B3B?exural test requires round-disk samples,which can be easily obtained in large quantities from sectioning a cylinder.The geometry and loading conditions gener-ate a state of biaxial tensile state in the center of the specimen,that makes it more sensitive to defects in all the in-plane directions of the disk[21,23].For example,longitudinal cracks are not likely to be detected in three-or four-point bending tests because of their orientation with respect to the tensional direction[22].

The?exural B3B strength is obtained by the following expres-sion derived by B?rger et al.[23,24]:

Table2

Experimental matrix for CNC-reinforced cement pastes(CP).

Mixture number wt.(g)vol.(cm3)CNC/cement(vol.%)

Cement Water CNC Cement Water CNC

CP-1(reference)5001750.000160.31750.0000.000

CP-25001750.103160.31750.0640.040

CP-35001750.256160.31750.1600.100

CP-45001750.513160.31750.3210.200

CP-5500175 1.282160.31750.8010.500

CP-6500175 2.564160.3175 1.603 1.000

CP-7500175 3.846160.3175 2.404 1.500

Y.Cao et al./Cement&Concrete Composites56(2015)73–8375

Fig.1.(a)The pyramid-shaped surface serrations of the plates.(b)The schematics of the testing set-up.

B3B?xture and a specimen.(b)Top view of the testing set-up.The dotted circles represent the three support balls

r?fea;b;mTF

t2

where r is the B3B?exural strength,a and b the geometry param-eters,m the Poisson’s ratio,F the peak load,t the sample thickness [23,24].

3.Results and discussion

3.1.Degree of hydration

Since cement hydration is an exothermic reaction,the rate of heat?ow(dQ)and cumulative heat evolution(Q)measured in the cement can be directly related to the rate of hydration and degree of hydration(DOH).The DOH was estimated by the ratio Q/Q1,where Q represents the cumulative heat released before a certain age and Q1is the theoretical amount of cumulative heat when the cement is fully hydrated.Q1can be obtained by multi-plying the theoretical value of each hydration component(C3S, C2S,C3A,and C4AF)with the proportion of each component[25]. With the measurements of isothermal calorimetry(IC)described above,Fig.3shows the results of the cumulative heat for the?rst 200h of the seven mixtures with different CNC concentrations.It is observed that after the?rst25h,the cumulative heat increases with the CNC concentration.This trend continues until the end of the test(at an age of200h)where the increase of cumulative heat with CNC content prevails.It is found that the cumulative heat for the mixture with1.5%of CNC at200h is280J/g,which is about 16%higher than that of the reference mixture(without CNC)at the same age.This means that the DOH of the cement paste is increasing with the CNC addition.It is noteworthy that during the?rst25h the cumulative heat shows an opposite trend that, with more CNCs the mixture has less heat release at a certain age.This retardation may be caused by the CNCs adhering on the cement particles and reducing the reaction surface area between the base(100%).These results clearly show that the weight loss of the CNC–cement paste is increased with increasing concentra-tions of the CNC.For example,the reference sample has a?nal weight of91.8%while the1.5vol.%mixture is88.4%and the weight loss difference between these two samples is3.4%.This means that more water reacts with cement when the CNCs are present at any given age.This evidence,together with the IC results,supports the hypothesis that CNCs help to improve the DOH of the cement pastes.There are two interesting features shown by Fig.4:(1) The decrease in mass observed between440°C and520°C corre-lates with the decomposition of Ca(OH)2[13];(2)The weight loss differences between the seven mixtures after about500°C are much higher than before this temperature.This characteristic is nontrivial and might be directly related with the mechanism of the DOH improvement,which will be discussed in Section3.2.

DOH is calculated with the method introduced by Pane and Hansen[13]that states that the weight loss between140and 1100°C is considered as the amount of CBW,which is divided by the?nal weight the material to obtain the mass of CBW per unit gram of unhydrated cement.With the assumption that the CBW is0.23g per unit gram of cement when fully hydrated[13,26], the DOH can be easily obtained by dividing the mass of CBW per unit gram of unhydrated cement with0.23g.Fig.5summarizes all DOHs at the three different ages from TGA measurements,from which it can be observed that the DOHs for cement pastes with 1.5vol.%of CNC are improved with respect to the reference case to14%,16%,20%for7,14and28days,respectively.

One possible explanation for the improvement in DOH with CNC additions at the same w/c,is that the CNCs are helping the cement particles react more ef?ciently with water.This could be due to steric stabilization,which is the same mechanism observed in some types of water reducing admixtures(WRA)(e.g.,polycarb-oxylated based)to disperse cement particles during cement mixing resulting in?ner and more uniform distributions of cement[27].

Fig.3.Cumulative heat of CNC-reinforced cement pastes for the?rst200h.Fig.4.7-day TGA results from140to about1100°C with the mass at140°C as base(100%).The weight loss increases with CNC volume fraction.

Y.Cao et al./Cement&Concrete Composites56(2015)73–8377

mass of water adsorbed is plotted with respect to the CNC?lm mass.At the RH of97.5%,which can be considered as the environ-ment in which CNCs are immersed in water,the water adsorption 34%.This amount is considered negligible in cement mixing.For example,for the mixture with1.5%of CNC,the adsorbed water only about0.7%of the total mixing water in mass.As the water adsorption is only an insigni?cant amount,the effect of the af?nity between CNC and water can be disregarded when discussing the rheological properties of fresh mixtures.

3.2.2.Rheological properties

The yield stress of the mixtures is obtained with the rheological experiments using the testing geometry and parameters described Section2.6,For this tests,eleven different mixtures were mea-sured,four more mixtures than those described in Table2.These extra mixtures(i.e.,0.02%,0.03%,0.06%and0.07%)were added investigate the yield stress in the low CNC concentration region. Fig.7summarizes the yield stress of fresh cement pastes with dif-ferent CNC/cement volume fractions,among which the reference sample(0%CNC)has a yield stress of48.5Pa.The trend observed here is that the yield stress decreases with increasing CNC content from the plain mixture and reaches a minimum15.9Pa at concentration of0.04%and then increases with further increasing the CNC additions.At approximately0.3%CNC,the yield stress reaches the initial yield stress for the reference case.While for CNC concentrations higher than0.3%,the stress increases dramat-ically reaching values of up to600Pa for a concentration of1.5%. There are two dominant mechanisms that could be responsible for the trend of the decrease and increase in the yield stress.On one hand,the decrease of yield stress at low concentration CNC may be due to the steric stabilization,a mechanism that has also been observed with water reducing admixtures[27].On the other hand,the increase in yield strength at high CNC concentra-tions is likely due to the agglomeration of CNCs in the fresh cement paste pore solution.The yield stress increases as the CNCs form network and require larger forces to break or align them.As result,the changes in yield stress of cement pastes with CNCs could explained by a combined effect of steric stabilization and agglomeration.When the concentration is low(e.g.,below0.3%), steric stabilization dominates,while the agglomeration determines the yield stress after the concentration is much higher(e.g.,higher than0.3%).

3.2.3.Isothermal calorimetry

Cement hydration is a sum of chemical reactions between cement and water.If a third type of nonreactive materials adhere

Fig.5.The DOHs obtained from TGA at three ages.

Fig.6.Water adsorption of dry CNCs with increasing relative humidity.

Fig.7.Yield stress of CNC-reinforced cement pastes with different concentrations.

Fig.8.Heat?ow curves of the CNC-reinforced cement pastes for the?rst40h.

onto the cement particles,reducing their reactive surface,the hydration process may be affected.A direct way to monitor the extent of reaction is to measure the heat?ow rate with IC(which can be obtained as the derivative of the cumulative heat versus age pastes were epoxy-impregnated and polished following the proce-dure described in the previous section.Both the BSE–SEM and opti-cal images were taken for the reference and the1.5%mixture to capture the features related with CNCs.Fig.9is a comparison

reference and(b)1.5%mixture at the age of7days.The1.5%CNC mixture shows ring features surrounding

Y.Cao et al./Cement&Concrete Composites56(2015)73–8379

carried out in a controlled pH environ-

of pH are considered in this investiga-

with a pH of7,and the fresh cement

simulated pore solution was prepared

given by Rajabipour et al.[30]at the age

water to achieve a pH of12.71for the measurements.The zeta potentials for the CNC and

different pH environments–neutral cement pH(12.71)are listed in Table3.

the pH does not signi?cantly change the

absolute value of the zeta potential for

that of CNC,which means that com-particles have a much stronger tendency

between the particles have following

order:

fecement—cementT>fecement—CNCT>feCNC—CNCTIn other words,CNCs tend to adhere onto cement particles rather than to agglomerate themselves,which is consistent with the mechanism of steric stabilization that an af?nity between CNC and cement particles is required.However,this mechanism also indicates that the CNCs should be relatively well dispersed and able to separate the cement particles from each other.While the zeta potential results show that the af?nity between cement

reference and(b)1.5%mixture at the age of7days.The1.5%CNC mixture shows ring features surrounding

and cement particles.

Cement CNC

à10.4mVà64.0mV

à9.1mVà51.0mV

Fig.11.7-day DOHs from IC of the cement pastes with the same volume fraction

CNC and https://www.360docs.net/doc/0516670342.html,C mixtures exhibit higher DOHs than the WRA mixtures in

range.

Y.Cao et al./Cement&Concrete Composites56(2015)73–8381

illustration of the proposed hydration products forming around the cement grain from the age of0–48h in the(a)plain cement cement particle showing SCD.

line)for a cement particle without CNC.Fig.12(b)shows the same process with CNCs.For illustration and comparison purposes CNCs are placed only over a selected region of the cement surface.SCD is shown with an arrow indicating the extra hydration products growing inwards to the center of the cement particle.It is therefore expected that the inward growth in places without CNCs will have a slower rate than those in the CNC-rich regions.It is also likely that SCD may only be triggered by a critical concentration of CNCs in the hydration product shell.

3.3.Flexural strength

The?exural strengths of the cement pastes with increasing CNC concentrations were measured for4different ages3,7,21and 28days with the ball-on-three-ball tests(B3B)and the results are shown in Fig.13.At the age of3days,the strength increases with increasing concentration of CNCs,while for older ages,the strength reaches a peak at around0.2%of CNC and then decreases. This may be caused by agglomeration of CNCs at higher concentra-tions that act as stress concentrators(i.e.,defects)in the cement. The agglomeration observed from the rheological measurements is consistent with that proposed here.

As the steric stabilization is also likely to improve the mechan-ical performance of cementitious materials,it is reasonable to com-pare the?exural strengths of the cement pastes with CNC and WRA.The B3B?exural strengths for the cement pastes with WRA were measured at the ages of3and7days and plotted against the values obtained for CNCs in Fig.14.It should be mentioned that the comparison can only be done until0.5vol.%of CNC/WRA.This due to the strong segregation in the cement and water for higher concentrations of WRA.

From Fig.14,it is observed that there is a slight increase with increasing WRA concentration from0%to0.2vol.%The DOH results show that the CNC are more effective in improving the strength than WRA.This is consistent the increase in DOH shown Fig.11.

It is hypothesized that the main mechanism for strengthening can be directly attributed to the increase in DOH for high concen-trations of CNCs.This can be analyzed by plotting the B3B?exural strengths against DOHs obtained from isothermal calorimetry. Fig.15shows the relationship between the B3B?exural strengths the ages of3and7days with the DOH data from isothermal cal-orimetry(denoted as IC).The data in this plot is obtained from specimens with different CNC content(as obtained directly from Fig.13).As it can be observed,the B3B?exural strength increases nearly linearly as a function of DOH.This increase in strength is ini-tially linear with respect to DOH until a value of DOH58%.The last two points do not seem to follow this linear trend.However,those points correspond to concentration of1%and 1.5%of CNC for 7days.As discussed before,and observed in Fig.13,specimens with such a high concentration of CNCs begin to show signs of early failure,mainly caused by CNC agglomeration.

4.Conclusions

This paper examined how the addition of cellulose nanocrystals (CNCs)modi?ed the performance of cement paste.It was observed that the?exural strengths of cement pastes with modest concen-trations of CNC were about20%to30%higher than the cement paste without CNCs.It was hypothesized that this increase can be attributed to the increase in DOH of the cement pastes when CNCs are used.Based on experimental observations,two mecha-nisms are proposed to explain the increase on DOH:(1)Steric sta-bilization is responsible for dispersing the cement particles.This mechanism is also exhibited by water reducing admixtures to improve workability.This dispersion effect is veri?ed by rheologi-cal measurements for CNC–cement pastes,in which a decreased yield stress is observed with a low concentration of CNCs.(2)The CNC systems appear to exhibit a bene?t due to a mechanism that will be referred to as short-circuit diffusion:Short circuit diffusion

Fig.13.The B3B?exural strengths of CNC-reinforced cement pastes at4different ages.

Fig.14.The B3B?exural strengths of cement pastes with the WRA and CNC at two different ages.Fig.15.The relationship between B3B?exural strengths and the DOHs.The strength is increasing with DOH.

describes how the CNCs appear to provide a channel for water transporting through the hydration products ring(i.e.,high density CSH)to the unhydrated cement particle and thereby improving hydration.The B3B?exural strengths increases with CNC concen-tration reaching a peak at0.2vol.%of CNC.At higher concentra-tions of CNC the strength decreases.This can be explained by the agglomeration of CNCs that acts as a stress concentrations in the cement paste.This peak of0.2%is also consistent with the rheolog-ical results that show that for higher CNC loadings the yield stress increases signi?cantly due to the agglomeration.

Acknowledgments

This research was supported by the National Science Founda-tion through Awards no.CMMI#1131596.The authors are grateful to Carlos Martinez for supplying the rheometer and for many stim-ulating discussions on the rheological properties of CNC suspen-sions.We are grateful for Rick Reiner from the USFS Forest Products Laboratory for providing the CNC suspensions. References

[1]Balaguru PN,Shah SP.Fiber reinforced cement composites.New

York:McGraw-Hill;1992.

[2]Moon RJ,Martini A,Nairn J,Simonsen J,Youngblood J.Cellulose nanomaterials

review:structure,properties and nanocomposites.Chem Soc Rev 2011;40(7):3941–94.

[3]Konsta-Gdoutos M,Metaxa Z,Shah S.Multi-scale mechanical and fracture

characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites.Cem Concr Compos2010;32(2):110–5. [4]Li G,Wang P,Zhao X.Mechanical behavior and microstructure of cement

composites incorporating surface-treated multi-walled carbon nanotubes.

Carbon2005;43(6):1239–45.

[5]Li G,Wang P,Zhao X.Pressure-sensitive and microstructure of carbon

nanotube reinforced cement composites.Cem Concr Compos 2007;29(5):377–82.

[6]Metaxa Z,Honsta-Gdoutos M,Shah S.Carbon nanotubes reinforced concrete.

In:New Orleans,Sobolev K,Taha MR,editors.Nanotechnology of concrete:the next big thing is small.ACI special publications;2009.p.11–20.

[7]ACI Committee544.544.1R-96:Report on?ber reinforced concrete

(Reapproved2009);1996.

[8]Habibi Y,Dufresne A.Highly?lled bionanocomposites from functionalized

polysaccharide nanocrystals.Biomacromolecules2008;9(7):1974–80.

[9]Forest Products Laboratory.Nanocellulose Pilot Plant.

https://www.360docs.net/doc/0516670342.html,>[accessed11/2014].

[10]Renfert.Twister vacuum mixer.

equipment/mixing-technology/twister-evolution.html>[accessed11/2014].[11]TA Instruments.TAM Air Isothermal Calorimetry.

https://www.360docs.net/doc/0516670342.html,/main.aspx?siteid=11&id=217&n=4>[accessed11/ 2014].

[12]TA Instruments.SDT2960Simultaneous DTA-TGA.

https://www.360docs.net/doc/0516670342.html,/Scienti?c/73451/

TA_Instruments_SDT_2960_Simultaneous_DTA_TGA_DSC_TGA>[accessed11/ 2014].

[13]Pane I,Hansen W.Investigation of blended cement hydration by isothermal

calorimetry and thermal analysis.Cem Concr Res2005;35(6):10.

[14]N?gele E.The Zeta-potential of cement.Cem Concr Res1985;15(3):453–62.

[15]Kirby B,Hasselbrink E.Zeta potential of micro?uidic substrates:1.Theory,

experimental techniques,and effects on separations.Electrophoresis 2004;25(2):187–202.

[16]Greenwood R,Kendall K.Selection of suitable dispersants for aqueous

suspensions of zirconia and titania powders using acoustophoresis.J Eur Ceram Soc1999;19(4):479–88.

[17]Malvern Instruments.Zetasizer Nano ZS.

products/product-range/zetasizer-range/zetasizer-nano-range/zetasizer-

nano-zs>[accessed11/2014].

[18]TA Instruments.Q5000SA Dynamic vapor sorption analyzer.

https://www.360docs.net/doc/0516670342.html,/product.aspx?id=135&n=1&siteid=11>[accessed 11/2014].

[19]Malvern Instruments.Bohlin Gemini HR Nano Rheometer.

https://www.360docs.net/doc/0516670342.html,/Scienti?c/73457/

Malvern_Bohlin_Gemini_HR_Nano_Rheometer>[accessed11/2014].

[20]Ferraris CF,Geiker M,Martys NS,Muzzatti N.Parallell-plate rheometer

calibration using oil and computer simulation.J Adv Concr Technol 2007;5(3):363–71.

[21]de With G,Wagemans HHM.Ball-on-ring test revisited.J Am Ceram Soc

1989;72(8):1538–41.

[22]Lee JH,Park SE,Lee HJ,Lee HL.Thermal shock behaviour of alumina ceramics

by ball-on-3-ball test.Mater Lett2002;56(6):1022–9.

[23]B?rger A,Supancic P,Danzer R.The ball on three balls test for strength testing

of brittle discs:stress distribution in the disc.J Eur Ceram Soc 2002;22(9):1425–36.

[24]B?rger A,Supancic P,Danzer R.The ball on three balls test for strength testing

of brittle discs:Part II:analysis of possible errors in the strength determination.J Eur Ceram Soc2004;24(10):2917–28.

[25]Barnes P,Bensted J.Structure and performance of cements.New York:Spon

Press,Taylor&Francis Group;2002.

[26]Young JF,Hansen W.Volume relationships for C–S–H formation based on

hydration stoichiometry.In:Struble L,Brown P,editors.MRS proceedings;

1986.p.313–820.

[27]Nawa T.Effect of chemical structure on steric stabilization of polycarboxylate-

based superplasticizer.J Adv Concr Technol2006;4(2):225–32.

[28]Mindess S,Young JF,Darwin D.Concrete.New Jersey:Pearson Education Inc.;

2002.

[29]N?gele E.The zeta-potential of cement.Part II:effect of pH-value.Cem Concr

Res1986;16(6):853–63.

[30]Rajabipour F,Sant G,Weiss J.Interactions between shrinkage reducing

admixtures(SRA)and cement paste’s pore solution.Cem Concr Res 2008;38(5):606–15.

Y.Cao et al./Cement&Concrete Composites56(2015)73–8383

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

羟乙基纤维素性质

羟乙基纤维素(HEC) 是一种白色或淡黄色,无味、无毒的纤维状或粉末状固体, 由碱性纤维素和环氧乙烷(或氯乙醇) 经醚化反应制备, 属非离子型可溶纤维素醚类。由于HEC 具有良好的增稠、悬浮、分散、乳化、粘合、成膜、保护水分和提供保护胶体等特性, 已被广泛应用在石油开采、涂料、建筑、医药食品、纺织、造纸以及高分子聚合反应等领域。40目过筛率≥99%;软化温度:135-140℃ ;表现密度:0.35-0.61g/ml;分解温度:205-210℃ ;燃烧速度较慢;平衡含温 量:23℃ ;50%rh时6%,84%rh时29%。 化学名称 一、羟乙基纤维素(HEC) 结构式: 二、技术要求 质量标准项目指标 摩尔取代度(M.S) 1.8-2.0 水份(%) ≤10 水不溶物(%)≤0.5 PH值 6.0-8.5 重金属(ug/g)≤20 灰分(%)≤5 粘度(mpa.s)2%20℃水溶液 5-60000 铅(%)≤0.001 编辑本段性状 既溶于凉水溶于热水,一般情况下在大多数有机溶媒中不溶。PH值在2-12范围内粘度变化较小,但超过此范围粘度下降。 编辑本段重要性质 羟乙基纤维素作为一种非离子型的表面活性剂,除具有增稠、悬浮、粘合、浮化、成膜、分散、保水及提供保护胶体作用外,还具有下列性质: 1、 HEC可溶于热水或冷水,高温或煮沸不沉淀,使它具有大范围的溶解性和粘度特性,及非热凝胶性; 2、本身非离子型可与大范围内的其他水溶性聚合物,表面活性剂、盐共存,是含高浓度电解质溶液的一种优良的胶体增稠剂; 3、保水能力比甲基纤维素高出一倍,具有较好的流动调节性,

4、 HEC的分散能力与公认的甲基纤维素和羟丙基甲基纤维素相比分散能力最差,但保护胶体能力最强。 编辑本段羟乙基纤维素使用方法 一.直接在生产时加入 1.于备有高应切搅拌器的大桶中加入净水。 2.开始低速不停地搅拌亦慢慢把羟乙基纤维素均匀筛入溶液中。 3.继续搅拌至所有颗粒物湿透。 4.然后加入防雷剂,碱性添加剂等如颜料、分散助剂、氨水。 5.搅拌至所有羟乙基纤维素完全溶解(溶液粘度明显增加)才加入配方中其他组份,研磨至成 品为止。 二、配备母液候用 此法是先配备浓度较高之母液,然后再加入乳胶漆中。此法优点是有较大的灵活性,可以直接加入漆成品中,但应适当贮存。步骤与方法1中1-4部相似,不同之处是无须高拌至完全溶解成粘稠溶液。 三、配成粥状物候用 由于有机溶剂对羟乙基纤维素来说是不良溶剂,因此可用这些有机溶剂来配备粥状物。最常用之有机溶剂是漆配方中的有机液体如乙二醇、丙二醇和成膜剂(如乙二醇或二乙二醇丁基醋酸脂)。冰水亦是不良溶剂,故冰水亦常与有机液体一起,用于配备粥状物。粥状物之羟乙基纤维素可直接加入漆中,在粥状时羟乙基纤维素已被兖分泡涨。当加入漆中后,便马上溶解,并起增稠作用。加入后仍须不断搅拌直至羟乙基纤维素完全溶解,均匀为止。一般粥状物是用六份有机溶剂或冰水与一份羟乙基纤维素混合成,约6-30分钟后,羟乙基纤维素便水解并明显地发涨。夏季时一般水温度太高,不宜用配备粥状物。 编辑本段注意事项 由于经表面处理的羟乙基纤维素是粉状或纤维素固体,只要注意下列事项,则很容易操作并使之溶于溶水中。 1.在加入羟乙基纤维素前和后,均必须不停地搅拌,直至溶液完全透明澄清为止。

常见食品纤维素含量

常见食品纤维素含量常见食品的纤维素含量

麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。

麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。(无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维。20%素含量也较高,达到. 黑芝麻、松子、10%以上的有:。坚果:3-14%以下的有白芝麻、核桃、榛子、胡桃、;10%杏仁

葵瓜子、西瓜子、花生仁。含量最多的是红果干,纤维素含量接近:水果大枣、酸枣、黑枣、其次有桑椹干、50%,樱桃、小枣、石榴、苹果、鸭梨。各种肉类、蛋类、奶制

品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品 2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。. 3、蕨菜:其所含的膳食纤维能促进胃肠动,具有下气通便、清肠排毒的作用。经常食用

还可降低血压缓解头晕失眠治疗风湿性关炎等作用。其所含的膳食纤维能促进胃肠蠕动具有下气通便清肠排毒的作用经常食用还降低血压缓解头晕失眠治疗风湿性关节

药用辅料羟丙基甲基纤维素在制剂中的应用

药用辅料羟丙基甲基纤维素在制剂中的应用 一、前言 药剂辅料不仅是原料药物制剂成型的物质基础,而且与制剂工艺过程的难易程度、药品质量、稳定性、安全性、释药速度、作用方式、临床疗效以及新剂型、新药途径的开发密切相关。新药用辅料的出现往往推动着的提高以及新剂型的发展。药用辅料羟丙基纤维素(HPC)是由碱性纤维素与环氧丙烷在高温高压下反应而得的非离子型纤维素醚。根据其取代基羟丙氧基含量的高低,其分为低取代羟丙基纤维素(LS-HPC或L-HPC)(中国药典称其为羟丙纤维素,规定其羟丙氧基含量为7.0%~16.0%),和高取代羟丙基纤维素(H-HPC;USP/NF中则为HPC)(USP/NF 中规定其羟丙氧基含量不得超过80. 5%;JP中则规定为53. 4% ~77.5%)。L-HPC 和H-HPC均为白色或类白色粉末,无臭,无味,无毒安全,具有良好的抗菌性。L-HPC 在水中溶胀成胶体溶液,在乙醇、丙酮或乙醚中不溶,具有黏合、成膜、乳化等性质,主要被用作崩解剂和黏合剂;而H-HPC常温下溶于水和多种有机溶剂,具有良好的热塑性、黏结性和成膜性,所成的膜坚硬、光泽度好、弹性充分,主要被用作成膜材料和包衣材料等。 羟丙基甲基纤维素( HPMC) 是纤维素衍生物,也是目前国内和国外最受欢迎的药用辅料之一,由于它相对分子质量和黏度的不同,具备乳化、黏合、增稠、增黏、助悬、胶凝和成膜等特点和用途,在制药技术中用途广泛。 二、HPMC的基本性质 羟丙基甲基纤维素( HPMC) ,HPMC为白色或乳白色、无臭无味、纤维状粉末或颗粒,干燥失重不超过10%,能溶于冷水而不溶于热水,在热水中缓缓膨胀、胶溶,形成粘稠的胶体溶液,冷却为溶液,加热时相应地成为凝胶。HPMC不溶于乙醇、氯仿和乙醚,溶于甲醇和氯甲烷混合溶剂中,也溶于丙酮,氯甲烷和异丙醇的混合溶剂以及其它一些有机溶剂中。其水溶液能耐盐(其胶体溶液不被盐类破坏),1%水溶液的pH6一8。HPMC分子式为C8H15O8-( C10H18O6) -C815O,相对分子质量约为86 000。本品为半合成材料,是纤维素的部分甲基和部分聚羟丙基醚。HPMC 属于一种非离子型纤维素醚,它的溶液不带离子电荷不与金属盐或离子)*+, 是纤维素的部分甲基和部分聚羟丙基醚; 具有许多其他辅料所不具备的特性。它有优异的冷水水溶性,在冷水中稍加搅拌便能溶解成透明的溶液,反而在60℃以上热水中基本不溶解,仅能溶胀,它是一种非离子型纤维素醚,其溶液不带离子电荷,不与金属盐或离子有机化合物作用,它在制剂生产过程中不与其他原辅料反应;它具有较强的抗敏性,且随分子结构内取代度的提高,其抗敏性更强,也更稳定;它还具有代谢惰性,作为药用辅料,不被代谢,不被吸收,故在药品食品中不提供热量,对糖尿病患者需用的低热值、无盐、无变原性药品及食品具有独特适用性;它对酸和碱比较稳定,但若PH 值超出2~11并同时受较高温度影响或存放时间较长,其黏度则会降低;其水溶液能提供表面活性,呈现出适度的表面张力与界面张力值;它在两相体系中具有有效的乳化作用,可作为有效的稳定剂和保护胶体;其水溶液具有优良的成膜性能,是片剂和丸剂的良好包衣材料。由它形成的膜具有无色、坚韧的优点,加入甘油还可提高它的可塑性。

新型再生纤维素纤维

新型再生纤维素纤维 小组成员:翁密侬 41006010214 刘肖肖 41006010219 冯莹莹 41006010215 张玲玲 41006010217 张亚婷 41006010209 顾恬静 41006010206

新型再生纤维素纤维的发展前景 (一)资源前景 从长远看,合成纤维的原料石油是一次性资源,终会枯竭,因此,在这一背景下,发展纤维素纤维是解决纺织品原料的长远之计。自然界纤维年产量约1000亿吨,大约只有2.5%是通过再生途径制成纤维加以利用的。可见,纤维素资源十分丰富,而且加上纤维素是可再生的自然资源,具有可持续性、可循环性。因此,作为纺织品的原料,从资源供应量这一方面来说,再生纤维素纤维有着相当大的竞争力,发展前景十分可观。 (二)市场前景 自1960年以来,世界纤维消耗量的增长与人口增长呈并行发展趋势及对2020年世界人口和纤维消耗量增长的预测,2020年世界纤维的总消耗量为7000万吨,人均9.2kg。若再生纤维素纤维仍保持在目前的水平上,则棉纤维须从目前的1800万吨增加到3200万吨,而生产这些棉纤维所需资源(土地和水)几乎是无法到达的,而作为棉纤维代用品的再生纤维素的原料木材等将大幅增加。因此,大力发展再生纤维素纤维既是市场的需求,从资源方面来说又是可能的。另外,随着人们对舒适健康生活重视的提高,保健纺织品引起了消费者的极大关注。而后面介绍的四种新型再生纤维素纤维中,竹纤维和甲壳素纤维都有保健功能,竹纤维在生产过程中无虫蛀、无腐烂、无需使用任何农药,且因为竹子的天然抗菌性,使纤维在服用中不会对皮肤造成任何过敏性反应。甲壳素纤维具有抑菌、防臭、止痒等功能。可见,新型再生纤维素纤维有着相当大的市场潜力。 (三)绿色前景 当今,由于全球生态环境受到严重的破坏,环境污染日趋严重,环保议题已成为全人类共同关心的焦点,因此,在“我们只有一个地球”的口号下,消费者越来越多地考虑到产品对生态的影响,生产过程对环境的影响,天然资源的消耗及产品的可处理性等问题,从而,在人们思想意识中逐渐形成“绿色产品”、“绿色消费”、“绿色营销”等观念,且已形成一股国际潮流。据经济协作与开发组织(OECD)在OECD国家中作过的调查表明,大部分消费者愿意选购较高的环保产品。加拿大一项全国性民意调查中,有80%接受调查者表示,如果环保产品价格比一般产品价格高出10%左右,还是愿意购买环保产品。前面介绍的四种新型再生纤维素纤维都属于绿色纤维,在生产过程中不会对生态环境造成危害;纤维制

纤维素醚的概述要点

纤维素醚的概述: 纤维素醚是一种非离子型半合成的高分子聚合物,具有水溶性和溶剂性两种,在不同行业中所引起的作用是不同的,比如在化学建材中,它具有一下复合作用:①保水剂②增稠剂③流平性④成膜性⑤粘结剂;而在聚氯乙烯行业,它就是一种乳化剂、分散剂;在医药行业,它就是一种粘结剂和缓控释骨架材料等,正因为纤维素具有多种的复合作用,所以它的应用领域也最为广泛。下面我重点介绍一下纤维素醚在各种建材中的使用方法和作用。 1、乳胶漆中: 在乳胶漆行中,要选择羟乙基纤维素中,等粘度的一般规格为30000-50000cps,它与HBR250规格相对应,参考用量一般是1.5‰-2‰左右。羟乙基在乳胶漆中的主要作用,就是增稠,防止颜料凝胶化,有助于颜料的分散,胶乳,的稳定,并可以提高组份的粘度,有助于施工的流平性能:羟乙基纤维素使用比较方便,冷水、热水都可以溶解,并且不受PH值的影响,在PI值2一12之间都可以安心使用,使用的方法是由以下三种: I、直接在生产中加入: 此方法应该选择羟乙基纤维素延迟型的,溶解时间在30分钟以上的羟乙基纤维素,其使用步骤如下:①于备有高应切搅拌器的容器内力口人定量的纯净水②开始低速不停的搅拌,同时慢慢地把羟乙基均匀的加入溶液中③继续搅拌至所有颗粒物料湿透④加入其它助剂和碱性添加剂等⑤搅拌至所有羟乙基完全溶解,再加入配方中的其它组份,研磨到成品为止。 Ⅱ、配备母液侯用: 此方法可选择速溶型,并且具有防霉效果纤维素。此方法的优点是有较大的灵活性,可以直接加 入乳胶漆中,配制方法同①--④步骤相同。 Ⅲ、配成粥状物侯用: 由于有机溶剂对羟乙基来说是不良溶剂(不溶)因此可用这些溶剂配制粥状物。最常用有机溶剂是乳胶漆配方中的有机液体,如乙二醇、丙二醇和成膜剂(如二乙二醇丁基醋酸脂),粥状物羟乙基纤维素可以直接加入漆中,加入后仍继续搅拌至完全溶解为止。 2、刮墙腻子中: 目前,我国在大部分城市耐水、耐擦洗的环保型腻子已基本被人们所重视,在前几年间,由于用建筑胶水做成的腻子放射出甲醛气体损害人们的身体健康,建筑胶水是用聚乙烯醇和甲醛进行缩醛反应制的。所以这种材料逐渐被人们淘汰,而替代此材料的就是纤维素醚系列产品,也就是说发展环保建材,纤维素是目前唯一的一种材料。 在耐水腻子中又分为干粉腻子和腻子膏两种,这两种腻子中一般要选择甲基纤维素和羟丙基甲基两种,粘度规格一般在40000-75000cps之间最宜,在腻子中纤维素的主要作用就是保水、粘结、润滑等作用。 由于各个厂家的腻子配方不一样,有的是灰钙、轻钙、白水泥等,有的是石膏粉、灰钙、轻钙等,所以两种配方选择纤维素的规格粘度及其渗入量也不一样,一般的加入量为2‰-3‰左右。

食品营养标签管理规范--膳食纤维(简)

食品营养标签管理规范 卫生部印发 2008年5月1日开始实施 推荐性法规:国家鼓励食品企业对其生产的产品标示营养标签。卫生部根据本规范的实施情况和消费者健康需要,确定强制进行营养标示的食品品种、营养成分及实施时间。 营养标签是指向消费者提供食品营养成分信息和特性的说明,包括营养成分表、营养声称和营养成分功能声称。 食品企业在标签上标示食品营养成分、营养声称、营养成分功能声称时,应首先标示能量和蛋白质、脂肪、碳水化合物、钠4种核心营养素及其含量。 膳食纤维的定义 膳食纤维(dietary fiber)膳食纤维是指植物中天然存在的、提取的或合成的碳水化合物的聚合物,其聚合度DP ≥ 3、不能被人体小肠消化吸收、对人体有健康意义的物质。包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分等。 食品中产能营养素的能量折算系数 表 1 食物中产能营养素的能量折算系数 * 1 营养成分的标示

包括能量和核心营养素的标识以及宜标示的营养成分的标示,膳食纤维属于宜标识的营养成分。 膳食纤维包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分。膳食纤维可根据其成分选择检测方法和标示方式。 1)以国标或GB/T 9822测定数据,标示为: 不溶性膳食纤维…克(g); 2)以AOAC 、AOAC 方法测定数据,标示为: 膳食纤维…克(g);也可标示为:膳食纤维、可溶性膳食纤维、不可溶性膳食纤维, 例如:膳食纤维…克(g) 或膳食纤维…克(g) --可溶性膳食纤维…克(g)(自愿) --不溶性膳食纤维…克(g)(自愿) 3)以AOAC其他方法测定的膳食纤维单体成分的数据,可标示出膳食纤维和单体成分如“膳食纤维(以xxx计)…克或g ”, 例如:膳食纤维(以菊粉计)…克(g) “零”数值的表达 当某食品营养成分含量低微,或其摄入量对人体营养健康的影响微不足道时,允许标示“0”的数值。可标示的“0”的界限值如下表: 表5 标示“0”的界限值

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

纤维素醚的种类详细介绍

纤维素醚的种类及作用机理 保水剂是改善干混砂浆保水性能的关键外加剂,也是决定干混砂浆材料成本的关键外加剂 之一,其主要来源是纤维素醚。 1.1羟丙基甲基纤维素醚 羟丙基甲基纤维素是碱纤维素与醚化剂在一定条件下反应生成一系列产物的总称。碱纤维 素被不同的醚化剂取代而得到不同的纤维素醚。按取代基的电离性能,纤维素醚可分为离 子型(如羧甲基纤维素)和非离子型(如甲基纤维素)两大类。按取代基的种类,纤维素 醚可分为单醚(如甲基纤维素)和混合醚(如羟丙基甲基纤维素)。按可溶解性不同,可 分为水溶性(如羟乙基纤维素)和有机溶剂溶解性(如乙基纤维素)等,干混砂浆主要用 水溶性纤维素,水溶性纤维素又分为速溶型和经过表面处理的延迟溶解型。 纤维素醚在砂浆中的作用机理如下: (1)砂浆内的纤维素醚在水中溶解后,由于表面活性作用保证了胶凝材料在体系中有效 地均匀分布,而纤维素醚作为一种保护胶体,“包裹”住固体颗粒,并在其外表面形成一 层 润滑膜,使砂浆体系更稳定,也提高了砂浆在搅拌过程的流动性和施工的滑爽性。 (2)纤维素醚溶液由于自身分子结构特点,使砂浆中的水份不易失去,并在较长的一段 时间内逐步释放,赋予砂浆良好的保水性和工作性。 1.1.1甲基纤维素(MC)分子式\[C6H7O2(OH)3-h(OCH3)n\]x 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取 代度为1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常 稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会 出 现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高低与保水率的 高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几 种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂 浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹 工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大, 工 人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘 着力处于中等水平。 1.1.2羟丙基甲基纤维素(HPMC)分子式为\[C6H7O2(OH)3-m-

食用纤维素

食用纤维素(网摘) 纤维素虽然不能被人体吸收,但具有良好的清理肠道的作用,因此成为营养学家推荐的六大营养素之一,具有很好的肠道质素作用。各种食物的纤维素含量--麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。麦片:8-9%;燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:发菜、香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20% 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。富含纤维素的食品之于冠心病,能降低胆固醇。胆固醇是造成动脉粥样硬化的原因之一,是由于血浆胆固醇的增加,使较多的胆固醇沉积在血管内壁。其结果不仅降低了血管的韧性和弹性,而且使血

管内壁加厚,管径变细,影响血液流通,增加了心脏的负担。而食品中的粗纤维能与胆固醇相互结合,防止血浆胆固醇的升高,从而有利于防止冠心病的发生和进一步恶化。另外,食品中的粗纤维还能和胆酸结合,使部分胆酸随着粗纤维排出,而胆酸又是胆固醇的代谢产物。为了补充被排出的部分胆酸,就需要有更多的胆固醇进行代谢。胆固醇代谢的增加则减少了动脉粥样硬化发生的可能性。那么,哪些食物含纤维素多呢?①海带、紫菜、木耳、蘑菇等菌藻类;②黄豆、赤小豆、绿豆、蚕豆、豌豆等豆类;③水果、蔬菜类。一言概之,冠心病患者宜多食富含纤维素的食物。一些粗粮,诸如玉米,小米、紫米、高粱、燕麦这样的食物。纤维素不能背吸收,可以充盈你的肠道,促进排泄。排泄顺畅了,身体就自然不会聚集什么毒素了。而且这类食物不被肠道吸收,就会使你有饱涨感吃不下别的

医药、食品用甲基纤维素

医药、食品用甲基纤维素 医药、食品用羟丙基甲基纤维素 中文名称:甲基纤维素 英文全称:Methy Cellulose 英文简称:MC 分子式:〔 C 6H 7O 2(OH )3 -n(OCH 3)n 〕x 中文名称:羟丙基甲基纤维素 英文全称:Hydroxypropyl Methyl Cellulose 英文简称:HPMC 分子式:〔C 6H 7O 2(OH )3-m-n(OCH 3)m(OCH 2CH(OH)CH 3)n 〕x 1) 外观:本产品为白色至微黄色颗粒或粉末。 2) 可溶性:本产品在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑 浊的胶体溶液。HPMC 可溶在某些有机溶剂中,也可溶解在不——有机溶剂的混合溶剂中。 3) 颗粒度:100目筛上物≤5.0。 4) 本产品随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 1、 抗盐性:本产品是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或 有机电解质存在时,在水溶液中比较稳定,但过量的添加电解质,可引起凝胶和沉淀。 2、 表面活性:本产品水溶液具有表面活性功能,可作为胶体保护剂,乳化剂,和 分散剂。 3、 热凝胶:HPMC 水溶液当加热到一定温度时,变的一透明,凝胶,形成沉淀, 但在逐渐冷却时,则又恢复到原来的溶液状态。而发生这种凝胶和沉淀的温度主要取决于它们的类型、浓度和加热速率。 4、 PH —稳定性:本产品水溶液的粘度几乎不受酸或碱影响,而且PH 值在3.0~11.0 的范围内比较稳定。因此,溶液的粘度在长期贮存过程中趋于稳定。 5、 保水性:本产品是一种高效保水剂。其医药级产品在食品、化妆品以及许多其 它方面具有广泛应用。 6、 成膜性:本产品可形成一种透明、坚韧、柔性的薄膜,而这种膜能极好的阻止 油脂的渗入。在食品中的应用,常常运用这种性质,在冷却期保持水份和吸附油。 7、 粘结性:本产品还作为一种高性能粘结剂,被应用于食品和药品中。 符合中国药典2000版,美国药典USP24/NF19标准,欧洲药典EP4。

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

水溶性纤维素醚

赫达纤维素醚介绍 低取代羟丙基纤维素(L-HPC) 一.名称: 1.化学名称:低取代2-羟丙基醚纤维素 2.英文全称:Low-Substituted Hydroxyproxyl Cellulose 3.英文简称:L-HPC 二.分子组成与结构式: 三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭,无味。 2.性状:L-HPC在水中溶胀成澄清或微浑浊的胶体溶液;在乙醇、丙酮或乙醚中不溶。高取代羟丙基纤维素(H-HPC) 一.名称: 1.化学名称:高取代2-羟丙基醚纤维素 2.英文全称:High-Substituted Hydroxyproxyl Cellulose 3.英文简称:H-HPC 二.分子组成与结构式:

三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭无味. 2.颗粒度:20目过筛率不小于99%;30目过筛率不小于95%。 3.假比重:0.5~0.6克/立方厘米,比重1.2224。 4.热稳定性: 变色温度:195~210℃ 碳化温度:260~275℃ 软化温度:130℃ 38℃以下在水中呈清晰透明的溶液。 凝胶温度:40℃以上。 五.特性: 1.常温下溶于水和多种有机溶剂。如:无水甲醇、乙醇、异丙醇、丙二醇、二氯甲烷、也可

溶于丙酮、氯仿、和溶碱剂,溶液均透明。 2.H—HPC是良好的热塑性物质,具有优良的成膜性,所成膜非常坚韧,光泽性良好弹性充分。 3.灰份极低,使本产品具有优良的粘结性,作为乳液增粘用,十分稳定,而且分散性好。 4.H—HPC本身无药理作用,无毒,对生理无害。 5.H—HPC呈化学惰性,难与其它物质发生化学反应。 6.取代基分布比较均匀,充分,H—HPC抗菌强。 7.平衡湿含量较低。 8.由于本身是非离子性质本品在酸性溶液中不会凝胶.在广泛PH值中显示优良稳定性。 9.H—HPC的浓溶液可形成正规取向的液晶。 10.H—HPC水溶液具有表面活性作用。 11.其水溶液随温度的升高和降低,能历次经过凝胶和溶解的可逆过程。 六.溶解方法: 1.溶解于水: 1).将H-HPC慢慢加入到剧烈搅拌的水中,直到完全溶解为止.如果将全部物料加入将难于溶解; 2).取预定水量的20~30%加热到60℃以上,在充分搅拌的条件下将H-HPC慢慢加入,待所有H-HPC入后,再将剩余的80—70%的水加入,可完全溶解。 2.溶解于有机溶剂: 在充分搅拌下将H—HPC慢慢加入到有机溶剂中,若一次性加入溶解很困难。 羟丙基甲基纤维素(HPMC) 一.名称: 1.化学名称:2-羟丙基醚甲基纤维素 2.英文全称:Hydroxypropyl Methyl Cellulose 3.英文简称:HPMC 二.分子组成与结构式: 三.技术要求:

食品添加剂羟丙基甲基纤维素HPMC1范围本标准适用于食品

食品添加剂羟丙基甲基纤维素(HPMC)1 范围 本标准适用于食品添加剂羟丙基甲基纤维素。 产品为白色至灰白色纤维状粉末或颗粒。 2 结构式 R=H或者CH3或者CH2CHOHCH3 4 技术要求 应符合表1的规定。

附录 A 检验方法 A.1 一般规定 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T 6682-2008中规定的水。分析中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602、GB/T 603的规定制备。本试验所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.2 鉴别试验 A.2.1 称取1g试样,加入100mL水,可在水中溶胀,形成透明呈乳白色粘稠状胶体溶液。 A.2.2 称取1g试样,加入100mL沸腾的水,搅拌均匀(保持部分此试样溶液,用于鉴别试验A.2.3),此试样溶液呈糊状,冷却至20℃,形成清澈或半透明粘稠液体。 A.2.3 取部分A.2.2中的试样溶液,将试样溶液置于玻璃盘中,使水分挥发,形成薄膜。 A.3 甲氧基和羟丙氧基含量的测定 A.3.1 试剂和材料 A.3.1.1 甲苯。 A.3.1.2 邻二甲苯。 A.3.1.3 己二酸 A.3.1.4 氢碘酸。 A.3.1.5 异丙碘。 A.3.1.6 甲基碘。 A.3.2 仪器和设备 气相色谱仪:配备热导检测器,或其他等效的检测器。 A.3.3 参考色谱条件 A.3.3.1 色谱柱:1.8m×4mm玻璃柱,填料为100到120目色谱纯硅质土(Chromosorb WHP或其他等效物)上含10%的甲基硅酮油(UCW 982或其他等效物),或其他等效色谱柱。 A.3.3.2 柱温:100℃。 A.3.3.3 进样口温度:200℃。 A.3.3.4 检测器温度:200℃。 A.3.3.5 载气:氦气。 A.3.3.6 流速:20mL/min。 A.3.3.7 进样量:约2μL。 A.3.3.8 甲基碘、异丙碘、甲苯和邻二甲苯的色谱保留时间分别为3 min,5min,7min和13min。A.3.4 分析步骤 注意事项:在通风橱中进行含有氢碘酸的操作步骤。使用护目镜、耐酸手套和其他合适的安全设备。在处理热玻璃瓶时,要极度小心,因为它们有压力。万一不慎接触氢碘酸,要用大量水冲洗,并立即寻求医疗帮助。 A.3.4.1 内标溶液的制备

乙基纤维素标准《中国药典》2010

乙基纤维素 Yiji Xianweisu Ethylcellulose [9004-57-3] 本品为乙基醚纤维素。按干燥品计算,含乙氧基(-OC 2H 5 )应为44.0%~ 51.0%。 【性状】本品为白色颗粒或粉末;无臭,无味。本品5%悬浮液对石蕊试纸呈中性。 本品在甲苯或乙醚中易溶,在水中不溶。 【鉴别】取本品5g,加乙醇-甲苯(1:4)溶液100ml,振摇,溶液为透明的微黄色溶液,取上述溶液适量,倾注在玻璃板上,俟溶液蒸发后,形成一层有韧性的膜,该膜可以燃烧。 【检查】黏度精密称取本品2.5g(按干燥品计),置具塞锥形瓶中,精密加乙醇-甲苯(1:4)溶液50ml,振摇至完全溶解,静置8~10小时,调节温度至20℃±0.1℃,测定动力黏度(附录Ⅵ G 第一法),标示黏度大于或等于10mPa·s者,黏度应为标示黏度的90.0%~110.0%,标示黏度在6~10mPa·s 之间者,黏度应标示黏度的80.0%~120.0%,标示黏度小于或等于6mPa·s者,黏度应标示黏度的75.0%~140.0%. 干燥失重取本品,在105℃干燥2小时,减失重量不得过3%(附 录Ⅷ L)。炽灼残渣取本品1.0g,依法检查(附录Ⅷ N),遗留残 渣不得过0.4%。 重金属取炽灼残渣项下遗留的残渣,依法检查(附录Ⅷ H 第二法),含重金属不得过百万分之二十。 砷盐取本品0.67g,加氢氧化钙1.0g,混合,加水搅拌均匀,干燥后,先用小火灼烧使炭化,再在500~600℃炽灼使完全灰化,放冷,加盐酸8ml于水23ml,依法检查(附录Ⅷ J 第一法),应符合规定(0.0003%)。 【含量测定】乙氧基照甲氧基、乙氧基于羟丙氧基测定法(附录Ⅶ F)测定。如采用第二法(容量法),取本品适量(相当于乙氧基10mg),精密称定,将油液温度控制在150~160℃,加热时间延长到1~2小时,其余同操作法。每1ml硫代硫酸钠滴定液(0.1mol/L)相当于0.7510mg的乙氧基。 【类别】药用辅料,包衣材料和释放阻滞剂等。 【贮藏】密闭,在干燥处保存。 《中国药典》2010版第二部 1177页

膳食纤维的作用与常见食物含量

膳食纤维的作用与常见食物含量 山野国际霍永明高级营养师膳食纤维的定义: 膳食纤维是一种重要的非营养素,它是碳水化合物中的一类非淀粉多糖及寡糖等不消化部分。越来越多的研究表明,膳食纤维的摄入与人体健康密切相关。过量摄入膳食纤维会影响维生素、铁、锌、钙、等的消化吸收,但是摄入足会增加便秘、肥胖、糖尿病、心血管疾病和某些癌症发生的危险。所以与食物中的其他营养素一样,为了保持健康,膳食纤维的摄入量也应在适宜的范围之内。 膳食纤维的定义有两种,一是从生理学角度将膳食纤维定义为哺乳动物消化系统内未被消化的植物细胞的残存物,包括纤维素、半纤维素、果胶、树胶、抗性淀粉和木质素等;二是从化学角度将膳食纤维定义为植物的非淀粉多糖加木质素。 膳食纤维的分类: 膳食纤维可分为可溶性膳食纤维与非可溶性膳食纤维。可溶性膳食纤维包括部分半纤维素、果胶、树胶等;非可溶性膳食纤维包括纤维素、木质素等。 膳食纤维的主要特性: 1,吸水作用 膳食纤维具有很强的吸水能力或与水结合能力。此作用可使肠道中粪便的体积增大,加快其转运速度、减少其中有害物质接触肠壁的时间。 2,黏滞作用 一些膳食纤维具有很强的黏滞性,能形成黏液性溶液,包括果胶、树胶、海藻多糖等。 3,结合有机化合物作用 膳食纤维具有结合胆酸和胆固醇的作用。 4,阳离子交换作用 膳食纤维的与阳离子交换作用与糖醛酸的羧基有关,可在胃肠内结合无机盐,如钾、钠、铁等阳离子形成膳食纤维复合物,影响其吸收。 5,细菌发酵作用 膳食纤维在肠道内易被细菌酵解,其中可溶性膳食纤维可完全被细菌所酵解,而非溶性膳食纤维则不易被酵解。酵解后产生的短链脂肪酸如乙酯酸、丙脂酸和丁酯酸均可作为肠道细胞和细菌的能量来源。 膳食纤维的生理功能: 1,有利于食物的消化过程 膳食纤维能增加食物在口腔咀嚼时间,可促进肠道消化酶分泌,同时加速肠道内容物的排泄,这些都有利于食物的消化吸收。 2,降低血清胆固醇 膳食纤维可结合胆酸,故有降血脂作用,此作用以可溶性纤维(如果胶、树胶、豆胶)的降脂作用较明显,而非溶性纤维无此作用。

高取代羟乙基纤维素醚生产新工艺讲解

高取代羟乙基纤维素醚生产新工艺一.任务提出的目的和意义 以农产品棉花为主要原料的纤维素醚产业是个蓬勃发展的产业。随着新世纪石油及合成化工原料的紧缺和价格持续上涨,以及全世界对环境污染问题的日趋重视,价廉物丰、可生物降解、无毒、生物相容性好的可再生纤维素资源及其衍生物日益受到世人的青睐,其开发和应用成为一项重要的研究课题。 羟乙基纤维素是纤维素醚中的一个具有较长使用历史的品种,目前在乳胶漆、油田、化妆品等工业生产领域,均有广泛的应用。随着经济发展和社会进步,人们对羟乙基纤维素的需求量逐年增加,对应用性能的要求也越来越高,而且市场上常规的羟乙基纤维素只在一个方面具有理想的性能,比如耐盐、抗温、抗酶、良好的流变性或抗溅性等,而在综合性能上有所欠缺,因此高性能新产品的开发迫在眉睫。 羟乙基纤维素是世界范围内生产的一种水溶性纤维素醚,产量大、发展迅速,是仅次于CMC和HPMC的重要纤维素醚品种,据不完全统计,1978年世界产量18000吨;1983年50000吨,我国1977年才开始生产。羟乙基纤维素可溶解在冷、热水中,使它具有更大范围的溶解性和黏度特性。作为非离子型醚,羟乙基纤维素具有非离子型醚的一切特征,不与带正、负电荷离子作用,活性少,在大范围内的水溶性聚合物、表面活性剂、盐等共

存,使其广泛作为增稠、流动调节剂、保护胶、稳定剂、保水剂、黏结剂等,应用于乳胶漆、医药、石油开采等行业。 本项目开发的新型羟乙基纤维素是在新工艺下,通过产学研结合,自主研发、制备、生产与推广的高取代羟乙基纤维素醚生产新工艺。与传统的羟乙基纤维素相比,该产品具有成本低、综合性能优良、应用广泛、易推广的显著特点。 基于对普通的羟乙基纤维素的工艺改进,该项目一方面提高了产品的取代度,另一方面采取一次碱化多次醚化工艺,反应过程均匀缓和,羟乙氧基在纤维素分子上的分布均匀,所以产品受生物攻击的缺陷得以弥补,使其抗酶性能大大改进。而且,通过此工艺,可以大大降低羟乙基纤维素的成本,其他性能也有相应的提高。例如其在乳胶漆中应用时,其粘稠性、流平性、抗流挂性、喷溅性、颜料性能以及生物稳定性等都能够得到大幅的提升。 二.研制过程 由于反应机理的特殊性,羟乙基纤维素产品醚化的均匀性总不是很理想,导致取代度较低,不稳定。而通过改变生产工艺,除了可以提高羟乙基纤维素的得率,降低羟乙基纤维素的成本,还可以大大提高产品的抗酶性、耐盐性等。

相关文档
最新文档