大学物理 机械振动 框架图和解题方法

大学物理 机械振动 框架图和解题方法
大学物理 机械振动 框架图和解题方法

第5章 机械振动

一、基本要求

1.掌握描述简谐运动各物理量的物理意义及相互关系,能根据给定的初始条件建立简谐运动方程;

2.掌握旋转矢量法,并能用以求解初相、相位、相位差、时间差;理解简谐运动合成规律; 3.理解振幅、周期、频率、相位等描述机械波的重要物理量。

二、基本内容

(一)本章重点和难点:

重点:理解简谐运动特征并能根据给定的初始条件写出简谐运动方程。 难点:掌握旋转矢量法在解题中的应用。 (二)

知识网络结构图:

?????

?

???

???

???

???

????

?

????????

?????

??

???

=+===?????=+''+=-=李萨如图形

垂直方向频率整数比椭圆运动垂直方向同频率拍同方向不同频率仍为简谐运动同方向同频率简谐运动的合成总能量弹性势能动能简谐运动的能量复摆单摆弹簧振子典型例子初相相位角频率频率周期振幅基本物理量谐运动微分方程谐运动方程回复力公式简谐运动的定义振动::::212121,,:,,,,,:0:)

cos(::2222kA E E E kx E m v E x x t A x kx F p k p k ω?ω

(三)容易混淆的概念: 1.初相和相位

简谐振动

运动方程 简谐振动能量 简谐振动合成

速度方程 加速度方程 动能 势能 合振幅

合相位

初相?反映简谐运动物体在初始时刻的运动状态;相位?ω+t 反映简谐运动物体在任意时刻的运动状态。

2.角频率和频率

角频率(圆频率)ω反映角位置随时间的变化,对于谐振子而言,由劲度系数和质量决定,又称固有频率;频率ν是单位时间内完成全振动的次数,是周期的倒数。

(四)主要内容:

1.简谐运动的基本概念:

(1) 运动方程:)cos(?ω+=t A x ,A x m =

(2) 速度方程:)sin(?ωω+-=t A v ,A v m ω= (3) 加速度方程:)cos(2?ωω+-=t A a ,A a m 2ω= (4) 周期:ω

π

2=T

(5) 频率:π

ων21==

T (6) 时间差与相位差的关系:ω

?

?=?t

2.旋转矢量法:

在平面上画一矢量A ,初始位置与x 轴正方向的夹角等于初相位?

,其尾端固定在坐标原点上,其长度等于振动的振幅A ,并以圆频率ω为角速度绕原点作逆时针匀速转动,则

矢量A

在x 轴上的投影为:)

cos(?ω+=t A x 。

旋转矢量做一次圆周运动,其矢端在x 轴上投影点完成一次简谐运动。 3.简谐运动实例:

(1)弹簧振子

振动方程:

)

cos(?ω+=t A x

角频率和周期:m k =

ω,k

m T π2= 4.简谐运动的能量: 动能:22

1

mv E k =

势能:

221kx E p =

机械能:总能量(守恒)222

22

1212121mv kx mv kA E E E m P k +===+= 5.简谐运动的合成:

(1)两个同方向、同频率简谐振动的合成:仍为简谐振动:)cos(?ω+=t A x 。其中合振幅和合初相分别为:

??

???++=?++=22112211212221cos cos sin sin cos 2??????A A A A arctg

A A A A A a. 同相:当相位差满足π的偶数倍,即:π?k 2±=?时,振动加强,21A A A MAX +=; b. 反相:当相位差满足π的奇数倍,即:π?)12(+±=?k 时,振动减弱,21A A A MIN -=。 (2)同方向、频率相近的两简谐运动合成后,振幅随时间缓慢地周期性变化的现象称为“拍”,拍频为1

2υυυ-=;

(3)同频率、相互垂直的两简谐运动的合成,一般为椭圆运动; (4)相互垂直、频率成整数比的两简谐运动合成,形成李萨如图形。

(五)思考问答: (1) 问题1 符合什么规律的运动是简谐运动?

答:当物体所受的合外力大小与位移成正比且方向与位移方向相反时,即kx F -=;或物体的运动方程满足时间的余弦或正弦关系,或物体的动力学方程满足:

02

22=+x dt

x d ω时,物体的运动为简谐运动。 问题3 弹簧振子做简谐运动时,如果振幅增为原来的两倍而频率减小为原来的一半,问他的总能量怎样改变? 答:因为:πνωω2,2121222===

A m kA E ,所以,当2

020041,2,2ωωνν===A A , 时,总能量()020********

1242121E A m A m A m E ====

ωωω,不改变。 问题4 如何判断振动物体的运动是简谐运动?

答:确定振动物体是否做简谐运动的依据是简谐运动的运动学特征和动力学特征,即:

x a 2

ω-= 或kx F -=, 或 02

22=+x dt

x d ω 。

归纳起来,凡满足下列情况之一者为简谐运动:

⑴离开平衡位置的位移x 和时间t 满足)cos(?ω+t A ; ⑵加速度a 和位移x 满足x a 2

ω-=;

⑶回复力F 和位移x 成正比而且反向(这样的力称线性回复力):kx F -=;

⑷位移满足简谐运动的动力学方程:02

22=+x dt

x d ω;

⑸运动过程中,物体的动能和势能均随时间做简谐变化,且机械能守恒。

问题5 质点作简谐运动时,位移、速度、加速度三者能同时为零,能同时有最大值吗? 答:依据简谐运动的运动学方程:

得: )

cos()sin()

cos(2?ωω?ωω?ω+-==+-==+=t A dt

dv a t A dt dx

v t A x

回答显然是否定的,因为:

⑴位移为零时,加速度为零,速度则以最大值通过平衡位置; ⑵位移最大时,加速度最大,速度则为零。 问题6 两个必须澄清的概念:

⑴把单摆的摆球拉开一个甚小的角度? ,然后放手任其摆动,并在放手时开始计时.问:(a )?是不是单摆的初相;(b)摆球的角度是单摆的角频率吗?

⑵对弹簧振子系统而言,忽略了弹簧的质量,则系统的角频率为m

k

=

ω;倘若弹簧 的质量M 不可忽略,振子系统的角频率可以是m

M k +=

ω 吗?

答:⑴(a)有些读者可以认为:摆球从?角位置开始运动,满足初始条件,且初相的量纲是角度,故得出?就是初相的结论,这是错误的。这里必须指出两点:第一,两个量纲相同的物理量,并不意味着其物理意义相同。例如:功和力矩具有相同的物理量纲,但物理意义完全不相同;第二,简谐运动中的初相能确定振动系统在初始时的运动状态,而初相本身不是运动状态,不与某一具体角对应,只有在简谐运动中,旋转矢量图中初相才表现为初始时刻旋转矢量A 与x 坐标轴的夹角。在本题中,0=t 时,振动系统处在最大角位移m θ =?处,角速度为零,则初相为零。

(b)错误。必须清楚系统做简谐运动时,它的角频率是由系统本身的性质决定的,而与其运动状态无关,故又称固有频率。只有在简谐运动的旋转矢量图中,矢量A 逆时针旋转的

角速度才表示振动系统的角频率。

⑵不可以。第一,对于忽略质量的弹簧,振子偏离平衡位置时,弹簧中各部分中的弹性力相同,即为振子受到的弹性力。若弹簧的质量不可忽略,则弹簧中各部分的弹性力不相同,作用在振子上的弹性力无法列出;第二,弹簧振子的简谐运动必须遵守牛顿定律,而牛顿定律适用的条件之一是质点,若考虑弹簧的质量,由于弹簧本身不能视为质点,故也就不能将

M 加到m 上去了。

三、解题方法

1.已知质点做简谐运动的振幅、角频率、初始条件等,求质点运动方程。此类题目一般先设简谐运动方程式,再先用旋转矢量法或解析法由初始条件求得初相,再代入运动方程标准式。

2.已知质点做简谐运动方程式,求其振幅、角频率、周期、频率、初相等物理量,一般用待定系数法,与标准式相比较求解。

四、解题指导

1.简谐振子从平衡位置运动到最远点所需的最短时间为1/4周期吗?走过该距离的一半所需的时间为多少?是1/8周期

吗?振子从平衡位置出发沿x 轴正方向运动,经历1/8周期时

运动的位移是多少? 解:(提示:旋转矢量法,设振子作水平振动,作x 轴,若垂

直振动,作y 轴。) 振子作简谐运动时,从平衡位置运动到最远点所需的最短时间

是1/4周期。因振子的速度)

sin(?ωω+-=t A v 不是常数,振子作变速直线运动,所以走过该距离的一半所需的时间不是1/8周期。

从旋转矢量图中可以看出:振子从平衡位置P 运动到2/A 处M 点时,相应的振幅矢量转过了6/π的角度:

6π =

?t ω

所以

12π26π6π T T t ===

也就是说,振子从平衡位置O 运动到2/A 处所用的时间为12/T ,而不是8/T 。而振子从2/A 处运动到最远点的时间为:

6124T T T t =

-='?

振子从平衡位置O 出发,经过8/T 时,位移为:

A A T A x 22

)4πcos()2π8cos(=-=-=ω

P

2.已知某质点作简谐运动,振幅cm 4,周期s 25.0,初始时刻位于A 2

2

-

处且向正方向运动,求质点的振动方程。(提示:求质点的振动方程,必须先求出其振动的振幅A ,角频率ω以及初相位0?。

解:(提示,此题的关键是根据旋转矢量法或解析法正确求出初相位。)

(1) 求初相

方法1 旋转矢量法

质点0=t 时的振动相位(初相位)为

π4

3-=?或

π45=

?

方法2 解析法

将0=t 时,A

x 220-

=代入简谐运动方程有:

?cos 22

A A =-

即:

π43

,22cos ±=-

=??

0=t 时0sin >-=?ωA v 即0sin

(2)求角频率

2

2ππω==

T 所以,该质点的振动方程为:)432

cos(

04.0ππ

-

=t x 或)4

52cos(04.0π

π+=t x 3.一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如

果0=t 时质点的状态分别是:

(1)A x -=0;

(2)过平衡位置向正向运动; (3)过2

A

x =

处向负向运动; (4)过2

A x -

=处向正向运动.

试求出相应的初位相,并写出振动方程.

解:因为 ??

?-==0

00

0sin cos φωφA v A x

将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有

)2cos(

1ππ

π

φ+==t T A x )23

2cos(2

32πππφ+==t T A x

)32cos(33π

ππ

φ+==

t T A x

)4

5

2cos(4

54πππφ+==

t T A x

4.一个质点同时参于两同方向、同频率的简谐运动,它们的振动方向分别为:

)

)(3

2cos(8)

)(6

2cos(621cm t x cm t x π

π

-

=+=

试用旋转矢量法求出合振动方程。

解:(提示:由旋转矢量图或余弦定理求出合振幅

和合初相。)

cm

10)cm 64()cm 36(222

221=+=+=A A A

0.403rad

0.643)rad -(1.046rad )86

arctg 3π(==-=?

故合振动方程为:))(403

.02cos(10cm t x -= 5.图为两个谐振动的t x -曲线,试分别写出其谐振动方程.

解:由题图(a),0=t 时,质点在平衡位置,00>v (问为什么大于零),πφ2

3

0=

(或πφ2

10-=),s 2,cm 10==T A

A 2

即: 1s rad 2-?==

ππωT

故: m )2

3

cos(1.0ππ+=t x a 由图(b),0=t 时,质点在

2

A 处,35,000πφ=>v (或3π-)

一秒时间内,旋转矢量转过的角度为:ππ

π?6

523=+= 165165-==

s ππω

m )3

565

cos(1.0ππ+

=t x b 6.某振动质点的t x -曲线如图所示,试求:(1)振动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需时间。

解:(1)振动方程为)cos(0φω+=t A x ,其中m A 10.0=,1124

54654

--==

=

s s ππθ

ω,

30π

φ-

=(或

35π),所以得:m t x )3

245cos(

10.0π

π-=; (2)由图可见,点P 对应的相位为0;

(3)质点到达点P 点位置所需时间为:s t 6.13==ω

π

五.能力训练

1.指出在弹簧振子中,物体处在下列位置时的位移、速度、加速度和所受的弹性力的数值和方向:(1)正方向的端点;(2)平衡位置且向负方向运动;(3)平衡位置且向正方向运动;(4)负方向的端点。

2.作简谐振动的弹簧振子,当物体处于下列情况时,在速度、加速度、动能、弹簧势能等物理量中,哪几个达到最大值,哪几个为零:(1)通过平衡位置时;(2)达到最大位移时。

3.两个相同的弹簧挂着质量不同的物体,当它们相同的振幅作简谐振动时,问振动的能量是否相同?

4.弹簧振子作简谐振动时,如果振幅增为原来的两倍而频率减小为原来的一半,问它的总能量怎样改变?

5.一个质点作简谐振动,振幅为A ,在起始时刻的位移为2

A

-,且向x 轴正方向运动,代表此简谐振动的旋转矢量为( )

6.已知某简谐振动的振动曲线如左下图所示,则此简谐振动的运动方程为( )

(A ))3232cos(2ππ-

=t x (B ))32

32cos(2ππ+=t x

(C ))3234cos(2ππ-=t x (D ))3

2

34cos(2ππ+=t x

7.两个同周期简谐振动曲线如右上图所示,1x 的相位比2x 的相位( ) (A )落后

2π (B )超前2

π

(C )落后π (D )超前π 8.当质点以频率ν作简谐振动时,它的动能的变化频率为( ) (A )

2

ν

(B )ν (C )ν2 (D )ν4 9.图中所画的是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( ) (A )π23 (B )π2

1 (C )π (D )0

10.有一弹簧振子,振幅m A 2

100.2-?=,周期s T 0.1=,初相4

φ=

。试写出它的振动方程,并作出t x -图、t v -图和t a -图。

11.有一弹簧,当其下端挂一质量为m 的物体时,伸长量为m 2

108.9-?。若使物体上下振动,

且规定向下为正方向。(1)当0=t 时,物体在平衡位置上方m 2100.8-?处,由静止开始向下运动,求运动方程;(2)当0=t 时,物体在平衡位置并以160.0-?s m 的速度向上运动,

求运动方程。

12.作简谐振动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到2

A

x =处;(3)由2

A

x =

处到最大位移处。 13.两质点作同频率同振幅的简谐振动。第一各质点的运动方程为)cos(1φω+=t A x ,当第一个质点自振动正方向回到平衡位置时,第二个质点恰好在振动正方向的端点。试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差。

14.如图为一简谐振动质点的速度与时间的关系曲线,且振幅为cm 2,求(1)振动周期;(2)加速度的最大值;(3)运动方程。

题14图 题15图

15.如图所示,质量为kg 2

1000.1-?的子弹,以1

500-?s m 的速度射入并嵌在木块中,同时使弹簧压缩从而作简谐振动,设木块的质量为kg 99.4,弹簧的劲度系数为

131000.8-??m N 。若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐振动

方程。

16.质量为kg 10.0的物体,以振幅m 2

100.1-?作简谐振动,其最大加速度为2

0.4-?s

m 。求:

(1)振动的周期;(2)物体通过平衡位置时的总能量与总动能;(3)物体在何处其动能和势能相等?(4)当物体的位移为振幅的一半时动能、势能各占总能量的多少? 17.质量g m 10=的小球与轻弹簧组成一振动系统,按)3

8cos(5.0π

π+

=t x 的规律作自由振

动,求(1)振动的角频率、周期、振幅和初相;(2)振动的能量E ;(3)一个周期内的平均动能和平均势能。

18.两个同频率简谐振动1和2的振动曲线如图所示,求(1)两简谐振动的运动方程1x 和2x ;(2)在同一图中画出两简谐振动的旋转矢量,并比较两振动的相位关系;(3)若两简谐振动叠加,求合振动的振动方程。

题18图

19.若简谐运动方程为:()ππ25.020cos 10.0+=t x ,式中x 的单位t m ,的单位为s 。求:(1)振幅、频率、角频率、周期和初相;(2)s t 2=时的位移、速度和加速度。

20.一放置在水平桌面上的弹簧振子,振幅m A 2

100.2-?=,周期s T 50.0=。当0=t 时:

(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在m x 2

100.1-?=处且向负方向运动;(4)物体在m x 2

100.1-?=且向正方向运动。求以上各种情况的运动方程。

21.有一弹簧,当其下端挂一质量为m 的物体时,伸长量为m l 20108.9-?=。若使物体上下

振动,且规定向下为正方向。问:(1)当0=t 时,物体在平衡位置上方m 2100.8-?处,由

静止开始向下运动,求运动方程;(2)当0=t ,物体在平衡位置并以s m /60.0的速度向上运动,求运动方程。

22.做简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到2

A x =处;(3)

由2

A x =处到最大位移处。

23.质量为kg 10.0的物体,以振幅m 2100.1-?做简谐运动,其最大加速度为2

/0.4s m .求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移为振幅的一半时,动能、势能各占总能量的多少?

24.已知两同方向同频率的简谐运动。运动方程分别为:()π75.010cos 05.01+=t x ,

()π25.010cos 06.02+=t x ,式中x 的单位为t m ,的单位为s 。求:(1)合振动的振幅及初

相;(2)若有另一同方向痛频率的简谐运动:()3310cos 07.0?+=t x 。则3?为多少时,

31x x +的振幅最大?又3?为多少时,32x x +的振幅最小?

六.参考答案

1.(1)A ,0,2

ωA -,kA -;(2)0,ωA -,0,0;(3)0,ωA ,0,0;(4)

A -,0,2ωA ,kA ;

2.(1)最大,零,最大,零;(2)零,最大,零,最大;

3. 因为2

21kA E =

,所以总能量不变; 4. 因为2

222222

1A mf A m E πω==,所以总能量不变;

5. B ;

6. D ;

7. B ;

8. C ;

9. D ;

10. m t x )4

32cos(100.22

ππ+?=-; 11.(1)m t x )10cos(100.821π+?=-;

(2)m t x )2

10cos(100.62

+

?=-;

12.(1)1/4 ;(2)1/12 ;(3)1/6; 13.)2

cos(2π

φω-

+=t A x ,

2

π

; 14.(1)s 2.4 ;(2) 2

5.4-?s cm ;(3))6

55.1cos(2π

-

=t x ; 15.m t x )2

40cos(105.22

π

+

?=-;

16.(1)s 314.0 ;(2)均为J 3100.2-? ;(3)m 3

1007.7-?± ;(4) 3/4,1/4;

17.(1)18-s π、s 4/1、cm 5.0、3/π ;(2)J 51090.7-?;(3)J 51095.3-?;

18.(1)m t x )2

cos(1.01π

π-

=,m t x )3

cos(1.02π

π+

= ;

(3)m t x )12

cos(052.02π

π-

=;

19.(1)π?ω25.0,1.0,20,10.01

====-s T s m A ; (2)2

2222/279,/44.4,1007.7s m a s m v m x -=-=?=-;

20.(1)t x π4cos 100.22

-?=;(2)??

?

?

?

+

?=-24cos 100.22ππt x ; (3)??? ??+?=-34cos 10

0.22

ππt x ;(4)??? ?

?+?=-344cos 100.22

ππt x ;

21.(1)()π+?=-t x 10cos 100.821;(2)()π5.010cos 100.622+?=-t x ; 22.(1)4T t =

?;(2)12T t =?;(3)6

T

t =?; 23.(1)s T 314.0=;(2)J E E k 3100.2-?==;(3)m A x 301007.72

2

-?±=±=; (4)4

3,4E E E E k P ==

; 24.(1)rad m A 48.1,078.0==? ;(2)要使31x x +最大,ππ?75.023+=k ;

???±±=2,1,0k 要使32x x +最小,ππ?25.123+=k ,???±±=2,1,0k

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

t (s ) v (m.s -1) 12m v m v o 1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时, 加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222,22===∴== ===ππ ω πωω 2.一个弹簧振子振幅为2 210m -?, 当0t =时振子在2 1.010m x -=?处,且向 正方向运动,则振子的振动方 程是:[ A ] A :2 210cos()m 3 x t πω-=?-; B :2 210cos()m 6x t π ω-=?-; C :2 210cos()m 3 x t π ω-=?+ ; D : 2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简 谐振动,若其速度与时间(v —t )关系曲线 如图示,则振动的初相位为:[ A ] 1.2题图 x y o

A :6π; B :3π; C :2 π ; D :23π; E :56π 解:振动速度为:max sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或0 56 π ?= 由知1.3图,0t =时,速度的大小 是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有0 6 π?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π=两侧分别对T , 和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-==∴= 二、填空题 1.有一放置在水平面上的弹簧振子。振幅 A = 2.0×10-2m 周期 T = 0.50s , 3 4 6 5 2 1 x /1 2题图 x y

大学物理 机械振动习题 含答案

题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时,加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A: B: C: D: 解: s T t T x a x a 2.242 2,2 222,22===∴==== =ππ ωπ ωω 2.一个弹簧振子振幅为2210m -?,当0t =时振子在21.010m x -=?处,且向正方向运 动,则振子的振动方程是:[ A ] A :2210cos()m 3 x t π ω-=?-; B :2 210cos()m 6 x t π ω-=?-; C :2210cos()m 3 x t π ω-=?+ ; D :2210cos()m 6 x t π ω-=?+ ; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6π; B :3π; C :2 π ; D :23π; E :56 π 解:振动速度为:max 0sin()v v t ω?=-+ 0t =时,01sin 2?= ,所以06π?=或056 π?= 由知图,0t =时,速度的大小是在增加,由旋转矢量图知, 旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对 应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06 π ?= 是符 合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π =两侧分别对T ,和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-= =∴=

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的 (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )2221 ωA ; (C )232 1 ωA - ; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 第题图

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 x (A ) (B )(C ) (D ) )s 2 1 -

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

(完整版)《大学物理》习题册题目及答案第15单元 机械振动

第15单元 机械振动 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。与其对应的振动曲线是: [ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B) s 32 (C) s 3 4 (D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接, 两弹簧的另外两端分别固定在墙上。滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。现将滑块m 向左移动x0,自静止释放,并从释放时开始 计时。取坐标如图所示,则其振动方程为: ??? ? ? ?+=t m k k x x 2 10cos (A) ??????++=πt k k m k k x x )(cos (B) 212 10 ? ?? ???++=πt m k k x x 210cos (C) ??? ???++=πt m k k x x 210cos (D) ??????+=t m k k x x 2 1 0cos (E) [ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A) 167 (B) 169 (C) 1611 (D) 1613 (E) 16 15 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若 这两个简谐振动可叠加,则合成的余弦振动的初相为: (A) π2 1 (B)π t y A (D) A -t y o A -(A) A t y o A A -t y A A (C) o m x x O 1k 2 k t x o 2 /A -2 x 1 x

(完整版)大学物理(第四版)课后习题及答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相?=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析 弹簧振子的振动是简谐运动。振幅A 、初相?、角频率ω是简谐运动方程 ()?ω+=t A x cos 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A 、?已知外, ω可通过关系式T π ω2= 确定。振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。 解 因T π ω2=,则运动方程 ()?? ? ??+=+=?π?ωt T t A t A x 2cos cos 根据题中给出的数据得 ]75.0)2cos[()100.2(12ππ+?=--t s m x 振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+??-==---t s s m dt dx v πππ75.0)2cos[()108(/112222+??-==---t s s m dt x d a x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为?? ???? +=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析 可采用比较法求解。 将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量。 运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()?ω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相π?25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。 (2)t= 2s 时的位移、速度、加速度分别为 m m x 21007.7)25.040cos()10.0(-?=+=ππ )25.040sin()2(/1πππ+?-==-s m dt dx v

大学物理机械振动习题解答

习题四 4-1 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短). 题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用 0d d 2 22=+ξωξt 描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力. (2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ?<<R ,

故R S ?= θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 θθ mg t mR -=22d d 令R g = 2ω,则有 0d d 2 22=+ωθt 4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 题4-2图 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串 所以串联弹簧的等效倔强系数为

《大学物理学》机械振动练习题

大学物理学》机械振动自主学习材料 、选择题 9-1 .一个质点作简谐运动,振幅为A ,在起始时质点的位移为 代表此简谐运动的旋转矢量为() 【旋转矢量转法判断初相位的方法必须掌握】 9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动 的运动方程( 的单位为 s)为( 2 2cos( 3t ) 2 3 ) ; (A)x 22 (B x2cos(t) 33 (C)x 4 2cos( 3 t 2 3 ) ; 42 (D x2cos(t) 33 4 【考虑在1 秒时间内旋转矢量转过,有】 33 9-3 .两个同周期简谐运动的振动曲线如图所示,x1的相位 比x2 的相位() (A )落后;(B)超前; 22 (C)落后;(D )超前。 【显然x1的振动曲线在x2 曲线的前面,超前了1/4 周期,即超前 9-5 .图中是两个简谐振动的曲线,若这两个简谐振动可叠 加,则合成的余弦振动的初相位为() 9-4 .当质点以频 率 作简谐运动时,它的动能变化的频率为 ( A)2;(B) 考虑到动能的表达式为E k C) 2 ;(D) 4 。 1 2 mv 221 kA 2 sin 2( t ) ,出现平方项】 A,且向x 轴正方向运 动, x 的单位为cm ,t /2】

】 3 9-10 .如图所示,两个轻弹簧的劲度系数分别为 9-15 .一个质点作简谐振动, 置到二分之一最大位移这段路程所需要的最短时间为: 3 A ) 2 C ) B )2; D ) 0 。 【由图可见,两个简谐振动同频率,相位相差 是大的那一个】 ,所以,则合成的余弦振动的振幅应该是大减小,初相位 9--1 .一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为 T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为 T ',则 T'/T 为( ) 11 (A ) 2; (B )1; (C ) ; (D ) 。 22 弹簧串联的弹性系数公式为 形成新的弹簧整体,弹性系数为 T ' 2 1 1 1 ,弹簧对半分割后,其中一根的弹性系数为 2k ,两弹簧并联后 k 串 k 1 k 2 4k ,公式为 k 并 k 1 k 2 ,利用 ,考虑到 T 2 ,所以, T 】 2 9--2 .一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( 33 ;( D ) 。 24 11 E k mv 2 kA 2 sin 2 ( t ) , 位 移 为 振 幅 的 一 半 时 , 有 22 1 kA 2 ( 3)2 】 22 A ) 1;( B ) 2 考虑到动 12 ; (C ) 能的 表达式 为 2 2 ,那么, E k 3k 9--3 .两个同方向, 相位差为( A ) 6; ( B ) 同频率的简谐运动,振幅均为 A ,若合成振幅也为 A ,则两分振动的初 2 3; (C )2 3 D ) 则振动频率为: ( 1 A ) 2 k 1 k 2 ; m B ) C ) 2 m ; k 1 k 2 D ) 提示:弹簧串联的弹性系数公式为 k 1 k 2 m(k 1 k 2) m(k 1 k 2) k 1 。 k 2 11 1 , ,而简谐振动的频率为 k 串 k 1 k 2 】 1 2 k 1和 k 2 ,物体在光滑平面上作简谐振动, 可用旋转矢量考虑,两矢量的夹角应为 周期为 T ,当质点由平衡位置向 x 轴正方向运动时, 由平衡位

大学物理习题7[优质文档]

机械振动 机械波 练习题 1(3003) 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A ) g m x m T 122?π=. (B ) g m x m T 212?π=. (C ) g m x m T 2121?π= . (D ) g m m x m T )(2212+π=?. 2(5186) 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: (A )222cos()33x t ππ=+. (B ) 22 2cos()33x t ππ=-. (C )422cos()33x t ππ=+. (D )422cos()33x t ππ=-. (E ) 41 2cos()34 x t ππ=-. 3(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A ) E 1/4. (B ) E 1/2. (C ) 2E 1. (D ) 4 E 1 . 4(3562) 图中所画的是两个简谐振动的振动曲线.若这两个 简谐振动可叠加,则合成的余弦振动的初相为 (A ) 3 2π. (B ) π. (C ) 1 2 π. (D ) 0. 5(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x )(SI ) ,则 (A ) 其振幅为3 m . (B ) 其周期为s 3 1. (C ) 其波速为10 m/s . (D ) 波沿x 轴正向传播. 6(5204) 一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为: (A ) 0. (B ) 12 π. (C ) π. (D ) 32 π(或12π-). x y O u

大学物理教案机械振动与机械波

教学目标 1.掌握简谐振动的定义、表达方式、简谐振动的合成方法;了解自由、阻尼、强 迫等各类简谐振动的特点和规律。 2.掌握振动和波的关系、波的相干条件、叠加原理、驻波的形成条件、驻波的振 幅、相位和能量的空间分布,半波损失。 3.学会建立波动方程。 教学难点 多自由体系的小振动 第十一章 机械振动 振动是指物体或系统在其平衡位置附近的往复运动。(例子:物体位置、电流强度、电压、电场强度、磁场强度等)。 物体或系统质点数是无穷的,自由度数也是无穷的,因此存在空间分布和时间分布,需要用偏微分方程描述 (如果一个微分方程中出现多元函数的偏导数,或未知函数与几个变量有关,而且未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。例如弦包含很多的质点,不能用质点力学的定律研究,但是可以将其细分成若干个极小的小段,每小段可以抽象成一个质点,用微分的方法研究质点的位移,其是这点所在的位置和时间变量的函数,根据张力,就可以建立起弦振动的偏微分方程) 。 一、简谐振动(单自由度体系无阻尼自由小振动) 虽然多质点的振动要用偏微分方程描述,但是我们可以简化或只考虑细分成的每一小段,那么就成为单质点单自由度(只需一个坐标变量)的振动。 2222 22222,,0 cos():0i i t F k k F kx a x m m m d x d x a x a x dt dt x A t Ae e i ,令特征方程特征根:?ωωωωω?λωλω =-= =-==-=∴+==+=+==±A (振幅)、?(初相位)都是积分常数,k 为倔强系数。 在微分方程中所出现的未知函数的导数的最高阶数称为这个方程的阶。 形如 ()()dx P t x Q x dt +=的方程为线性方程,其特点是它关于未知函数x 及其导数dx dt 都是一次的。若()0Q x =,则()0dx P t x dt +=称为齐次的线性方程。 二阶常系数齐次线性微分方程的解法: ()() 1 2 121212121,212cos sin t t t t x c e c e x c c t e i x e c t c t λλλαλλλλλαβββ≠=+==+=±=+ 由cos()sin()x A t v A t ω?ωω?=+?=-+ 按周期定义, ()()cos()cos sin()sin A t A t T A t A t T ω?ω?ωω?ωω?+=++???? -+=-++???? ,同时满足以上两方程的T 的 最小值应为 2p w 1,2T n w pn ==,w 称为圆频率或角频率。不像A 、

大学物理(第四版)课后习题与答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0 ×10 -2 m,周期T=1.0s ,初相=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析弹簧振子的振动是简谐运动。振幅 A 、初相、角频率是简谐运动方程 x A cos t 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A、已知外, 可通过关系式2 T 确定。振子运动的速度 和加速度的计算仍与质点运动学中的计算方法相同。 解因2 T ,则运动方程 x A c os t A cos 2 T t t 根据题中给出的数据得 x ( 2.0 10 2 m s 1 t ) cos[( 2 ) 0.75 ] 振子的速度和加速度分别为 v dx / dt (4 10 2 m s 1 s 1 t ) sin[( 2 ) 0.75 ] a d 2 x dt2 2 2 m s 1 s 1 t / (8 10 ) cos[( 2) 0.75 x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为x(0 .01m) cos (20 s ) ,求:(1)振幅、频率、角频率、周期和 1 t 1 t 4 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析可采用比较法求解。将已知的简谐运动方程与简谐运动方程的一般形式x A cos t 作比较,即可求得各特征量。运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 1 t 解(l )将x (0.10m) c os[( 20 s ) 0 .25 ] 与x A cos t 比较后可得:振幅A= 0.10 m,角频率 1 20 s ,初相0.25 ,则周期T 2 / 0 .1s ,频率1/ T 10 H z 。 (2)t= 2s 时的位移、速度、加速度分别为 2 x ( 0. 10m) c os(40 0.25 ) 7.07 10 m

大学物理复习题集(下)复习题解答

单元一简谐振动 1)试题总分为100分,光学部分40%左右,热学部分40%左右,近代物理基础部分20%左右。 2)以下内容不作考试要求 光学部分: 第16章几何光学基础; 第17章第2节分波面干涉中菲涅耳双面镜实验和洛埃镜实验;第5节光波的空间相干性和时间相干性; 第18章第2节中振幅矢量法推导光强公式;第3节中多缝夫琅和费衍射的光强分布; 第4节中光栅的色散、分辨本领;第7节全息照相及第8节光学信息处理; 第19章第4节至第8节 热学部分: 第20章第8节速度分布律玻尔兹曼分布律;第10节范德瓦尔斯方程;第11节气体的输运现象及其宏观规律;20.9在考试范围内(平均自由程) 第21章第2节中固体的热容;第4节理想气体的绝热过程中,绝热过程的功的计算; 节流过程; 第22章第3节两种表述一致性证明、第7节不可逆过程中的熵增熵增加原理;第8节热力学第二定律的统计意义 近代物理基础: 第24章3.3节;第25章第3节至第6节;第26章至第28章 一、选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?【C】 (A)物体处在运动正方向的端点时,速度和加速度都达到最大值; (B)物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C)物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D)物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X轴作简谐振动的弹簧振子,振幅为A,周期为T,振动方程用余弦函数表示,如果该振子的初相为,则t=0时,质点的位置在:【D】 (A)过处,向负方向运动;(B)过处,向正方向运动;

(C) 过处,向负方向运动;(D) 过处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为:【B】 (A)θ;(B)0;(C)π/2;(D)-θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示, (a)、(b)、(c)三个振动系统的ω(ω为固有圆频率)值之比为:【B】 (A) 2:1:1;(B) 1:2:4;(C) 4:2:1;(D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的:【C】 (A)竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C)两种情况都可作简谐振动; (D)两种情况都不能作简谐振动。 6. 一谐振子作振幅为A的谐振动,它的动能与势能相等时,它的相位和坐标分别为:【C】 7. 如果外力按简谐振动的规律变化,但不等于振子的固有频率。那么,关于受迫振动,下列说法正确的是:【B】 (A)在稳定状态下,受迫振动的频率等于固有频率; (B)在稳定状态下,受迫振动的频率等于外力的频率; (C)在稳定状态下,受迫振动的振幅与固有频率无关; (D)在稳定状态下,外力所作的功大于阻尼损耗的功。 8. 关于共振,下列说法正确的是:【A】 (A)当振子为无阻尼自由振子时,共振的速度振幅为无限大; (B)当振子为无阻尼自由振子时,共振的速度振幅很大,但不会无限大;

大学物理2-1第六章(振动与波)习题答案

习题六 6-1 一轻弹簧在60N的拉力下伸长30cm。现把质量为4kg物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm,然后释放并开始计时。求:(1)物体的振动方程;(2)物体在平衡位置上方5cm时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm处所需要的最短时间。 [解] (1)取平衡位置为坐标原点,竖 直向下为正方AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 向,建立坐标 系 rad/s 07.74200m 1.0N/m 20010 30602=== ==?=-m k A k ω设振动方程为 ()φ+=t x 07.7cos 0=t 时 1.0=x φcos 1.01.0= 0=φ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,

AHA12GAGGAGAGGAFFFFAFAF 则 ()()x x k x k F +=?=0 其中 m 2.020040 0===k mg x

AHA12GAGGAGAGGAFFFFAFAF 因而 有 ()N 3005.02.0200=-?=F (3)设第一次越过平衡位置时刻为1 t ,则 ()107.7cos 1.00t = 07.5.01π=t 第一次运动到上方5cm 处时刻为2 t ,则 ()207.7cos 1.005.0t =- ()07.7322?=πt 故所需最短时间为: s 074.012=-=?t t t

AHA12GAGGAGAGGAFFFFAFAF 6-2 一质点在x 轴上 作谐振动,选取该质点向 右运动通过点 A 时作为 计时起点(t =0),经过2s 后质点第一次经过点B , 再经 2s 后,质点第二经过点B ,若已知该质点在A 、B 两点具有相同的速率,且AB =10cm ,求:(1)质点的振动方程:(1)质点在A 点处的速率。 [解] 由旋转矢量图和||||b a v v =可知 42 1=T s

大学物理学机械振动练习题

大学物理学》机械振动自主学习材 料 旋转矢量转法判断初相位的方法必须掌握】 、选择题 9-1 .一个质点作简谐运动,振幅 为 A,在起始时质点的位移 为 A,且向x 轴正方向运动, 2 代表此简谐运动的旋转矢量 为 9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动的运动 方程的单位为s)为() x 的单位为cm,t A) x 2cos( 2 3 B) x 2cos( 2 3 C) x 2cos( 4 3 2 3 2 3 2 x(cm) D) x42 2cos( t ) 。 33 ,有4】 考虑在 1 秒时间内旋转矢量转过 33 9-3 .两个同周期简谐运动的振动曲线如图所 示,x 1的相位比x2 的相位() A)落后;(B)超前; 22 C)落后;(D)超前。 显然x1的振动曲线在x2曲线的前面,超前了1/4 周期,即超前 ) 9-4 .当质点以频 率 /2 】 作简谐运动时,它的动能变化的频率为 ( (A);(B);(C)2 ;(D)4 。 2 【考虑到动能的表达式为 E k 1 mv 2 1 kA 2 sin 2 ( t 22 9-5 .图中是两个简谐振动的曲线,若这两个简谐振动 可叠加,则合成的余弦振动的初相位为()3 (A);(B); 22 (C);(D)0。 ),出现平方项】 【由图可见,两个简谐振动同频率,相位相差, 是大的那一个】 9--1 .一物体悬挂在一质量可忽略的弹簧下 端,测得其振动周期为T,然后将弹簧分割 为两半,一物体,再使物体略有位移,测得 其振动周期为 所以,则合成的余弦振动的振幅应该是大 减小 使物体略有位 移,并联地悬挂 同T ' ,则 ,初相 位

大学物理知识总结习题答案(第八章)振动与波动

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E mv = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 22 211()+() 22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动 · 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻

尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A = 11221122 sin sin tan cos cos A A A A ?????+= +

《大学物理学》机械振动自学练习题

《大学物理学》机械振动 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A -,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()33x t ππ=-; (B )22 2cos()33x t ππ=+; (C )42 2cos()33x t ππ=-; (D )42 2cos()33 x t ππ=+。 【考虑在1秒时间内旋转矢量转过3 π π +,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2π; (B )超前2 π; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A ) 2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为22211sin ()22 k E mv kA t ω?==+,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A ) 32π; (B )2π; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B ()C ()D ) s --

大学物理_第7章_机械振动习题思考题

习题 7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。 解:振动方程:x =Acos (ωt +φ), 在本题中,kx =mg ,所以k =10 ; 101 .010 === m k ω 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。所以如果使弹簧的初状态为原长,那么:A=0.1, 当t =0时,x =-A ,那么就可以知道物体的初相位为π。 所以:)(π+=t x 10cos 1.0 。 7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过 rad 06.0-=θ处,并以角速度rad/s 2.0=? θ向平衡位置运动。设小球的运动可看 作筒谐振动,试求: (1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。 解:振动方程:x =Acos (ωt+φ)我们只要按照题意找到对应的各项就行了。(1)角频率:10== l g ω,频率:π πν210 21== l g , 周期:10 22π π = =g l T (2 )根据初始条件:A θ ?= 0cos 象限) 象限) 4,3(02,1(0{sin 0<>-=ωθ?A

可解得:32.2088.0-==?,A 所以得到振动方程:)(32.213.2cos 088.0-=t θ 7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。 解:(1)由题知 2A=10cm ,所以A=5cm ; 19610 58 .92 =?=?=-x g m K 又ω=14196==m k ,即 π πν721 == m k (2)物体在初始位置下方cm 0.8处,对应着是x=4cm 的位置,所以: 5 4cos 0== A x ? 那么此时的5 3sin 0±=- =ω?A v 那么速度的大小为42.05 3 ==ωA v

相关文档
最新文档