电化学测试及比电容的计算

电化学测试及比电容的计算
电化学测试及比电容的计算

超级电容器的两个比电容计算公式?

作者: Azrael-218(站内联系TA)发布: 2011-07-23

C=4it/amu(i:放电电流;t:放电时间;a:实际有用的电极材料百分含量;m:电极材料总质量;u:扣除电压降的那部分电压。

另外一个公式:C=it/amu.

这两个公式区别就是少乘一个4。这是什么情况啊?请各位虫友帮忙。。。谢谢了!

举报删除此信息

liucheng200883(站内联系TA)

对于组装的完整超级电容器,C=4it/amu为计算单电极的比容量,C=it/amu计算整个电容器的比容量,并且后者一般是前者的4倍。对于对称的双电层电容,单电极和完整电容的电量是相同的,但是完整电容的电压是单电极的两倍,质量也是两倍

所以比容量只有1/4

个人愚见!!!仅供参考!

shang_qing(站内联系TA)

帖子真精彩!

已经收录到淘贴专辑《超级电容器》

杨仁立(站内联系TA)

626857楼 : Originally posted by liucheng200883 at 2011-07-23 22:34:33

对于组装的完整超级电容器,C=4it/amu为计算单电极的比容量,C=it/amu计算整个电容器的比容量,并且后者一般是前者的4倍。对于对称的双电层电容,单电极和完整电容的电量是相同的,但是完整电容的电压是单电极的两倍 ...

我还是没弄懂这个是怎么回事??是前边是后边的四倍还是后边是前边的四倍呢??请不吝赐教!!:P

li_qqiong(站内联系TA)

楼主,这两个公式针对的电极体系是不一样的,有4倍的关系,有4的那个是利用3电极体系测出来数据计算的,另外一个是2电极体系的,也即是:Cspec-3E=4*Cspec-2E,请参考:Studies of activated carbons used in double-layer capacitors.

wuanri(站内联系TA)

2楼 : Originally posted by liucheng200883 at 2011-07-23 22:34:33

对于组装的完整超级电容器,C=4it/amu为计算单电极的比容量,C=it/amu计算整个电容器的比容量,并且后者一般是前者的4倍。对于对称的双电层电容,单电极和完整电容的电量是相同的,但是完整电容的电压是单电极的两倍 ...

为什么全电容的电压是半电容电压的两倍?我觉得不对吧。

原因应该是全电容与单电极是半数关系,C总=C单*1/2;

但以全部质量计算出比电容量则是Cs总=C总/2m=C单/4m=Cs单*1/4;

所以全电容比电容是三电极测试的半电容的四分之一,但只是理论,实际上是有相差的。通过CV图与放电曲线计算的比容差别很大,什么原因?

循环伏安变化的是电压,而响应的电流是随时间变化的;而充放电通常在恒电流下进行的,电压随之变化。因此,材料得失电子的速率不同,这是电极动力学的问题。

举个例子,你根据放电时间算的话,假设你沉积的活性物质重量是1mg,你的充放电电流大小为1mA,那么你的放电电流密度就是1A g-1,算成面积(假设沉积面积是2cm2)就是0.5mA cm-2,但如果你用积分做的话,换算成电流密度,很可能不是1A g-1或0.5mA cm-2,所以二者根本不具有可比性。一般是按照充放电曲线来算的,最好不要用积分曲线来算。循环伏安cyclic voltammetry (CV)

由CV曲线,可以直观的知道大致一下三个方面的信息

? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。

?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算)

?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性)

测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。

恒电流充放电galvanostatic charge–discharge (GCD)

由GCD测试曲线,一般可以得到以下几方面的信息:

?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化)

?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。

交流阻抗electrochemical impedance spectroscopy (EIS)

由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。关于交流阻抗,谈谈频率和体系元件的响应关系,总的来说,交流阻抗之所以能得到诸多信息,关键在于不同器件本身对于频率的相应不同。Nyquist图中最先响应的总是纯电阻,然后是电容和电化学反应,最后是扩散过程。纯电阻,在电场建立的同时即可响应。交流阻抗的测试过程中会出现两个图:Nyquist图和Bode图,Nyquist图反应的是随着频率的变化虚轴的阻抗值和实轴的阻抗值的变化,Bode图反应的是阻抗的模值随着频率的变化以及相位角随频率的变化。

交流阻抗测试过程中比较重要的设置参数有:交流幅值以及频率范围。交流幅值对于超级电容器一般会选择5mV,频率一般会选择100kHz-10mHz,当然也会有不同体系不同对待,很多文献中会选择测试到0.1Hz就停止了,这样来说根本没有测试低频区体系真正的性能测试就已经停止了。真正反映测试体系的电容性能,漏电性的低频区的直线很重要。当然如果测试的截止频率太低,则此时反映的不仅仅是此状态下的扩散过程了,因为太长的变化周期可能会造成测试体系状态的改变。

关于交流阻抗的模拟,我一般用的是Zview软件。关于该软件的使用方法,小木虫上有很多相关的使用说明书。模拟时电化学元件的选择和等效电路的建立都要和自己的测试体系联系起来,不要为了拟合的精确性无截止的选择电化学元件。这样会给测试体系的合理解释带来很大的麻烦。同样这样做也歪曲了交流阻抗测试的初衷。

敲这么多字的真心累啊,大家多多说说自己在做超级电容器电极材料的测试过程中所遇到的各种大小问题以及自己的解决方案,这样我们就可以一起学习,也可以讨论一下超级电容器比较热门的电极材料以及你觉得哪种材料会比较的有前途以及理由。如果你的课题与超级电容器相关,可以畅所欲言描述你的相关经验。回帖精彩的或者对我们都有帮助的会大大有奖的。希望大家多多支持、踊跃发言。

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

电化学工作站测试超级电容器

电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器 研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限 压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定 值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中, 限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器 负极。 运行中,请勿断开超级电容器。

2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板, 可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得 第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再 删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜 单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过 充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。

电化学原理与方法课程中下半学期课程复习题 (1)剖析

1请你简要论述一下,电化学研究方法中,暂态测量技术有哪些?以及暂态研究技术的应用有哪些? 暂态测量技术有哪些? 暂态测量方法的种类 ①按极化或控制的幅度分( 幅度:电极极化的幅度,界面电位变化量) a. 大幅度暂态测量(研究电极过程) |Δφ|>10 mV ( 大幅度) b. 小幅度暂态测量(用于测定参数Rr、RL、C d) |Δφ|<10 mV(小幅度) ②按控制方式分: a. 控制电流法暂态测量 b. 控制电位法暂态测量 控电流法:单电流阶跃;断电流;方波电流;双脉冲电流 控电位法:阶跃法、方波电位法等;线性扫描(单程线性扫描,连续三角波扫描);脉冲电位(阶梯伏安,常规脉冲,差分脉冲,方波伏安) [从电极极化开始到各个子过程(电化学反应过程、双电层充电过程、传质过程和离子导电过程)做出响应并进入稳态过程所经历的不稳定的,变化的“过渡阶段”,称为暂态.] [电化学暂态测试技术也称为电化学微扰测试技术,即用指定的小幅度电流或电压讯号加到研究电极上,使电极体系发生微弱的扰动,同时测量电极参数的响应来研究电极反应参数] 暂态研究技术的应用? 暂态技术提供了比稳态技术更多的信息,用来研究电极过程动力学,测定电极反应动力学参数和确定电极反应机理,而且还可将测量迁越反应速率常数的上限提高2~3个数量级,有可能研究大量快速的电化学反应。暂态技术对于研究中间态和吸附态存在的电极反应也特别有利。暂态技术中测得的一些参量,例如双电层电容、欧姆电阻、由迁越反应速率常数决定的迁越电阻等,在化学电源、电镀、腐蚀等领域也有指导意义。 2.请你谈谈电化学测量中要获得电化学信号需要哪些电极以及设备,它们分别的作用是什么? 一、需要①参比电极:参比电极的性能直接影响着电极电势的测量或控制的稳定性。 ②盐桥:当被测电极体系的溶液与参比电极的溶液不同时,常用盐桥把研究电极和参比电极连接起来。盐桥的作用主要有两个,一个是减小接界电势,二是减少研究、参比溶液之间的相互污染。

电化学超级电容器

姓名:严臣凤学号:10121570125 班级:应化(1)班 电化学超级电容器 电化学超级电容器(electrochemical supercapacitor)亦称超大容量电容器,是一种介于电池和静电电容之间的新型储能器件。超级电容器具有功率密度比电池高、能量密度比静电电容高、充放电速度快、循环寿命长、对环境无污染等优点,成为本世纪的一种新型绿色能源。利用超级电容和电池组成混合动力系统能够很好地满足电动汽车启动、爬坡、加速等高功率密度输出场合的需要,并保护蓄电池系统。另外超级电容器可以用于电路元件、小型电器电源、直流开关电源等,还可以用于燃料电池的启动动力,移动通讯和计算机的电力支持等。 1.1 电化学超级电容器类型 电化学超级电容器依据其储能原理可以分为双电层电容器、法拉第准电容器、混合型电容器和锂离子电容器,电极材料主要有碳材料、金属氧化物和导电聚合物等。 (1)双电层电容器双电层电容器是建立在 双电层理论基础之上的.双电层理论由l9世纪末 Helmhotz等提出.Helmhotz模型认为电极表面的 静电荷从溶液中吸附离子,它们在电极/溶液界 面的溶液一侧离电极一定距离排成一排,形成一 个电荷数量与电极表面剩余电荷数量相等而符号 相反的界面层.由于界面上存在位垒,两层电荷 都不能越过边界彼此中和,因而形成了双电层电 容.为形成稳定的双电层,必须采用不和电解液 发生反应且导电性能良好的电极材料,还应施加 直流电压,促使电极和电解液界面发生“极化”. (2)法拉第准电容器法拉第准电容器 (Faradic capacitor)是在电极材料表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容器,其储能过程不仅包括双电层存储电荷,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH、Li+等)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容器的充放电机理。 (3)混合型电容器混合型电容器(hybrid capacitor)一般由双电层电容过程和法拉第准电容过程共同来构成,一部分是由碳电极形成双电层电容,另一部分是由导电聚合物或金属氧化物电极进行氧化还原反应或锂离子嵌入反应形成法拉第准电容。在水溶液电解质体系中,可以形成碳/氧化镍、碳/二氧化锰等混合电容器;在有机电解质体系中,可以形成双电层碳/锂离子嵌入型碳的锂离子型混合电容器。 (4)锂离子电容器锂离子电容器(1ithium—ion capacitor)是一种特殊的混合型电容器,它是将锂离子充电电池的负极与双电层电容器的正极组合在一起构造,是一种正负极充放电原理不同的非对称电容,因而同时具备双电层电容和锂离子电池的电化学储电性能。

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

用电化学工作站测试超级电容器

用电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。 运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。

2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压- 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。 3.2 放电电流 放电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的放电电流超过 Im,则电压曲线立即越过放电限制电压线,无法对超级电容器实施放电。放电电流一般应设在Im / 2以下。 3.3 充电限制电压 应低于超级电容器的击穿电压,例如:3V。 3.4 放电限制电压 应低于充电限制电压,例如:0V。 3.5采样周期 采样周期应根据不同的测量目的来设定,一般以每个充放电循环 100 至 1000 个样点为为宜。例如:(A)测量电压阶跃值,可将采样周期设为0.01S、0.001S,以

超级电容器材料电化学电容特性测试

华南师大学实验报告 学生:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

缩减讲稿超级电容器电极的制备及性能测试

超级电容器电极的制备及性能测试 超级电容器的主要技术指标有比容量、充放电速率、循环寿命等。 本实验采用EC500系列电化学工作站三电极法(包括循环伏安法、交流阻抗等),考察不同活化方法处理后电极的电化学性能。 1.循环伏安法 1.1电化学体系三电极介绍 电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。 一般电化学体系分为二电极体系和三电极体系,循环伏安法通常采用三电极系统。相应的三个电极为工作电极(研究电极W)、参比电极(R)和辅助电极(对电极C)。 三电极组成两个回路: 研究电极和参比电极组成的回路构成一个不通或基本少通电的体系,利用参比电极电位的稳定性来测量工作电极的电极电位。 研究电极和辅助电极组成另一个回路构成一个通电的体系,用来测量工作电极通过的电流。这就是所谓的“三电极两回路”,也就是测试中常用的三电极体系。利用三电极体系,来同时研究工作电极的电位和电流的关系。 图 1 三电极系统原理图 对于三电极测试系统,之所以要有一个参比电极,是因为有些时候工作电极和辅助电极的电极电位在测试过程中都会发生变化,为了确切的知道其中某一个电极的电位(通常是工作电极的电极电位),就必须有一个在测试过程中电极电位恒定且已知的电极作为参比来进行测量,以为研究电极提供一个电位标准。 但是,仅仅使用三电极体系还不够,因为,随着电化学反应的进行,研究电极表面的反应物质的浓度不断减少,电极电位也随之发生或正或负的变化,也就是说随着电化学反应的进行,研究电极的电位会发生变化。为了使电极电位保持稳定,即将研究电极对参比电极的电位保持在设定的电位上,通常使用恒电位电解装置(恒电位仪),这样,便用了恒电位仪的三电极体系,可以为我们提供用以解释电化学反应的电流—电位曲线,这种测定电流—电位曲线的方法叫做伏安法。

电化学电容器的特点及应用

电化学电容器的特点及应用 随着科学技术的发展,人类生活环境的提高,对能源的要求也越来越多样化,也要求储能设备具有更高的能量密度和功率密度,来替代或者辅助当前使用的电池。对电动汽车发展的要求更促使了对新型储能设备的研制。 电化学电容器(Electrochemical Capacitor,EC)有着法拉级的超大电容量,比传统的静电电容器的能量密度高上百倍,它的功率密度较电池高近十倍,充放电效率高,不需要维护和保养,寿命长达十年以上,是一种介于传统静电电容器和化学电源之间的新型储能元件。电化学电容器现在有不同的称呼,有超电容器(Supercapacitor),超大容量电容器(Ultracapacitor),双电层电容器(Electr ic double layer capacitor,EDLC),以及金电容(Gold capacitor)等。 l 电化学电容器的原理和特点 根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器(El ectric double layercapacitor)和赝电容器(Pesudocapacitor)。 1.1双电层电容器的原理 双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储能量的一种新型电子元件。当电极和电解液接触时,由于库仑力、分子间力或者原子间力的作用,使固液界面出现稳定的、符号相反的两层电荷,称为界面双电层。 双电层电容器电极通常由具有高比表面积的多孔炭材料组成。炭材料具有优良的导热和导电性能,其密度低,抗化学腐蚀性能好,热膨胀系数小,可以通过不同方法制得粉末、颗粒、块状、纤维、布、毡等多种形态。目前双电层电容器的炭材料有:活性炭粉末、活性炭纤维、炭黑、碳气凝胶、碳纳米管(CNT)、玻璃碳、网络结构炭以及某些有机物的炭化产物。对炭材料的研究主要集中在活性炭,碳纳米管和碳气凝胶上。活性炭材料主要是提高其有效比表面积和可控微孔孔径(>2nm)。近年来有文献报道,通过合理控制孔径分布及表面积,在水溶液和非水溶液中活性炭电极可分别得到高达280 F/g和120 F 的比电容量。碳气凝胶由美国Lawrence Livermore NationalLaboratory开发出来,现在已经由Pow erstor公司生产出碳气凝胶超大容量电容器,具有超高容量,极低的。,宽的温度范围,但此材料的制备相对较繁琐。碳纳米管用于电化学电容器的电极材料具有独特的中孔结构,良好的导电性,比表面积大,适合电解液中离子移动的

电化学工作站研究超级电容及其应用 v1.1

电化学工作站研究超级电容及其应用 德国Zahner电化学工作站 https://www.360docs.net/doc/0017069203.html,

电化学工作站研究超级电容及其应用 1 前言 超级电容器是介于普通电容器和化学电池之间的储能器件,兼备两者的优点,如功率密度高、能量密度高、循环寿命长等,并具有瞬时大电流放电和对环境无污染等特性。双电层电容器是建立在双电层理论基础之上的。1879年,Helmholz 发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作为电极材料的电化学电容器方面的专利;1962年,标准石油公司生产了以活性炭为电极材料的、硫酸水溶液作为电解质的超级电容器;1979年,NEC公司使超级电容器商业化。作为一种绿色环保、性能优异的新型储能器件,超级电容器在众多领域有广泛的应用。近年来,我国的科研人员和相关部门对此也极度关注。 2 超级电容器的定义及特点 2.1 定义 超级电容器(Super capacitors),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Double-Layer Capacitor)。是从上世纪七、 八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统 的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要 依靠双电层和氧化还原电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正如此超级电容器可以反复充放电数十万次。 图1是超级电容的原理图[1],其基本原理和其它种类的双电层电容器一样,都 是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

电化学原理

可逆体系的循环伏安研究 1 实验目的 1)掌握循环伏安法研究电极过程的基本原理 2)学习使用CHI660电化学综合分析仪 3)测定K3Fe(CN)6体系在不同扫描速率时的循环伏安图 2 实验原理 1)循环伏安法概述: 循环伏安法(CyclicVoltammetry)的基本原理是:根据研究体系的性质,选择电位扫描范围和扫描速率,从选定的起始电位开始扫描后,研究电极的电位按指定的方向和速率随时间线性变化,完成所确定的电位扫描范围到达终止电位后,会自动以同样的扫描速率返回到起始电位。在电位进行扫描的同时,同步测量研究电极的电流响应,所获得的电流-电位曲线称为循环伏安曲线或循环伏安扫描图。通过对循环伏安扫描图进行定性和定量分析,可以确定电极上进行的电极过程的热力学可逆程度、得失电子数、是否伴随耦合化学反应及电极过程动力学参数,从而拟定或推断电极上所进行的电化学过程的机理。 循环伏安法是进行电化学和电分析化学研究的最基本和最常用的方法,1922年由Jaroslav Heyrovsky创立的以滴汞电极作为工作电极的极谱分析法(Polarography),可以认为是伏安研究方法的早期形式,其对电化学研究领域的杰出贡献,Heyrovsky在1959年获得诺贝尔化学奖。随着固体电极,修饰电极的广泛使用和电子技术的发展,循环伏安法的测试范围和测试技术、数据采集和处理等方面显著改善和提高,从而使电化学和电分析化学方法更普遍地应用于化学化工、生命科学、材料科学及环境和能源等领域。 2)循环伏安扫描图: 循环伏安法研究体系是由工作电极、参比电极、辅助电极构成的三电极系统,工作电极和参比电极组成电位测量,工作电极和辅助电极组成的回路测量电流。工作电极可选用固态或液态电极,如:铂、金、玻璃石墨电极或悬汞、汞膜电极。常用的参比电极有:饱和甘汞电极(SCE)、银-氯化银电极,因此,循环伏安曲线中的电位值都是相对于参比电极而言。辅助电极可选用固态的惰性电极,如:铂丝或铂片电极、玻碳电极等。电解池中的电解液包括:氧化还原体系(常用的浓度范围:mmol/L)、支持电解质(浓度范围:mol/L)。循环伏安测定方法是:将CHI660电化学综合分析仪与研究体系连接,选定电位扫描范围E1~E2和扫描速率υ,从起始电位E1开始扫描,电位按选定的扫描速率呈线性变化从E1到达E2,然后连续反方向再扫描从E2回到E1,如图C17.1所示,电位随时间的变化呈现的是等腰三角波信号。 在扫描电位范围内,若在某一电位值时出现电流峰,说明在此电位时发生了电极反应。若在正向扫描时电极反应的产物是足够稳定的,且能在电极表面发生电极反应,那么在返回扫描时将出现于正向电流峰相对应的逆向电流峰。典型的循环伏安曲线如图C17.2所示,i pc 和i pa分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc和E pa。(p表示峰值,a表示阳极,c表示阴极。)

超级电容器材料电化学电容特性测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电

层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。 目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。 2、循环伏安法(CV)测定材料的比电容 循环伏安法是电化学测量中经常使用的一种重要方法,它一方面能较快的观测到较宽电位范围内发生的电极过程,为电极过程研究提供丰富的信息;另一方面又能通过扫描曲线形状的分析、估算电极反应参数,由此来判断不同因素对电极反应的影响。 控制研究电极的电势以速率ν从起始电位Ei开始向电势负方向扫描,到电势为Em时(时间为λ),电势改变扫描方向,以相同的速率回扫至起始电势,然后再次换向,反复扫描,即采用的电势控制信号为连续三角波信号,如图2-1所示。记录i-E曲线,称为循环伏安曲线(cyclic voltammogram),如图2-2所示。这一测量方法称为循环伏安法(cyclic voltammetry)。 图2-1三角波扫描图2-2循环伏安曲线 Fig. 2-1 Triangular wave scanning Fig. 2-2 Cyclic voltammetry curve 对于一个电化学反应O+ne-===R,正向扫描(即电势负方向扫描)时发生阴极反应 O+ne-→R;反向扫描时,则发生正向扫描过程中生成的反应产物R的重新氧化的反应R→O+ ne-,这样反向扫描时也会得到峰状的i-E曲线。一次三角波扫描,完成一个还原和氧化过

电化学原理及其应用(习题及答案)

电化学原理及其应用 (习题及答案) https://www.360docs.net/doc/0017069203.html,work Information Technology Company.2020YEAR

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是( C ) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为 O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是 Zn | Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应 2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+

{高中试卷}高三化学一轮复习:电化学原理及其应用[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日期: 电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH 3+6H+B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2- C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应 3+4H2O;C项根据电解总反应可知每生成1 式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2- mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极;电

镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu+Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石 B.测量原理装置图中,Ag2O/Ag极发生氧化反应 C.负极的电极反应式为:2Cu+2OH--2e-===Cu2O+H2O D.在水泥固化过程中,由于自由水分子的减少,溶液中各离子浓度的变化导致电动势变化解析:A项工业上制备普通水泥的主要原料正确;B项测量原理装置图中,Ag2O/Ag极发生还原反应;C项负极材料Cu失电子,该电极反应式正确;D项在溶液中通过离子移动来传递电荷,因此各离子浓度的变化导致电动势变化。 答案:B 4. LiFePO4电池具有稳定性高、安全、对环境友好等优点,可用于电动汽车。电池反应为:FePO4 +Li 放电 充电 LiFePO4,电池的正极材料是LiFePO4,负极材料是石墨,含Li+导电固体为电解 质。 下列有关LiFePO4电池说法正确的是( ) A.可加入硫酸以提高电解质的导电性B.放电时电池内部Li+向负极移动 C.充电过程中,电池正极材料的质量减少

超级电容器的组装及性能测试实验指导书

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。 (a)非充电状态下的电位(b)充电状态下的电位(c)超级电容器的内部结构 图1 双电层电容器工作原理及结构示意图

相关文档
最新文档