光纤技术第7章-3

光纤传感技术的应用现状

2009.No364 摘要:介绍了提高光纤传输效率的两个途径,指出目前利用光纤通信来进行继电保护的三种方式:光纤纵联差动保护,分相允许式光纤纵联保护,过电压或失灵启动远跳。并简要介绍光纤测温技术的工作原理及其在变压器上的应用。 关键词:光纤维 继电保护 测温技术 由于光纤传感技术的传感与传输信号都是光学信号,而不是传统的电信号,因而具有许多独特的优点,对电绝缘,抗电磁干扰,适合高电压场所;精度高,能远距离传输信号;尺寸小、重量轻,有利于微型化;寿命长、长期可靠性好,适合大型工程长期安全监测等。因此,光纤传感技术得到了高度重视和快速发展,成为国家重大工程、重大装备、武器系统等国民经济诸多领域急需的关键技术之一。 一、提高光纤传输效率的两个途径 (一)40Gbit/s 传输系统的发展、挑战与应用。准同步传输体系(PDH)利用光纤的单一波长传输速率从8Mbit/s、4Mbit/s140bit/s,同步传输体系(SDH)利用光纤的单一波长传输速率从155Mbit/s、622Mbit/s、2.5Gbit/s 到10Gbit/s。从实际应用来看,40Gbit/s 传输系统必须采用外调制器,目前具备足够输出电压能够驱动外调制器的驱动集成电路还不成熟;沿用多年的NRZ调制方式能否有效、可靠地工作于40Gbit/s 系统还不确定,可能需要转向性能更好的普通归零(RZ)码乃至调制效率更高的其他调制方式。除了技术因素外,经济上是否可行也是必须考虑的关键因素。尽管目前我国干线网络的波道利用率已经超过70%,但是光纤利用率不到30%,SDH 电路利用率不到50%,因此只需在波分复用层面上扩容即可,光缆网的总体容量依然有余,并不需要立即全面升级到40Gbit/s速率。另需认真考虑的因素是光缆的极化模色散特性。对于短距离传输,无须色散补偿、光放大器和外调制器,40Gbit/s传输系统具有很低的单位比特成本,上述问题不是障碍。因此,40Gbit/s传输系统完全可以由短距离互连应用开始,包括端局内路由器、交换机和传输设备间的互连,乃至扩展至城域网范围和短距离长途应用。 (二)粗波分复用系统(CWDM)技术的发展与应用。随着技术和业务的发展,利用光纤的多个波长进行复用就是WDM 技术。目前,160波系统已经成熟商用。它正从长途传输领域向城域网领域扩展,作为进一步提高光纤传输效率的另一个主要途径。尽管城域WDM 系统的建设成本明显低于长途网WDM 系统,但是目前的绝对成本仍然较高,特别是需要使用光纤放大器的长距离应用成本较高。此外,当前在网络边缘需要整个波长带宽的用户和应用毕竟很少,WDM 多业务平台主要适用于核心层,特别是扩容需求较大、距离较长的应用场合。为了进一步降低城域WDM 多业务平台的成本,出现了CWDM 粗波分复用系统(Coarse Wave Di-vision Multiplexer)。这种系统的典型波长组合有4、8和16三种,波长通路间隔达20nm,允许波长漂移±6.5nm,大大降低了对激光器的要求,成本也大为降低。此外,由于CWDM 系统对激光器的波长精度要求较低,无需制冷器和波长锁定器,不仅功耗低、尺寸小,而且封装可以采用简单的同轴结构,比传统碟型封装成本低,激光器模块的总成本可以减少2/3。从滤波器角度看,典型的100GHz 间隔的介质薄膜滤波器需要150层镀膜,而20nm 间隔的CWDM 滤波器只需要50层镀膜,其成品率和成本都可以获得有效改善。 二、光纤通信在继电保护中的应用 继电保护装置信号的物理传输通道有光纤、微波、电力线载 波等,微波和电力线载波易受气候变化影响,传输质量较差,而光纤通道不怕超高压与电磁干扰,传输容量大,绝缘性能好,衰耗低,可靠性高,在继电保护领域中得到了日益广泛的应用。 (一)光纤通信来进行继电保护。当被保护的线路长度较长时,为了补偿光功率损耗,把RCS-931系列光纤纵差保护装置的光信号传入MUX-2M继电保护信号数字复接接口装置,再转化为电信号通过75Ω的同轴电缆连接通讯SDH设备的2048k bit/ s口传到对侧,如图1中的( b)。SDH环网采用的是155M以上速率的传输设备,传输容量大,具有强大的保护恢复能力。当被保护线路发生故障时,装置根据对两侧电流的幅值和相位比较启动光纤纵联差动保护动作使两侧跳闸,所有装置都处理后动作时间一般在30ms以内,能够快速切除故障,有效保护线路全长。 假设线路发生A相区内故障时,本侧RCS-902C系列分相允许式纵联保护装置发出“A相允许跳闸”电信号开入到FOX-41A型继电保护光纤通信接口装置, FOX-41A内部把此电信号转为光信号传输到对侧的FOX-41A,本侧与对侧之间光纤传输根据线路长度不同有两种传输方式。 对侧的FOX-41A光电转换后再把“A相允许跳闸”电信号开入到对侧的RCS-902C,对侧的RCS-902C保护装置已判断是A相区内故障并收到对侧“A相允许跳闸”信号则保护动作跳对侧A相断路器。同理,对侧发允许跳闸信号到本侧过程也是一样,B或C相故障也与A相故障分析过程一样。所有装置都处理后保护动作时间一般在30ms左右,快速有效,如图2所示。 当被保护线路本侧过电压保护跳闸并启动对侧断路器跳闸时,可以把远跳信号通过FOX-41A传输到对侧;当被保护线路本侧保护跳闸但是断路器失灵没有跳开时,为了避免故障发展扩大,也可以把失灵信号通过FOX- 41A传输到对侧启动对侧断路器跳闸,如图3所示。 (二)工程中实际应用问题。1、通道故障检测。光纤纵差保护安全可靠,在使用和运行当中主要是光纤通道的维护。如果光纤通道告警,可以进行逐段自检来确认装置和通道是否正常,另外需仔细观察与光电通道相关的告警指示灯和装置控制字,还可以用光功率计测试光收发功率与光衰耗。部分厂家提供的SDH设备也可以实现实时的光功率在线检测,为网络的维护提供了极大的便利性。2、光纤纵差保护旁路切换。目前通信速率一般是2048kbit/s,也有少部分是64kbit/s,这给光纤纵差保护的旁路代线路切换运行来了一定问题,根据现在通信的发展情况,通信速率可以都统一到2048kbit/s。与电力线载波高频保护的旁路代线路切换运行需要切换高频载波电缆通道一样,光纤纵差保护的旁路代线路切换运行需要切换光纤通道。 三、光纤测温技术在变压器上的应用 使用光纤探头测量绕组温度时, 将其嵌入垫块或直接附在需要温度监测的导线上,这种使用方式, 首先必须拆开局部导线绝缘, 并在安装光纤测温探头后再恢复导线绝缘。更普遍的方法是 光纤传感技术的应 用现状 ◇ 刘云圣

光纤传感技术

光纤传感器技术的概况及其特点 常见光纤温度传感器基本原理 1. 荧光式温度光纤传感器 1.1 基本原理 荧光式温度传感探头具有抗电磁干扰、稳定可靠、微小尺寸、长寿命及绝缘性好等特点,光纤温度传感器是利用物质的荧光辐射现象设计的。通常设在光纤的一端固结着微量稀土磷化合物,受紫外光照射后,激励其发出荧光。此荧光强度或余辉时间长度会随温度变化而变化,成为温度的函数,从而计算出被测温度。 1.2荧光式温度传感原理 荧光式温度传感探头是由普通多模光纤和在其顶部安装的荧光物质体(膜)组成。荧光物质接受一定波长(受激谱)的光激励后,受激辐射出荧光能量。激励消失后,荧光发光的持续性取决于荧光物质特性、环境因素,以及激发状态的寿命。这种受激发荧光通常是按指数方式衰减的,称衰减的时间常数为荧光寿命或荧光衰落时间(ns)。因为在不同的环境温度下,荧光寿命也不同. 因此通过测量荧光寿命的长短,就可以得知当时的环境温度。 2. 光纤法布里-彼罗特(Fabry – Perot)传感器 2.1 法布里-彼罗特(Fabry – Perot)腔 法布里-彼罗特(Fabry –Perot)腔是一个常见的光学器件。它是光纤法布里-彼罗特传感器的核心,同时也被应用到光纤光栅传感器当中。了解它的原理和特点将有助于理解以上两种传感器的工作原理和不同应用。 在讨论技术细节之前,读者需要明确以下两点: 1.光在任何界面都会发生反射,在大多数情况下会发生折射。比如光会在水面反射,再比如当光线穿过一块玻璃的时候,会分别在一块玻璃的上下表面同时发生反射。 2.光具有波粒二象性。也就是说光拥有波长λ,相位θ等表征物理量。光在真空中所经过的路程叫做光程 L,当光经过介质,比如玻璃时,光程变为L=n*d。 n 为介质的折射率(均大于1), d 为光线经历的几何长度。同一单一光源发出的两束光(具有同样起始相位,且频率相同)如果再相遇,将发生干涉。如果他们的光程差是波长的整数倍,意味着他们的相位相等,则干涉的结果是强度增大(最大值)。如果他们的光程差是波长的整数倍+半波长,则干涉的结果是强度减弱(最小值)。对于其余情况,干涉后的强度在最大值与最小值之间。如果同样的干涉发生多次,最终一个均匀的宽频光,在绝大多数波长范围内的光强将变成0,而主要的强度将集中在光程差为整数倍的波长范围内。 所谓法布里-彼罗特(Fabry – Perot)腔就是一个两端为光反射界面的空腔。入射光在两个界面分别发生反射,这两束反射光的光程差就是 L=2Lc*n.? Lc是空腔的长度。由此可见,空腔长度决定光程差,光程差决定相位差,相位差又决定是干涉加强还是干涉减弱。当空腔长度变化的时候,对于同样波长的光,原先的相位差将改变。原先干涉加强极大的两束光将不再达到干涉极大。相反的,波长与原先不同的另外两束光将满足相位差是波长整数倍的条件,因而产生干涉极大。如果能够探测出前后两个干涉极大相应的波长差Δλ,便可计算出空腔长度的变化,从而实现传感。同时,如果两个界面的反射系数很高,也就是说光线在腔内将发生多次干涉,最终只有满足相干极大条件的波长分量得以不为0,其余分量都将

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光纤传感器技术及其应用

学业论文 题目:光纤传感技术及其应用 姓名:赵晓雷 所在学院:机电工程学院 专业班级:电气一班 学号: 100101110 指导老师:李娜 日期: 2011年12月

光纤传感器技术及其应用一:光纤传感器的定义、结构、特点与分类; 二:光纤传感器的原理与应用; 三:光纤传感器在检测技术中的应用; 四:光纤传感器的发展前景; 参看文献:《光纤传感器技术及其应用》;作者:王玉田

一:光纤传感器的定义、结构、特点与其分类; 1.定义, 中文名称:光纤传感器 英文名称:optical fiber transducer 定义1:利用光导纤维的传光特性,把被测量转换为光特性(强度、 相位、偏振态、频率、波长)改变的传感器。 应用学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科)。 定义2:利用光纤技术和光学原理,将感受的被测量转换成可用 输出信号的传感器。 应用学科:机械工程(一级学科);传感器(二级学科);传感 器一般名词(三级学科)。 2.光纤传感器的特点: 一、灵敏度较高 二、几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三、可以制造传感各种不同物理信息(声、磁、温度、旋转等)的件; 四、可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五、而且具有与光纤遥测技术的内在相容性。

附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。 2.光纤传感器结构 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成。 3.光纤传感器的分类; 功能型、非功能型和拾光型三大类。 1)功能型(全光纤型)光纤传感器 利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)

光纤传感技术在电力系统中的应用

光纤传感技术在电力系统中的应用 光纤传感技术在电力系统中的应用2010-11-11 13:59光纤传感技术在电力系统中的应用 1某些关键部件的在线监测 某些关键部件,例如风力发电机组的风机叶片是风力发电的关键所在,其叶片承受的压力与风力大小有直接的关系,而风力的大小是不可预测的.因此实时监控风机叶片的应力变化是必须的。监测可以使用体积小、重量轻的光纤应力传感器. 2大型结构体的在线监测 某些大型结构体,例如发电机组的锅炉和燃烧室的温度分布情况.对于提高燃烧效率和安全是至关重要的。光纤温度传感器可以安装在燃烧室的内部,特种光纤的测温范围可以高达1000摄氏度以上。通过这样的光纤温度传感器就可以清楚地知道燃烧室内部的温度分布情况,从而确切地知道焰心的位置。 3分布式光纤传感器 光纤分布式传感器集传感与信息传输于一体,并不需要在光纤上做特殊的处理,只需要普通的通信光纤就可以胜任。通信光纤再加上光源和光探测器,便可实现远距离实时测量与监控,特别适合于需要同时检测大量位置点或沿着光纤通过的路径连续变化的物理量,比如建筑物、桥梁、水坝、储油罐等大型结构中应力和应变(裂缝)的监测,石油钻井平台、飞机、航天器、电缆,电力变压器等场合应力和温度分布状况的实时监测等,敷设这种分布式温度光纤传感器,不仅可以优化电缆的功率分配,而且可以同时构建火灾预警系统。 4光纤电流传感器 反射式光纤电流传感器是基于磁光Faraday效应.通过检测光纤中的模式正交的两束偏振光由于敏感电流周围的磁场,所产生的相位差的变化量,间接地测量母线中的电流值。

5光纤气体传感器在电力系统中的应用 气体监测是电力系统安全运行的一项重要监测内容,利用光纤传感器可以 实现远距离、多点实时监控。其原理是利用不同的待监测气体在光的不同波长 区域的特征吸收谱线,采用吸收光谱法进行气体浓度监测。其特点是全光纤结构、损耗低、易于实现长距离多点探测,本身不发热,无电、无火,这种固有 的安全性消除了爆炸的危险和电磁干扰问题;测量的动态范围大,可以有效的 起到预警的作用;反映速度快;对环境的适应性强。能在潮湿、粉尘较多的环 境下使用。可以监测的气体种类多,诸如瓦斯、煤气、二氧化碳、硫化氢、氨气、氮气、氯气和六氟化硫气体等。而且可以使用同一个光纤气体传感器监测 多种气体。 6其他应用 由于光纤传感器的抗辐射特性,在核能工业这个特殊领域也有一席之地。 日本核能研究院在年度报告中提到.他们正在用光纤传感器对反应堆进行实时检测。此外,其他国家也使用光纤传感器来检测核电厂的混凝土健康状况、核废 料堆温度、高温部件等安全问题。除此之外,光纤微振动传感器在大型变压器 和发电设备的振动监测中得到应用:光纤角速度传感器在电力机器人的导航领 域得到应用;还有管道应变、弯曲监测、液体或气体泄露等等领域都有光纤传 感器的用武之地。总之,光纤传感器可以测量的信号有电压、电流、电场、磁场、应力、温度、速度、流量、声波、超声波、气体或液体的浓度、酸碱度等。在电力系统的应用远远不止以上列举的这几个例子,而且相信在不远的将来会 有更多的应用。

光纤传感技术复习题

第一章 1.下面哪种常见物品不属于传感器 ( ) A.数码摄像机 B.液晶电视机 C.烟雾报警器 D.红外线感应门 2.下面哪种物品属于光纤传感器 ( ) A.光纤水听器 B.光纤光缆 C.光纤水晶灯 D.激光刀 3.目前,最常用光纤的纤芯和包层构成的材料主要是 ( ) A.多成分玻璃 B.半导体材料 C.石英晶体 D.塑料 4.以下哪种光纤不是根据横截面上折射率的径向分布形式划分的 ( ) A.阶跃型光纤 B.渐变型光纤 C.石英光纤 D.单模光纤 5.以下哪种说法是错误的() A.在可见光范围内,大部分媒质的折射率大于1。 B.同一媒质对于不同波长的光有着不同的折射率。 C.红光和紫光的频率不同,所以它们在真空中的传播速度也不同。 D.紫光的频率高于红光,所以在水中紫色光的折射率大。 6.在下列因素中,不是引起光纤传输衰减的原因为 ( ) A.光纤弯曲 B.瑞利散射 C.杂质吸收 D.多模传输

7.在下列因素中,不是引起光纤传输色散的原因为 ( ) A.光纤弯曲 B.色度色散 C.偏振模随机变化 D.多模传输 1.光纤传感器的主要优势有哪些? 2.若某均匀光纤的纤芯折射率为:n1=1.50, 相对折射率差Δ=0.01,长度为1km,纤芯半径a=2.5um 计算(1)光纤的数值孔径NA (2)由子午线的光程差引起的最大时延差 (3)若工作波长为1.55 um,此光纤工作在单模还是多模状态? (4)若将此光纤的包层和涂覆层去掉,求裸光纤的NA和最大时延差。 3.某SIF光纤,n1=1.4258,n2=1.4205,工作在λ=1.3 um和λ=1.55 um两个波段,求光纤为单模时的最大纤芯直径? 4.已知2a=50um,相对折射率差Δ=0.01,n1=1.45,工作波长λ=0.85 um,折射率分别为SIF型和GIF型(g=2)的两种光纤,其导模数量为多少?若波长 变为1.31um,则导模数量又为多少? 第二章 1.半导体光源LED发光的机理是( ) A. 受激辐射 B. 自发辐射 C. 受激吸收 D. 自发吸收

光纤传感技术综述

光纤传感技术综述 摘要 光纤传感及其相应技术在经过了二十余年的研究和探索,已逐步迈入了实用化阶段.本文对光纤传感技术进行综述,特别对于光纤传感技术近年的发展做详细介绍。随着光纤技术与相关光电子元器件的发展,光纤传感技术正逐步成为继光纤通信产业发展之后又一大光纤应用技术产业。光纤传感作为传感技术中一个重要分支正不断为工业、农业、交通、能源、医疗卫生、科学技术以及军事技术的信息化提供愈来愈多的服务,并愈来愈为人们所认识与接受。 关键词:应用;产业化;进展 目录 第一章什么是光纤传感技术 (2) 1.1光纤传感技术的定义 (2) 1.2光纤传感技术简介 (2) 1.3光纤传感技术应用 (3) 第二章光纤传感技术的发展 (4) 2.1光纤传感技术发展与产业化 (4) 2.2几种光纤传感器发展现状 (5) 2.3光纤传感技术的未来发展趋势 (7) 结束语 (8) 参考文献 (8) 第一章什么是光纤传感技术

1.1光纤传感技术的定义 光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。光波不怕电磁干扰,易为各种光探测器件接收,可方便的进行光电或电光转换,易与高度发展的现代电子装置和计算机相匹配。 1.2光纤传感技术的简介 光纤工作频带宽,动态范围大,适合于遥测遥控,是一种优良的低损耗传输线;在一定条件下,光纤特别容易接受被测量或场的加载,是一种优良的敏感元件;光纤本身不带电,体积小,质量轻,易弯曲,抗电磁干扰,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。因此,光纤传感技术一问世就受到极大重视,几乎在各个领域得到研究与应用,成为传感技术的先导,推动着传感技术蓬勃发展。 光纤传感,包含对外界信号(被测量)的感知和传输两种功能。所谓感知(或敏感),是指外界信号按照其变化规律使光纤中传输的光波的物理特征参量,如强度(功率)、波长、频率、相位和偏振态等发生变化,测量光参量的变化即“感知”外界信号的变化。这种“感知”实质上是外界信号对光纤中传播的光波实时调制。所谓传输,是指光纤将受到外界信号调制的光波传输到光探测器进行检测,将外界信号从光波中提取出来并按需要进行数据处理,也就是解调。因此,光纤传感技术包括调制与解调两方面的技术,即外界信号(被测量)如何调制光纤中的光波参量的调制技术(或加载技术)及如何从被调制的光波中提取外界信号(被测量)的解调技术(或检测技术)。 外界信号对传感光纤中光波参量进行调制的部位称为调制区。根据调制区与光纤的关系,可将调制分为两大类。一类为功能型调制,调制区位于光纤内,外界信号通过直接改变光纤的某些传输特征参量对光波实施调制。这类光纤传感器称为功能型(FunctionalFiber,简称FF型)或本征型光纤传感器,也成为内调制型传感器,光纤同具“传”和“感”两种功能。于光源耦合的发射光纤同于光探测器耦合的接收光纤为一根连续光纤,称为传感光纤,故功能型光纤传感器亦称全光纤型或传感型光纤传感器。另一类为非功能型调制,调制区在光纤之外,外界信号通过外加调制装置对进入光纤中的光波实施调制,这类光纤传感器称为非功能型(NonFunctionalFiber,简称NFF)或非本征型光纤传感器,发射光纤与接收光纤仅起传输光波的作用,称为传光光纤,不具有连续性,故非功能型光纤传感器也称传光型光纤传感器或外调制光纤传感器。 根据被外界信号调制的光波的物理特征参量的变化情况,可将光波的调制分为光强度调制、光频率调制、光波长调制、光相位调制和偏振调制等五种类型。 由于现有的任何一种光探测器都只能响应光的强度,而不能直接响应光的频率、波长、相位、和偏振调制信号都要通过某种转换技术转换成强度信号,才能为光探测器接收,实现检测。

光纤传感技术用特种光纤基础知识

光纤传感技术用特种光纤基础知识 『摘要』本文较全面地介绍了用于光纤传感器的各种光纤,开发传感器用特种光纤的主要技术途径,制作工艺及传感特性。包括声学敏感光纤、磁敏光纤、低双折射光纤、圆双折射光纤、椭圆双折射光纤、线性双折射光纤、保偏光纤、偏振光纤、稀土离子掺杂光纤及特种材料多组份光纤及光纤光栅等。 1 引言 众所周知,光纤传感技术的起步并不比光纤通信滞后,但由于光纤通信给信息技术的发展提供的诱人前景和巨大市场,使得光纤技术的发展主要依从于光纤通信技术的发展。目前几乎已覆盖全球的庞大的光纤通信网,要求光纤有极低的损耗和极小的色散,以满足高速率、大容量、远距离传输的要求。光纤产品对光纤通信的要求几乎是尽善尽美、精益求精地去满足,但对用于传感技术的光纤所投入的力量则小得多。因此早期用于传感器的光纤,大多数是从通信用光纤中选择直接使用或作某些特殊处理(如包层处理后)再使用。这对于某些传感器,如外部传感器或某些简单的内部传感器,已能满足一定的要求。但随着光纤传感技术的发展,在许多情况下,仅仅使用通信光纤是极勉强的。例如,光纤电流传感器中,如果直接使用通信光纤,将有两个致命问题,一是通信用石英光纤的费尔德(Verolet )常数很小;二是为了使光纤环绕被测电流需把光纤绕成线圈,这将使光纤产生弯曲,从而产生很强的线性双折射,其结果是将光纤本来很低的费尔德常数又大大降低(约为原来的1 /50 )以至无法实际应用。因此,开发各种适合于传感技术要求的光纤是非常必要的。 传感器用光纤一直是光纤技术领域中的一个重要研究课题。归纳起来主要通过以下几个途径开发特殊类型的光纤: (1)对石英光纤进行某些特殊处理,可以改变光纤的偏振特性或其它预期的传感特性。 (2)对石英光纤在结构设计上进行改造,以改变其偏振特性。 (3)改变光纤的掺杂材料,或在光纤结构中插入金属材料,以使光纤产生新的特性或获得预期的偏振特性。

光纤传感技术应用重点

工作原理 光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。 [编辑本段] 优点 一。灵敏度较高; 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器; 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。 [编辑本段] 应用 光纤传感器应用:磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。 [编辑本段] 分类 光纤传感器可以分为两大类:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。 一、功能型传感器 功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传 输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。 光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。 优点:结构紧凑、灵敏度高。 缺点:须用特殊光纤,成本高, 典型例子:光纤陀螺、光纤水听器等 二、非功能型传感器

非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传 输介质,常采用单模光纤。 光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。 优点:无需特殊光纤及其他特殊技术;比较容易实现,成本低。 缺点:灵敏度较低。 实用化的大都是非功能型的光纤传感器。 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。 光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。 [编辑本段] 流量计原理 光纤传感器流量计原理如下: 另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。 光纤在传感器家族中是后起之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。 光纤传感器凭借着其大量的优点已经成为传感器家族的后起之秀,并且在各种不同的测量中发挥着自己独到的作用,成为传感器家族中不可缺少的一员。

《光电传感与检测技术》课程教学大纲

《光电传感与检测技术》课程教学大纲 课程代码:0807508011 课程名称:光电传感与检测技术 英文名称:Optoelectronic sensor and detecting technology 学分:4 总学时:64 讲课学时:56 实验学时:8上机学时:课外学时: 适用对象:光电信息科学与工程专业本科生 先修课程:模拟电子技术、数字电子技术、工程光学 学生自主学习时数建议:128 一、课程性质、目的和任务 光电传感与检测技术是光电信息科学与技术专业学生的专业必修课,课程将系统全面地介绍光电传感与检测技术的基本概念、多种光电检测器件的工作原理和特性,以及相关实际应用系统的工作原理及设计,使学生比较全面地掌握光电传感技术和检测技术的基本原理、基本知识和基本方法,了解科技的新动向,以便于在今后的科研和生产实践中能够熟练应用。 二、教学基本要求 对课程的讲授要求概念准确、论述严谨,既重视基本原理和基本概念的阐述,又力图反映出光电传感与检测技术的一些最新发展动向,同时也重视必要光电检测理论的分析。 基本要求如下: (1)熟练掌握常用光电传感与检测技术的基本概念及原理; (2)掌握光的表征及常见光电检测器件的工作原理与特性、光电检测方法及系统设计; (3)理解红外探测器、热释电红外传感器、激光传感与检测技术及基于虚拟仪器技术构成的检测系统及设计方法; (4)了解压力、温度、振动等检测方面的光电检测系统设计,光栅传感与检测技术在线位移和角位移测量中的应用,光电图像检测、故障诊断、红外热成像检测、红外气体检测网络与物联网技术的应用等; (5)培养学生从工程实际中发现问题、分析问题、解决问题的能力和创新意识。 三、教学内容 第一章概论 1、教学内容 (1)光电传感技术概述 (2)光电检测技术概述 (3)光电传感与检测的应用 2、重点和难点 (1)重点:光电传感器件的组成、分类、特性、参数,光电检测的概念与分类 (2)难点:测量误差的概念与分类,数据处理方法 第二章光电检测技术基础 1、教学内容 (1)辐射度量与光度量

光纤传感技术及应用研究生大纲

课程编号:0522201 光纤传感技术及应用 Technology and Applications of Optical Fiber Sensor 开课单位:光电子技术系教学大纲撰写人:惠战强课程学分数:3 课时数:48 课程类别:硕士课课程性质:任选课 授课方式:讲授、讨论考试方式:笔试(闭卷)适用专业:物理电子学 教学目标: 光纤传感技术已经渗透到了生活生产的各个方面,在全面介绍各类光纤传感器的基础上,分析和讨论了在设计和应用光纤传感器时要注意的一些基本问题和关键技术,并给出了光纤传感器的典型应用实例。其中包括光纤和光纤器件的选用、连接,光纤传感网,相位调制型光纤传感器的信号解调,以及光纤传感器在电力、石油化工、航空航天等领域的典型应用。通过本课程的学习使学生能够独立的阅读一些光纤传感相关的书籍,了解该学科发展的最新动态。 课程主要内容: 一、光纤传感器概述; 1、光波在光纤中的传播; 2、振幅调制传感型光纤传感器; 3、相位调制传感型光纤传感器; 4、偏振态调制型光纤传感器; 5、波长调制型光纤传感器; 6、光纤荧光温度传感器; 7、分布式光纤传感器; 8、聚合物光纤传感器; 9、光子晶体光纤及其在传感中的应用;10、传光型光纤传感器。 二、多传感器的光网络技术; 1、光纤网络的连接技术; 2、光网络技术; 3、光传感网实例——光纤光栅在 传感中的应用。 三、光传感信号处理技术; 1、相位调制型光传感器的信号解调技术; 2、光纤锁相环法; 3、相位生成载 波方法;4、外差法;5、干涉型光纤传感器复用解复用方法 四、光电传感技术在电力系统的应用; 1、光纤电流传感器; 2、光学电压传感器; 3、光纤电功率传感器; 4、开关 设备的传感器——非电量传感器 五、光电传感技术在石油与化工行业的应用; 1、分布式光纤温度和压力传感器; 2、井下油气水光谱分析仪; 3、地震勘探 中的光纤传感器。 六、光电传感技术在航空航天领域的应用。 1、光纤陀螺仪; 2、航天飞行器姿态控制; 3、自主定位导航技术; 4、精确 制导武器。

相关文档
最新文档