第二十六届希望杯邀请赛 初一 第1试

第二十六届希望杯邀请赛 初一 第1试
第二十六届希望杯邀请赛 初一 第1试

第 1 页

A

B

C

E

D

图1

第二十六届“希望杯”全国数学邀请赛 初一 第1试

一、选择题 (每小题4分,共40分) 1.若

2015236

x x x

++=- ,则x =( ) (A)-2015

(B) -403

(C)-1

(D) 1

2.下面有4个判断

①互为相反数的两个数的绝对值相等; ②如果n 的绝对值等于n ,则一定为正数;

③点M 在数轴上距原点2个单位长度,且位于原点右侧.若将向左移动5个单位长度,则此点对应的值为-3; ④两个数相加,它们的和一定大于其中一个加数. 其中,正确判断的个数为( ) (A)1

(B) 2

(C)3

(D) 4

3.小明带a 元钱去超市买文具,买铅笔用去了说带钱数的

13,买橡皮用去余下钱数的1

4

,然后他又用剩下的钱数的1

2

买了把尺子.这时小明还剩( ) (A) 12a 元 (B)13

a 元

(C)

1

4

a 元 (D)

2

5

a 元 4.已知a ,

b 是整数,且121a b -++=,则()()2

4

12a b -?+=( ) (A)﹣2

(B) ﹣1

(C) 0 (D) 1

5.如图1,在△ABC 中,AB=AC ,D 、E 分别在AC 、AB 上,且BC=BD=DE=AE , 则∠A 的度数为( ) (A) 18°

(B) 20°

(C)26°

(D)

180

7

6.已知x ,y ,m ,n 为有理数,若2

2

2

2

8x y m n +=+=,则xy mn +( ) (A)有最小值4

(B)有最大值4

(C)有最小值8 (D)有最大值8

7.下列判断中正确的是( )

(A) 在同一平面内如果有两条线段不相交,那么这两条线段就平行.

(B) 在同一平面内的两条直线被第三条直线所截,如果同位角相等,那么同旁内角互补. (C) 等腰△ABC 中,如果连接点A 和边BC 边的中点D ,那么AD ⊥BC . (D) 如果等腰直角三角形的高为10,那么它的面积等于50.

第 2 页

A

B

C

D E

图 2

-3 -2 0 3 7 12

A B

C D

E

图5 图4

F

A

B

C

D

E

F

图6

A

B

C

D M

图3

8.当x =2时,多项式3

53mx x m -++的值是118,则多项式2

67m m --的值为( ) (A)﹣16 (B)-7 (C)20 (D)93

9.如图2,在锐角△ABC 中,高线CD 、BE 相交于点F ,若∠A=55°,则∠BFC 的度数是( ) (A)110° (B)125° (C)135° (D)145° 10.Consider the sequence 1,2,4,7,11,18,29……,in which each term is the sum

of the two previous terms after the first two terms. How many of the first 100 terms of the this sequence are multiples of 5?Answer:( )

(A)10 (B)7 (C)2 (D)0

(英汉小词典:sequence 数列;term 项;previous 前面的;multiples 倍数)

二、A 组填空题 (每小题4分,共40分。) 11.已知

19a b =,则a b

a b

-=+ . 12.如图3所示,在矩形ABCD 中,AB=6cm ,且ADM S ?:BCD S =? 2:3,则CM 的

长度为 cm .

13.从两个重量分别为12千克和8千克且含铜量的百分比不同的合金上切下重量相等的两块,把所切下的每一块和

另一块剩余的合金放在一起熔炼后得到的两块合金含铜的百分比相等,则所切下的合金的重量是 千克.

14.如图4所示,点O 、A 、B 、C 、D 、E 分别对应数轴上

相应的坐标.则以O 、A 、B 、C 、D 、E 中任意两点为端 点的所有线段的长度的和为 .

15.王明在早晨六点至七点之间外出晨练,出门和回家的时候,时针与分针的夹角都是110°,则王明晨练的时间

为 分钟.

16.长方形内一点P 到其中三边的距离分别是3,4,5,而这个长方形的面积不大于100,且到另一边的距离d 也是

整数,则d 最大为 . 17.If 2

10m m +-=,then the value of 3

2

2+2014m m +is .

18.如图5,以等腰直角三角形△ABC 的直角边为边,向外作等边△ABD 和△ACE ,

则∠ADE= .

19.在1,2,……,10000个正整数中,含有数字“4”的数的个数是 . 20.如图6,在△ABC 中,D 在BC 上且BD:DC = 3:2,E 在AB 上且AE:EB = 2:1,F 在

CA 的延长线上且AC:AF = 4:3.若△ABC 的面积为2015,则△DEF 的面积为 .

第 3 页

图7 A

B

C

G D

A

B

C

D

(1) A

B

C D

E

F H (2) K

(3)

三、B 组填空题 (每小题4分,共40分。)

21.根据下表所给信息填空,已知甲车每月行驶400千米,乙车每月行驶350千米.(其中修理费和保养费都按月平均计价)

车型 50千米耗油量 修理费(半年) 保养费(一年) 油价 甲 4升 540元 840元 6.80元/升 乙

5升

720元

960元

6.80元/升

(1)甲车行驶8个月,花费 元;(结果四舍五入保留整数)

(2)甲车行驶8个月,乙车行驶7个月,则花费较少的是 .(填:“甲车”或“乙车”)

22.如图7(1),在梯形ABCD 中, BC ∥AD.将梯形沿中位线EF 翻折,使上底和下底所在的直线重合,如图7

(2),未重合部分(图7(2)阴影)的面积是4.将梯形沿对角线BD 翻折,使点C 落在梯形内部的点CK 处,如图7(3),重合部分(△BDK )的面积是8.若梯形的下底AD=8,则梯形的上底BC = ,图7(3)中阴影部分面积(四边形ABKD )为 .

23.已知三位数abc m =,def n =.若abcdef :defabc = 3 : 4,则=m ,n = .

24.A 、B 两地相距13.5km ,甲、乙两人分别从A 、B 两地同时出发,各在A 、B 间往返一次,家比乙先回到出发地,

两人第一次在C 地相遇,第二次在D 地相遇,从出发到两人第二次相遇经过的时间为3小时20分钟,若C 、D 两地相距3km .则甲的速度是 km/h ,乙的速度是 km/h .

25.有边长都是20厘米的正方形地板砖与正六边形地板砖共25块,总计有110条边.那么其中正六边形地板砖

有 块.若不准切割地板砖,直接用这些地板砖来铺设正方形的地面,这可铺设的正方形最大面积为

平方厘米.

历年初中希望杯数学竞赛试题大全

历年初中希望杯数学竞赛试题大全 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.下列运算正确的是【】 A.B.C.D. 2.2013年3月,在政府工作报告中对今年城镇保障性住房提出的具体目标是:基本建成470万套、新开工630万套,继续推进农村危房改造.630万用科学记数法表示这个数,结果正确的是【】 A.6.3×106B.6.3×105 C.6.3×102D.63×10 3.已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为【】厘米2. A.48 B.48πC.120πD.60π 4.下列所给的几何体中,主视图是三角形的是【】 5.如图,已知AB∥CD,CE交AB于F,若∠2=45°,则∠1=【】 A.135°B.45°C.35°D.40° 6.不等式组的解集是【】 A.x≥0 B.x>-2 C.-2<x≤3 D.x≤3 7.如图,在⊙O中,弦AB、CD相交于点E,∠A=40°, ∠B=30°,则∠AED的度数为【】 A.70 B.50 C.40 D.30 8.我县今年4月某地6天的最高气温如下(单位 C):32,29,30,32,30,32. 则这个地区最高气温的众数和中位数分别是【】 A.30,32 B.32,30 C.32,31 D.32,32 二、填空题(本大题共6个小题,每小题3分,满分18分) 9.-2的绝对值是. 10.函数中自变量x 的取值范围是. 11.已知等腰三角形的两边长分别是2和5,则该三角形的周长是. 12.分解因式4x2 -1= . 13.如图,□ABCD中,对角形AC,BD相交于点O, 添加一个条件,能使□ABCD成为菱形.你添加的条件 是(不再添加辅助线和字母). 14.如图,物体从点A出发,按照(第1步)(第2步) 的顺序循环运动, 则第2013步到达点处. 三、解答题(本大题共9个小题,满分58分) 15.(4分)计算: 16.(5分)解方程: 17.(6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64) 18.(6分)如图,点E、F在BC上,∠B=∠C,AB=DC,且BE=CF. (1)求证:AF=DE. (2)判断△OEF的形状,并说明理由. 19.(6分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少

希望杯数学竞赛小学三年级试题知识讲解

希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,().

(4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?

15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874)19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问:

1993年第四届希望杯初一2试及答案

希望杯第四届(1993年)初中一年级第2试试题一、选择题:(每题1分,共10分) 1. 1111 0.10.010.0010.0001 ---的值是 ( ) A.-11110. B.-11101.C.-11090.D.-11909. 2.一滴墨水洒在一个数轴上,根据图24中标出的 数值,可以判定墨迹盖住的整数个数是( ) A.285.B.286.C.287.D.288. 3.a,b都是有理数,代数式a2+b2,a2-b2,(a-b)2, (a+b)2,a2b2+1,a3b+1,a2+b2+0.1,2a2+3b4+1中,其值为正的共有( ) A.3个.B.4个.C.5个.D.6个. 4.a,b,c在数轴上的位置如图25所示,则下列代数式中其值为正的一个是( ) A. 1 () a a c b ?? +- ? ?? ; B. 11 () c a b c ?? -- ? ?? ; C.(1-a)(c-b); D.ac(1-bc). 5.1993+9319的末位数字是( ) A.2.B.4. C.6.D.8. 6.今天是4月18日,是星期日,从今天算起第19933天之后的那一天是( ) A.星期五. B.星期六.C.星期日.D.星期一. 7.n为正整数,302被n(n+1)除所得商数q及余数r都是正值.则r的最大值与最小值的和是( ) A.148.B.247.C.93. D.122. 8.绝对值小于100的所有被3除余1的整数之和等于( ) A.0.B.-32.C.33. D.-33. 9.x是正数,表示不超过x的质数的个数,如<5.1>=3.即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是( ) A.12. B.11.C.10.D.9. 10.如图26是一个长为a,宽为b的矩形.两个阴影图形都是一对长为c的底边在矩形对边上的平行四边形.则矩形中未涂阴影部分的面积为( ) A.ab-(a+b)c.B.ab-(a-b)c. C.(a-c)(b-c).D.(a-c)(b+c). 二、填空题(每题1分,共10分) 1.在1993.4与它的负倒数之间共有a个整数.在1993.4与它的相反数之间共有b个整数, 在- 1 1993.4 与它的绝对值之间共有c个整数,则a+b+c=_________. 2.设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),则(b÷a)

历届(第1-21届)希望杯数学竞赛初一试题及答案(最新整理)

希望杯第一届(1990年)初中一年级第一试试题................................................ 003-005 希望杯第一届(1990年)初中一年级第二试试题................................................ 010-012 希望杯第二届(1991年)初中一年级第一试试题................................................ 017-020 希望杯第二届(1991年)初中一年级第二试试题................................................ 023-026 希望杯第三届(1992年)初中一年级第一试试题................................................ 031-032 希望杯第三届(1992年)初中一年级第二试试题................................................ 037-040 希望杯第四届(1993年)初中一年级第一试试题................................................ 047-050 希望杯第四届(1993年)初中一年级第二试试题................................................ 055-058 希望杯第五届(1994年)初中一年级第一试试题................................................ 063-066 希望杯第五届(1994年)初中一年级第二试试题 ............................................... 070-073 希望杯第六届(1995年)初中一年级第一试试题................................................ 077-080 希望杯第六届(1995年)初中一年级第二试试题................................................ 084-087 希望杯第七届(1996年)初中一年级第一试试题................................................ 095-098 希望杯第七届(1996年)初中一年级第二试试题................................................ 102-105 希望杯第八届(1997年)初中一年级第一试试题................................................ 110-113 希望杯第八届(1997年)初中一年级第二试试题................................................ 117-120 希望杯第九届(1998年)初中一年级第一试试题................................................ 126-129 希望杯第九届(1998年)初中一年级第二试试题................................................ 135-138 希望杯第十届(1999年)初中一年级第二试试题................................................ 144-147 希望杯第十届(1999年)初中一年级第一试试题................................................ 148-151 希望杯第十一届(2000年)初中一年级第一试试题............................................ 158-161 希望杯第十一届(2000年)初中一年级第二试试题............................................ 166-169 希望杯第十二届(2001年)初中一年级第一试试题............................................ 170-174 希望杯第十二届(2001年)初中一年级第二试试题............................................ 175-178 希望杯第十三届(2002年)初中一年级第一试试题............................................ 181-184 希望杯第十三届(2001年)初中一年级第二试试题............................................ 185-189 希望杯第十四届(2003年)初中一年级第一试试题............................................ 192-196 希望杯第十四届(2003年)初中一年级第二试试题............................................ 197-200

第四届希望杯数学竞赛五年级二试试题及答案

第四届希望杯数学竞赛五年级二试试题及答案 2010-12-25 10:32:13| 分类:希望杯真题题库 | 标签:null |举报|字号订阅 第四届小学"希望杯''全国数学邀请赛 五年级第2试 2006年4月16日上午8:30至10:00 得分_________ 一、填空题(每小题4分,共60分。) 1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=___________________。 2.一个数的等于的6倍,则这个数是____________________。 3.循环小数0.123456789的小数点后第2006位上的数字是__________________。4."△"是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如:5△7=5×c+7×d。 如果1△2=5,1△3=7,那么6△1000的计算结果是________________。 5.设a=,b=,c=,d=,则a,b,c,d这四个数中,最大的是___________,最小的是_________________。 6.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重____________千克。 7.从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。 8.如果a,b均为质数,且3a+7b=41,则a+b=________________。 9.数一数,图1中有_________________个三角形。 10.如图2,三个图形的周长相等,则a:b:c=____________________-。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

希望杯第一届(1990年)初中二年级第一试试题 一、选择题:(每题1分,共10分) 1.一个角等于它的余角的5倍,那么这个角是 ( ) A .45°. B .75°. C .55°. D .65° 2.2的平方的平方根是 ( ) A .2. B . 2. C .±2. D .4 3.当x=1时,a 0x 10 -a 1x 9 +a 0x 8 -a 1x 7 -a 1x 6 +a 1x 5 -a 0x 4 +a 1x 3 -a 0x 2 +a 1x 的值是( ) A .0 B .a 0. C .a 1 D .a 0-a 1 4. ΔABC,若AB=π,BC=1+2,CA=7,则下列式子成立的是( ) A .∠A >∠C >∠B; B .∠ C >∠B >∠A;C .∠B >∠A >∠C; D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个 B .5个. C .6个. D .7 6.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-?化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a - 8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组 B .3组. C .4组 D .5组。 9.已知 1 1 12111222 222--÷-+++-?--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0. B .1. C .2. D .4. 把f 1990化简后,等于 ( ) A . 1-x x . B.1-x. C.x 1 . D.x.

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数.

8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是. 10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?

14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问: (1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数? 23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.

2019年第27届“希望杯”全国数学邀请赛七年级二试获奖名单

2019年第27届“希望杯”全国数学邀请赛七年级二 试获奖名单 一等奖 准考证编号姓名年级学校奖项指导教师 161274475060陶浩宇七镇海蛟川书院一等奖陈丽 161277274241施扬七苍南县星海学校一等奖陈意望 161277274327薛墨寒七苍南县星海学校一等奖陈大雪161274475099朱璟程七镇海蛟川书院一等奖吴玲 161274476114史庭歌七宁波海曙外国语学校一等奖胡强161274475090张宇粟七镇海蛟川书院一等奖翁丹枫 161271170025马恪七杭州竞舟小学一等奖 161274475094周俊汝七镇海蛟川书院一等奖陈丽 161274475072杨皓七镇海蛟川书院一等奖陈琦 161274472070沈擎舟七余姚实验学校一等奖张科 161278972048徐畅七松阳县汇文中学一等奖叶菊芬 161271170070张润哲七杭州采荷第一小学一等奖 161274472095宣轩七余姚实验学校一等奖张科 161274473084严思诚七余姚高风中学一等奖张科 161274475084袁子隽七镇海蛟川书院一等奖王伟鸿 161274475082叶哲翀七镇海蛟川书院一等奖王伟鸿

161274475014戴久钧七镇海蛟川书院一等奖王伟鸿161274475039林文海七镇海蛟川书院一等奖翁丹枫161277274403朱朝锐七苍南县星海学校一等奖陈意望161274475067吴博七镇海蛟川书院一等奖翁丹枫161271170062叶卓睿七杭州文澜中学一等奖王亚权161274472042姜乐心七余姚实验学校一等奖龚雅娥161274473068王梓帆七余姚高风中学一等奖张科161274472046李锦添七余姚实验学校一等奖张科161274475092郑知非七镇海蛟川书院一等奖陈丽161274476078林雨蓝七宁波外国语学校一等奖161274472008陈栩阳七余姚实验学校一等奖张科161274475006陈思原七镇海蛟川书院一等奖刘继华161277274225毛子迅七苍南县星海学校一等奖陈意望161274472087王熠七余姚实验学校一等奖张科161274476187张鑫亮七宁波镇明中心小学一等奖胡强161274475026华柯任七镇海蛟川书院一等奖吴玲161277274323许振坤七苍南县星海学校一等奖陈大雪161274472040黄骏齐七余姚实验学校一等奖张科161274472054陆宇洋七余姚实验学校一等奖张科161277274326薛晗七苍南县星海学校一等奖陈意望161274475054沈炎七镇海蛟川书院一等奖翁丹枫

2009年第二十届“希望杯”全国高二数学邀请赛(第2试)

第20届全国希望杯高二数学邀请赛 第二试 一、选择题(每题4分,40分) 1、设的定义域为D ,又()()().h x f x g x =+若(),()f x g x 的最大值分别是M ,N ,最小值分别是m ,n ,则下面的结论中正确的是( ) A .()h x 的最大值是M+N B .()h x 的最小值是m +n C .()h x 的值域为{|}x m n x M N +≤≤+ D .()h x 的值域为{|}x m n x M N +≤≤+的一个子集 2、方程log (0,1)x a a x a a -=>≠的实数根的个数为( ) A .0 B .1 C .2 D .3 3、已知函数32()1(0)f x ax bx cx a =++-<,且(5)3f =,那么使()0f x =成立的x 的个数为( ) A .1 B .2 C .3 D .不确定的 4、设22{(,)|S x y x y =-是奇数,,}x y R ∈,22{(,)|sin(2)sin(2)T x y x y ππ=-= 22cos(2)cos(2),,}x y x y R ππ-∈,则S ,T 的关系是( ) A .S ≠?T B .T ≠ ?S C .S=T D .S T =Φ 5、定义集合M,N 的一种运算*,:1212*{|,,}M N x x x x x Mx N ==∈∈,若{1,2,3}M =,N={0,1,2},则M*N 中的所有元素的和为( ) A .9 B .6 C .18 D .16 6、关于x 的整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( ) A .方程没有整数根 B .方程有两个相等的整数根 C .方程有两个不相等的整数根 D .不能判定方程整数根的情况 7、设x 是某个三角形的最小内角,则cos cos sin 22 x y x x =-的值域是( ) A .( B .( C . D . 8、已知e tan )

2012希望杯六年级数学竞赛试题及答案

2012年第十届希望杯六年级初赛试题 1、 计算:.______3 1%1254 11 911 9225.1=? -?+? 2、 计算: ._______2010 20092512009 2008251=?+ ? 3、 在小数3.1415926的两个数字上方加2个循环点,得到循环小数,这样的循环小数中, 最小的_______. 4、 一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是_______. 5、 20122的个位数字是________.(其中,n 2表示n 个2相乘) 6、 图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这 个 正 方 体 是 _______. ( 填 序 号 ) 7、 一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多1/5, 两车同时从甲乙两地相对开出2小时候,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距______千米. 8、 对任意两个数x ,y ,定义新的运算*为:y x m y x y x ?+??= 2* (其中m 是一个 确定的数).如果5 22*1= ,那么m=______,2*6=_______. 9、 甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提 价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,______店的售价更便宜,便宜_____元。

10、图3中的三角形的个数是_______. 11、若算式(□+121×3.125)÷121的值约等于3.38,则?中应填入的自然数是_______. 12、认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是________. 13、图5中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是_____平方厘米. 14、如图6,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形_______.

2016年第二十七届“希望杯”全国数学邀请赛初一第1试试题(PDF版本)

第 27 届(2016 年)“希望杯”全国数学邀请赛初中一年级初赛试题 第 27 届“希望杯”全国数学邀请赛 初一 第 1 试试题 考试时间:2016 年 3 月 20 日 一、选择题(每小题 4 分,共 40 分) 1. 下列计算中,正确的是( ) A . x 2 + x 3 = x 5 B . x 4 - x 2 = x 2 C . x 2 x 3 = x 6 D . x 3 ÷ x 2 = x 2.若 n 个人完成一项工程需要 m 天,则 (m + n ) 个人完成这项工程需要( )天 A . mn B . m - n C . m + n D . mn m + n m + 2n m + n mn 3. 关于多项式 1 x 3 y + 5y 4 x 2 - 2 y 7 + 4 ,有以下叙述: 2 ①该多项式是六次三项式;②该多项式是七次四项式; ③该多项式是七次三项式;④该多项式最高次项的系数是 -2 ; ⑤该多项式常数项是 -4 。其中,正确的是( ) A .①④ B .③⑤ C .②④ D .②⑤ 4. If a , b , c are positive numbers such that 3a = 4b = 5c ,and if a + b = kc ,then k =( ) A . 12 B . 5 C . 7 D . 35 35 7 5 12 5. 若非零自然数 a , b 的最大公约数与最小公倍数之和恰等于 a , b ? a 2 b 2 ?10 的乘积,则 ? = ? a + b ? ( ) A .1 B .1024 C . 2014 D . 2016 6. 如图所示,在 7 ? 4 的网格中, A , B , C 是三个格点,则 ∠ABC = ( ) A .105 B .120 C .135 D .150 7. 若 a , b , c 满足 a 2 - 6b = -14,b 2 - 8c = -23, c 2 - 4a = 8 ,则 a + b + c 的值是( ) A .6 B .7 C .8 D .9 8. 在1, 2,3, ,99,100 这 100 个自然数中,不是 2 的倍数,不是 3 的倍数,且不是 5 的倍数的数共有 k 个,则 k =( )

【2014】希望杯竞赛数学试题详解(61-70题)

【希望杯竞赛题】61-70 题61 设直线n m ,都是平面直角坐标系中椭圆72x +3 2 y =1的切线,且n m ⊥,m 、n 交于 点P ,则点P 的轨迹方程是 . (第十二届高二培训题第47 题) 解 设直线y =b kx +与椭圆72x +32y =1相切,则二次方程72x +()132 =+b kx ,即()021********=-+++b kbx x k 有两个相等实根,其判别式()()()2 22144377210kb k b ?=-+-=,解得22273,73k b k b +±=+= .因此斜率为k 的椭圆的切线有两条:2 73k kx y +±=①,与其中每条垂直的切线也各有两条:273k k x y +±-=②;另有与x 轴垂直的切线两条:7±=x ,与其中每条垂直的切线又各有两条:3±=y . 由①、②得()kx y -2=273k +③,2273k k x y +=??? ? ?+④,④式即()7322+=+k x ky ⑤.③+⑤得()()() ,1101122222+=+++k y k x k 即1022=+y x ⑥.又点()()()() 3,7,3,7,3,7,3,7----都适合方程⑥.故点P 的轨迹方程为1022=+y x . 评析 这是一道典型的用交轨法求轨迹方程的问题.解题的关键有两个:如何设两条动切线方程与如何消去参数.当切线的斜率存在时,我们可设其方程为b kx y +=,此时出现两个参数k 与b ,由于此切线方程与椭圆的方程组成的方程组有且只有一解,故由二次方程有等根的条件得2 73k b +±=(这与事实一致:斜率为k 的椭圆的切线应当有两条),从而切线方程为273k kx y +±=,那么与其垂直的椭圆的切线方程就是将此切线方程中的k 换成k 1-所得方程,即273k k x y +±-=.此时突破了第一关.下面是否通过解方程组得交点轨迹的参数方程,然后再消参得所求轨迹方程呢?想象中就是非常繁琐的.上面题解中的方法充分体现了消参的灵活性,大大简化了解题过程.然而,事情到此并未结束,以上

数学希望杯竞赛

刚刚结束的“中环杯”初赛,今年题型的变化纷纷让学生们措手不及,历来中环杯的难度都是各热门的数学杯赛竞赛中偏高的,小学中热门的数学竞赛,由于“希望杯”相对而言更注重基础,因此似乎对考生来说是最有“希望”拿到证书的数学竞赛。而掌握“希望杯”备考及竞赛过程中的几个要点,对取得好成绩大有帮助。更多信息请点击>> 破解简单题目中的玄机 “希望杯“主要考察学生奥数基础知识的掌握情况,一般奥数教材里的数论、几何、应用题等都会考到,覆盖面较广。比如学生的计算能力;是否能熟记基本的知识点;有无学会对知识和解题方法进行归纳总结,并举一反三,触类旁通等。 相对于其他杯赛,“希望杯”命题风格非常直白,考察学生运用知识点解决实际问题的能力。考试题目虽然比较简单,但可能暗藏陷阱,学生一不留神就可能“中招”。 “希望杯”竞赛的一个特色就是面向的参赛群体非常广泛。在校成绩突出的学生有机会获奖;成绩并不突出但学习踏实的学生同样也有机会获奖。“希望杯”的最终评奖结果在每年的六月初揭晓,而第一试是在每年三月初就公布成绩,进入第二试的比例为20%。有一点要提醒大家注意,“希望杯”第一试往往是“一题两解”,考生在解题时要考虑周全可能包含的各种情况,切勿粗心大意。

专家认为,“希望杯”思维能力竞赛的试题内容不超教学大纲,不超进度,贴近现行的数学课本,又稍高于课本。试题活而不难,巧而不偏,能将知识、能力的考察和思维能力的培养结合起来,而不只是让学生单纯地解答数学题目。 更重视解题过程 由于“希望杯”考察的知识点不偏不刁,这就对不一定具有数学天分但是学习踏实的同学很有利;而且“希望杯”的第二试试题重视解题过程,平时学习习惯好,作业过程认真清晰的学生有希望冲击更高的奖项。从这两点可以看出,“希望杯”非常有利于大部分成绩并不突出的同学获奖,这也是“希望杯”有别于其他杯赛的重要区别之一。 奥数知识基础相对扎实、解题认真的考生最适合报考“希望杯”,那些在学校学习处于中等偏上、学有余力的同学都可以参加。对他们来说,参加考试最大的意义在于检验知识的灵活运用能力。“希望杯”强调灵活的变通,这正符合喜欢思考、善于思考的学生的需求。学生不妨看看“希望杯”基础在哪,基础之上的变通又在哪,从而检测自己对于数学学习的掌握情况。我们建议只要对数学有兴趣者都可以参加,“希望杯”注重基础知识点的考察,难度又稍高于平时。考生要想获得名次,就肯定要花时间去“吃透”这些知识点。如果学生能以此标准来要求自己,那学起基础数学就更是应对自如了。 历年真题是法宝

2019年六年级“希望杯”全国数学大赛决赛题(含详细答案)

小学六年级“希望杯”全国数学大赛 2019年六年级“希望杯”全国数学大赛决 赛题(含详细答案) 4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如2169,21146等等。那么这类数中最大的一个数是____________。 4.有一类自然数,从第四个数字开始每个数字都恰好等 于它前面三个数字的和,直到不能再写为止,如2169,21146等等。那么这类数中最大的一个数是 ____________。 5.下面是一串字母的若干次变换。 A B C D E F G H I J 第一次变换后为 B C D A F G H I J E 第二次变换后为 C D A B G H I J E F 第三次变换后为 D A B C H I J E F G 第四次变换后为 A B C D I J E F G H 题 号 一 二 其中: 总 分 13 14 15 16 得 分 得分 评卷人

…………………………………………………… 至少经过次变换后才会再次出现“A、B、C、D、E、F、 G、H、I、J”。 6.把一个棱长为2厘米的正方体在同一平面上的四条棱 的中点用线段连接起来(如右图所示),然后再把正方 体所有顶点上的三角锥锯掉。那么最后所得的立方体 的体积是立方厘米。 7.有一列数,第一个数是5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。则这列数中前100个数之和等于。 8.在钟面上,当指针指示为6︰20时,时针与分针所组成的较小的夹角为 度。 9.小明把五颗完全相同的骰子拼 摆成一排(如右图所示),那么 这五颗骰子底面上的点数之和 是。 10. 有四个房间,每个房间里不少于4人。如果任意三个房间里的总人数不 少于14人,那么这四个房间里的总人数至少有人。 11.如果用符号“[a]”表示数字a的整数部分,例如[5.1]=5,[ 5 3 ]=1, 那么[ 1 1 2000 + 1 2001 +……+ 1 2019 ]=。 12.雨,哗哗不停的下着。如果在地上放一个如图(1)那样的长方体形状的容器,那么雨水将它注满要用1小时。另有一个如图(2)形状的容器,那么雨水将它注满要用分钟。

第九届小学“希望杯”全国六年级数学奥数题

第九届小学“希望杯”全国数学邀请赛 六年级 第2试 一、填空题(每小题5分,共60分) 1. 计算:114154.0625.3-+。。 = 。 2. 对于任意两个数x 和y ,定义新运算 和?,规则如下: x y =y x y x 22++,x ?y =3 ÷+?y x y x 如:1 2= 54221212=?++?,1?2=5 115632121==÷+? 由此计算,。63.0。 )2114(?= 。 3. 用4根火柴,在桌面上可以拼成一个正方形;用13根火柴,可以拼成四个正方形;…如图所示,拼 成的图形中,若最下面一层有15个正方形,则需火柴 根。 26根火柴13根火柴4根火柴 4. 若自然数N 可以表示3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12 个连续自然数的和,则N 的最小值是 。(最小的自然数是0) 5. 十进制计数法,是逢10进1,如:141022410?+?=)(,1 5106103365210?+?+?=)(; 计算机使用的是二进制计数法,是逢2进1,如: )()(22101111121217=?+?+?=,)()(2231011001020212112=?+?+?+?=; 如果一个自然数可以写成m 进制数)(45m ,也可以写成n 进制数)(54n ,那么最小的m = , n = 。(注: a n n a a a a a 个????=) 6. 我国除了用公历纪年外,还采用干支纪年。 将天干的10个汉字与地支的12个汉字对应排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳…… 同一列上下对应的两个汉字就是一个干支年年号。 现在知道公历2011年是辛卯年,公历2010年是庚寅年,那么,公历1949年,按干支纪年法是 年。 7. 盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球。为了保证有5次摸出 的结果相同,则至少需要摸球 次。

希望杯第20届初一第2试试题及答案

第二十届(2009年) 希望杯初一年级第二试试题word 版 初一 第2试 一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案 的英文字母写在每题后面的圆括号内. 1.=--2 2 2 239 614753( ) (A ) 113 (B )115 (C )117 (D )11 9 2.每只玩具熊的售价为250元.熊的四条腿上各有两个饰物,标号依次为1,2,3,…,8.卖家说:“1,2,3,4,…,8号饰物依次要收1,2,4,8,…,128元.如果购买全部饰物,那么玩具熊就免费赠送.”若按这样的付费办法,这只熊比原售价便宜了( ) (A )5元 (B )-5元 (C )6元 (D )-6元 3.如图1,直线MN ∥PQ .点O 在PQ 上.射线OA ⊥OB ,分别交MN 于点C 和点D .∠BOQ=30°.若将射线OB 绕点O 逆时针旋转30°,则图中60°的角共有( ) (A )4个 (B )5个 (C )6个 (D )7个 4.如果有理数a ,b 使得 01 1 =-+b a ,那么( ) (A )b a +是正数(B )b a -是负数 (C )2 b a +是正数(D )2 b a -是负数 5.As in figure 2.In the circular ring of which center is point O .if AO ⊥BO ,and the area of the shadowy part is 25cm 2 ,then the area of the circuiar ring equals to ( ) ()14.3≈π (A )147cm 2 (B )157cm 2 (C )167cm 2 (D )177cm 2 6.已知多项式152)(2 1+-=x x x p 和43)(2-=x x p ,则)()(21x p x p ?的最简结果为( ) (A )4232362 3 -+-x x x (B )4232362 3 --+x x x O N M 图1 P D C B A

希望杯数学竞赛

希望杯数学竞赛 Document number:WTWYT-WYWY-BTGTT-YTTYU-

1990第二试 一、选择题 1、等腰三角形周长是24cm ,一腰中线将周长分成5:3的两部分,那么这个三角形的底边长是( )A 、 B 、12 C 、4 D 、12或 4 2、已知:()2198911991199019891988-++???=p ,那么P 的值是( ) A 、1987 B 、1988 C 、1989 D 、1990 3、a >b >c,x >y >z,M = ax + by + cz ,N = az + by + cx,P = ay + bz + cx , Q = az + bx + cy ,则有( ) A 、M >P >N 且 M >Q >N B 、N >P >M 且N >Q >M C 、P >M >Q 且 P >N >Q D 、Q >M >P 且 Q >N >P 4、凸四边形ABCD 中,∠DAB = ∠BCD = 90°,∠CDA: ∠ABC = 2:1,AD : CB = 1:3,∠BDA 的度数是( )A 、30° B 、45° C 、60° D 、不能确定 5、把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( ) A 、是不存在的 B 、恰有一种 C 、有有限多种,但不止一种 D 、有无穷多种 二、填空题 6、△ABC 中,∠CAB - ∠B = 90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N ,已知CL = 3,则CN = ( )。 7、若()0212=-+-ab a ,那么()() ()()1990199011111+++++++b a b a ab 的值是( ) 8、已知a,b,c 满足a + b + c = 0,abc = 8 ,则c 的取值范围是 ( ). 9、△ABC 中,∠B = 30°,AB = 5,BC = 3,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是( ) 10、设a,b,c 是非零实数,那么abc abc bc bc ac ac ab ab c c b b a a ++++++的值是( ) 三、解答题 11、从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177。 12、平面上有两个边长相等的正方形ABCD 和A ′B ′C ′D ′,且正方形A ′B ′C ′D ′的顶点

历届“希望杯”全国数学邀请赛高二数学精选100题详析(一)

历届“希望杯”全国数学邀请赛高二数学精选100题详析 题 1 已知y x a b b y b b a x b a ,,,,0则-- = - += <<的大小关系 是 . (第十一届高二第一试第11题) 解法1 b b a a b b a x + += - += ,a b b a a b b y -+ = --=. y x a b b b b a b a <∴-+>++∴<<,,0 . 解法2 b b a a b b a b b b b a y x + +-+= ---+= ,y x y x a b b a <∴<∴ ->+,1, . 解法3 a a b b a b b a a b b b b a y x -+ - + += -- - -+= -1111 = y x y x a a b b a <∴>-∴>-- +,011,0. 解法4 原问题等价于比较a b b a -+ +与b 2的大小.由,2 ) (2 2 2y x y x +≥ +得 b a b b a a b b a 4)(2)2 =-++≤-++(,b a b b a 2≤-++∴ . y x b a b b a a b b a <∴<-++∴-≠ +,2, . 解法5 如图1,在函数x y =的图象上取三个不同的 点A (a b -,a b -)、B (b ,b )、C (b a +,b a +). 由图象,显然有AB BC k k <,即 ) ()(a b b a b b b b a b b a ---- < -+- +, 即a b b b b a --<-+,亦即y x <. 解法6 令()f t =,t t a a t f + += )( 单 调递减,而a b b ->,)()(a b f b f -<∴,即a b b b b a --<- +,y x <∴. 解法7 考虑等轴双曲线)0(2 2 >=-x a y x . 图1

相关文档
最新文档