Omron电动牙刷感应充电器的改制

Omron电动牙刷感应充电器的改制

Omron电动牙刷感应充电器的改制

Omron的电动牙刷HT-B305采用感应式充电,电源电压为100V/60HZ,在我国电网上不能使用,笔者就没有注意直接插在220v上烧毁。小心的撬开外壳,仔细清除透明防水胶,测绘电路图如下:

从原理图上可以看出,该电路采用电容三点式震荡,该电路设计简洁,可靠性很高。经对电路分析完全可以改成220v供电,而且原设计也考虑到220v供电的问题,图中圆框中的元件没有安装,用短路线(w1)取代。改制时按照一下步骤进行。

1、拆掉Z1,换成国产的271压敏电阻,笔者的这个压敏电路经实测满足220v的电源

要求,所以没有更换。没有条件测试的情况下,建议换掉。

2、为了保险拆掉电容C5,更换成10uF/400v的电容,虽然改制后电容处的电压工作在

150v内,为了安全建议换掉。很多插错电源的朋友,该电容已经损坏。

3、拆掉圆框中的短路线W1(W1是本人自己定义的,打开后可以看到一个长的跳线就

是,跳线下面标注的是C2)在跳线位置换上电容C2(0.1uF/400v)并在C2上并联200k的电阻。一时找不到电容的,可以拆下C1,换在C2位置。

经过上述改造后,就可以放心的在220v上使用了。

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

电动车 48V 充电器原理图与维修(高清版)

电动车48V 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的2 脚和 5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

OMRON温控仪参数设定方法

OMRON E5CN 温控表参数设定方法 温控仪面板(E5CN )如图: 一.参数设置等级操作: 1. 按“ ”键3秒以上,进入参数设置等级。显示: 2. 按“ ”键,切换参数代码,可循环显示。显示: 3. 按“ ”或“”键,修改参数设定值。 4. 按“”键3秒以上,返回正常控制模式。显示: 二.报警值设置操作: 1. 按“ ”键,进报警值设定,可循环显示。显示:

2.按“”键,设定报警1( 3.按“”或“”键,修改报警输出设定值。 4.按“”键,设定报警2( 5.按“”或“”键,修改报警输出设定值。 6.按“”键,返回正常控制模式。显示: 三.自整定操作: 按“”键,进入自整定设置操作。显示: 按“”键,将“”改为“”。显示: 按“”键,开始自整定,设定温度值闪烁显示。显示: 注意:此操作应在参数全部设定完成后,加热到实际温度与设定温度值基本相同后开始,否则,自整定结果不准确,在此过程中,禁止对温控表进行其他操作,实际温度值会有较大波动,属正常现象,待设定值停止闪烁后,自整定即完成,自动恢复正常控制模式。

四.参数功能及设定值: 按“”键3秒以上参数功能设定值 温度传感器输入型号 0:代表传感器型号pt100 按“”键 温度显示单位 C:代表摄式度;F:代表华式度 按“”键 最高上限温度报警值高于正常设定值20%-25% 此值到达温控器停止输出并报警 按“”键 最低下限温度报警值 按“”键 PID控制*关键参数,禁止随意修改* PID:自动控制方式;ONOFF:开关控制方式 按“”键 温度控制方式 Stnd:标准控制;H-C:热或冷控制 按“”键 自整定功能开关 ON:开;OFF:关 按“”键 控制周期 2:加热周期为2秒钟*关键参数,禁止随意修改*

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

通用电动自行车充电器电路分析及维修图文教程(3842芯片).

通用电动自行车充电器电路分析及其维修(3842芯片) 作者:MAX232 QQ:44473047 时间:2012年7月30日 一、电路分析 首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换的300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。 (1)3842稳定工作的条件: 1. 起始的工作电压,由启动电阻从300V降压得到; 2. 8脚有输出稳定的5v基准电压,内部振荡电路才会工作。 3. 6脚输出驱动MOS管打开后,3脚检测到的电流反馈电压 没有超过1V。 4. 原边供电是否在下一个周期工作开始前提供到3842的7 脚,否则由启动电阻提供过来的电能已经不能维持3842工 作了。 (2)输出电压保持稳定的条件: 1. 副边绕组是否感应到电能。 2. 副边整理和滤波器件是不是都完好。

3. 采样电阻以及431,是否完好。 4. 光耦是否完好工作。 5. 3842是否接收到光耦的信号,确定信号没有在进入3842芯片前被阻断或过滤了。 充电器高压部分故障的修理流程 1、元件检测: 高压直流二极管(4007,5399,5408)或者全桥。 高压大电容,简称“一大电容”,450v68uf。 3842的7脚供电电容,简称“高压小电容”。35v100uf

场效应管(mos管,比如6N60,7N80,10N90,K1358,,,,,,,,) 低压部分的主整流管1660,uf5408,FR307,,,,,,,,,,,,,,,,,,, 低压部分的主滤波电容,(63v470uf)简称“二大电容”。 低压部分的辅助电源滤波电容,(63v470uf) 输出电流取样电阻(3w0.1欧姆) 光耦(pc817,4n35,,)用ws-3可以快速准确检测。没有ws-3就 用二极管档测量光耦低压侧的参数,应该是一个发光二极管的参数。光耦高压侧的参数基本上查不到,但也不能短路 2、拆掉损坏的零件,(3842,7n80,以及3w0.5欧姆,10欧姆,1k,等等,具体位置请看原理图红色标注)焊上保险管。(或者串联 220v40w灯泡)。 3、安装“基础”零件 更换高压整流二极管,一律用5399代替。4只全部换新。高 压部分电流取样电阻R1(用3w1欧姆或者3w0.5欧姆),驱动电阻 R2 (1/4W,10欧姆),R3(1/4W 1k),下拉电阻R4(1/4W 10k),下偏电 阻R5(1/4W 1k)。若原装各电阻与本图有出入的,一律以本图为准(以不变应万变) 4、接通保护电,(串联灯泡,后文字相同处理)

MP4MP3充电器电路图与电路分析

MP4/MP3充电器电路图与电路分析 原理分析 该款MP4/MP3充电器外观小巧,外壳上印有"AC100-250V. 100mA"与“DC5V+5%.200-300mA”等参数字样。其内电路实测 如附图所示,现简析其工作原理如下。 插上市电后,交流220V电压经电阻R1限流后,由D1-D4.C1进行整流滤波,并在C1上产生300V左右的直流电压,此电压经电阻R2加至振荡管Q1的基极,使Q1得到偏置而导通.由D6.C3.R6等元件构成的自激反馈网络将脉冲变压器L2反馈绕组上的感应脉冲馈至Q1基极, 使其维持于连续振荡的工作状态.同时,变压器次级L3上产生的感应电压经过D7,C5整流滤波,形成略高于5V的直流输出电压,经过R7加至输出端口上,再通过USB转换线供给MP4/MP3机工作或充电.R4,R5.Q2,IC1,DW1等元件构成反馈式电压自动调整电路.当市电波动电压升高时,Q1振荡管的e极所接反馈电阻R4压降增大,而此压降通过 R5加至Q2基极,Q2的c-e极导通程度亦会增大,从而削弱Q1的工作偏置,使其c极电流下降,达到自动调整并让输出电压保持稳定。反之,若市电电压降低,自动反馈调整电路会朝相反的方向调整,让输出电压保持稳定。如果另遇其他原因造成输出电压升高,此时输出电路端的DW1则会因电压过高而击穿,而使光电耦合器IC1输出一侧导通电阻相应降低,从而加强反馈元件C4 上电压对Q2的控制作用,自动的调整振荡电路的状态,以对输出电压的升高产生有效抑制。 附图中元件C2.R3,D5为干扰吸收电路,可吸收开关电源工作时产生的反峰脉冲,以可靠保护振荡管的安全。

二.维修实例 [实例一]不工作. 在检修时发现输出端口无5V电压输出,测C1上无300V直流电压.说明故障点在R1.D1~D4.C1元件范围.后经断电之后逐一检测,测出R1 电阻断路,但外观却完好.将其更换后再开机,充电器恢复正常. [实例二]充电器空载时"LED"红灯亮,但插接MP3负载后熄灭且MP3机不工作. 根据空载时"LED红"可发光的情况,初步分析振荡电路可起振工作.检查低压输出部分元件未见异常.检查振荡电路部分时,测到 Q1管e极所连反馈电阻R4 阻值偏大,判断为该电阻已变质,造成振荡偏弱,输出带负载能力减弱。在更换R4为新电阻后, 开机再试,充电器在插接MP3机后工作性能完全恢复。 MP4电路图

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

电动车经典_48V-3A_充电器原理图与讲解_高清版

电动车48V-3A 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的 2 脚和5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

欧姆龙PLC选型手册大全

欧姆龙PLC型号 欧姆龙PLC--CPM1A-V1系列 欧姆龙PLC--CPM1A-V1系列产品型号 1.CPM1A-10CDR-A-V110点CPU单元AC100-220V、6点入,4点继电器输出 (1A是型号代号;10表示输入输出总点数为10点,具体是6点输入,4点输出;C表示是CPU单元;D表示混合型,也就是有输入也有输出;R表示继电器输出型;A表示工作电压为交流电100~240V) 2.CPM1A-10CDR-D-V110点CPU单元DC24V、6点入,4点继电器输出 3CPM1A-10CDT-D-V110点CPU单元DC24V、6点入,4点晶体管输出.漏型 4.CPM1A-20CDR-A-V120点CPU单元AC100-220V12点入,8点继电器输出 5.CPM1A-20CDR-D-V120点CPU单元DC24V12点入,8点继电器输出 6.CPM1A-20CDT-D-V120点CPU单元DC24V12点入,8点晶体管输出.漏型 7.CPM1A-30CDR-A-V130点CPU单元AC100-220V18点入,12点继电器输出 8.CPM1A-30CDR-D-V130点CPU单元DC24V18点入,12点继电器输出 9.CPM1A-30CDT-D-V130点CPU单元DC24V18点入,12点晶体管输出.漏型 10.CPM1A-40CDR-A-V140点CPU单元AC100-220V24点入,16点继电器输出 11.CPM1A-40CDR-D-V140点CPU单元DC24V24点入,16点继电器输出 12.CPM1A-40CDT-D-V140点CPU单元DC24V24点入,16点晶体管输出.漏型 13.CPM1A-40EDR扩展I/O单元40点24点输入16点继电器输出 14.CPM1A-20EDR1扩展I/O单元20点12点入,8点继电器输出 15.CPM1A-8ER扩展输出单元8点继电器输出 16.CPM1A-8ED扩展输入单元8点DC输入 17.CPM1A-40EDT扩展I/O单元40点24点输入16点晶体管输出.漏型 18.CPM1A-20EDT扩展I/O单元20点12点入,8点晶体管输出.漏型 19.CPM1A-8ET扩展输出单元8点晶体管输出.漏型 20.CPM1A-MAD01-NL模拟量模块输出单元2入/1出输入:0~10V,1~5V,4~20毫安 输出:0~10V,-10~+10V,4~20毫安 21.CPM1A-MAD02-CH模拟量输入输出单元4入/1出输入:0~10V,1~5V,4~20毫安 输出:0~10V,-10~+10V,4~20毫安 22.CPM1A-DA001模拟量输出单元2路分辨率1/4000转换速率2.5ms/CH每个输出通道可独立设置量程 输出:-10~10V0~10V0~5V0~20mA1~5V4~20mA 23.CPM1A-DA002模拟量输出单元4路分辨率1/4000转换速率2.5ms/CH每个输出通道可独立设置量程 输出:-10~10V0~10V0~5V0~20mA1~5V4~20mA 24.CPM1A-AD041模拟量输入单元,4路分辨率1/6000 25.CPM1A-DA041模拟量输出单元,4路分辨率1/6000 26.CPM1-CIF01RS232适配器 27.CPM1-CIF11RS422适配器

部分电动自行车充电器电路详解

部分电动自行车充电器电路详解 2009-03-1119:02 电动自行车充电器给电动车辆的铅酸电瓶、镍镉电瓶补充能源,要通过充电器进行。充电器的种类很多.一般以有无工频变压器区分可分为分两大类。大功率的普遍采用环牛工频变压器.虽然效率低,但是电流大(可到30A)、可靠。货运电动三轮无一例外地使用它,而30Ah以下的电瓶则大多采用开关电源技术,这样便提高了效率,甩掉了笨重的工频变压器。电动自行车充电器最大充电电流大多在2A左右。 1.采用开关电源技术的电动自行车充电器 (1)山东GD36充电器 电路原理图见图12所示。该充电器为半桥式充电器.主要性能指标为:输入电压:170-260V;输出电压:44V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。 1)电路原理 本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM控制、电压控制、电流控制、输出整流滤波六部分组成。 整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。 自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。 自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。这是一个十分强烈的正反馈过程,Q1迅速饱和导通。与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。 Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。这又是一个强烈的正反馈过程,结果是Q1截止、Q2饱和导通。此后,这种过程重复进行而形成振荡。

OMRON温控仪参数设定方法

OMRON温控仪参数设定方法

OMRON E5CN 温控表参数设定方法 仪面板(E5CN )如图: 一.参数设置等级操作: 1. 按“”键3秒以上,进入参数设置等级。显示: 2. 按“”键,切换参数代码,可循环显示。显示: 3. 按“”或“ ”键,修改参数设定值。 4. 按“ ”键3秒以上,返回正常控制模式。显示: 二.报警值设置操作: 1. 按“ ”键,进报警值设定,可循环显示。显示: 温度实际值 设定值向上 向模式等级状态

2.按“”键,设定报警1()温度值。显示: 3.按“”或“”键,修改报警输出设定值。 4.按“”键,设定报警2()温度值。显示: 5.按“”或“”键,修改报警输出设定值。 6.按“”键,返回正常控制模式。显示: 三.自整定操作: 按“”键,进入自整定设置操作。显示: 按“”键,将“”改为“”。显示: 按“”键,开始自整定,设定温度值闪烁显示。显示: 注意:此操作应在参数全部设定完成后,加热到实际温度与设定温度值基本相同后开始,否则,自整定结果不准确,在此过程中,禁止对温控表进行其他操作,实际温度值会有较大波动,属正常现象,待设定值停止闪烁后,自整定即完成,自动恢复正常控制模式。

四.参数功能及设定值: 按“”键3秒以上参数功能设定值 温度传感器输入型号 0:代表传感器型号pt100 按“”键 温度显示单位 C:代表摄式度;F:代表华式度 按“”键 最高上限温度报警值高于正常设定值20%-25% 此值到达温控器停止输出并报警 按“”键 最低下限温度报警值 按“”键

PID控制*关键参数,禁止随意修改* PID:自动控制方式;ONOFF:开关控制方式 按“”键 温度控制方式 Stnd:标准控制;H-C:热或冷控制 按“”键 自整定功能开关 ON:开;OFF:关 按“”键 控制周期 2:加热周期为2秒钟*关键参数,禁止随意修改* 按“”键 控制方向 OR-r:加热;OR-d:冷却按“”键

欧姆龙Mems流量传感器选型

小型、高精度、耐环境性能卓越的差压传感器 ● ±3%RD 的高精度。 ● 具备直线补偿、温度补偿功能。● 数字输出(I2C 通信)。 ● 高流量阻抗减少旁路配置的影响。 ■种类 D6F-PH MEMS 差压传感器 符合 RoHS *1. 适用流体以外的气体种类请向本公司营业人员咨询。*2. 不含灰尘、油污、油雾等物质的干燥空气*3. 标准大气压(1013.25 hPa)时的压力 ■输出电压特性 D6F-PH0025AD1 D6F-PH5050AD3 D6F-PH0505AD3 ???Pa ?70000600005000040000300002000010000 0??50100150200250070000600005000040000300002000010000 0ˉ300ˉ100100300500 ˉ500 ?? Pa ?? 70000600005000040000300002000010000 0ˉ30ˉ1010 3050 ˉ50 ???Pa ? ?? 测量条件:电源电压 DC3.3±0.1V 、环境温度 25±5℃、环境湿度 35~75%RH 差压转换公式: Dp =(Op -1024)/60000×250Dp :差压Op :输出测量条件:电源电压 DC3.3±0.1V 、环境温度 25±5℃、环境湿度 35~75%RH 差压转换公式:Dp =(Op -1024)/60000×100-50Dp :差压Op :输出 注. 气体密度的变化会影响传感器输出。 大气压的变动按下列公式得到补偿。Dpeff =Dp × (Pstd/Pamb)Dpeff :有效差压Dp :输出差压 Pstd :标准气压(1013.25hPa)Pamb :实际环境下的气压(hPa) 测量条件:电源电压 DC3.3±0.1V 、环境温度 25±5℃、环境湿度 35~75%RH 差压转换公式:Dp =(Op -1024)/60000×100-50Dp :差压Op :输出 D 6F ?P H

48V电动车充电高清电路图与原理详解

工作原理 220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器 4N35)配合用来稳定充电压,调整 RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3(LM358)提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2 脚

和 5 脚。 正常充电时,R33 上端有 0.18-0.2V 的电压,此电压经 R10 加到 IC3 的3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到 IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到 44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入 200MA-300MA 的涓流充电阶段(浮充),改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障 这种类型充电器的常见故障有下面几种情况: 1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮。通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿,电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路,此时更换损坏的元件即可排除故障,若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电。若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起。 2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕 RP2 因振动而改变阻值),就会导致输出电压移。若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。

欧姆龙接近传感器常见问题

欧姆龙接近传感器常见问题 接近开关和OMRoN的PLC怎么接线?: 直流二线型:褐色线接PLC 输入点,PLC 的com 点接到电源正极,电源负极接到蓝色线。 NPN 型:褐色接电源正,蓝色接电源负,黑色线接到PLC 输入点,PLC 的com 点接到电源正。NPN 是漏型,检测到物体时输出低电平信号。PNP 型:褐色接电源正,蓝色接电源负,黑色线接到PLC 输入点, PLC的Com点接到电源负。PNP是源型,检测到物体时输出高电平信号。 接近传感器可以检测哪些物体?:接近传感器的被测物体分为磁性金属(如铁、镍等),非磁性金属(如黄铜、铝等)和非金属(如塑料、玻璃、水等)。 接近传感器按照检测原理分为电感型和电容型。电感型接近传感器 (如E2E)只能检测金属,不能检测非金属。电容型接近传感器(如 E2K)可以检测金属和非金属。以上两种类型的接近传感器根据被测物体材质的不同,检测距离也不同

E2E-□ □□和E2E-□□□- N的区别是什么? -N 有新版本的意思,并且在具体的规格、性能上与没有-N 的产品有区别。 E2E —X2D1的外径是M12 ,响应频率800HZ O E2E —X2D1 —N的外径是M8 ,响应频率是1500Hz。 传感器的长度也不完全一样,除这些外的其余参数相同。 接近传感器有误动作现象,如何解决? : 请按照以下步骤排故: ①稳定电源给接近传感器单独供电; ②响应频率在额定范围内; ③物体检测过程中有抖动,导致超出检测区域; ④多个探头紧密安装互相干扰; ⑤传感器探头周围的检测区域内有其他被测物体; ⑥接近传感器的周围有大功率设备,有电气干扰。 接近传感器检测到被测物体后续设备都不动作,为什么? : 接近传感器分两种,电感型和静电容型,分别按照以下步骤排故。电感型: ①供电电压要在额定范围内; ②被测物体是金属,大小尺寸足以让传感器可以检测到;

电池充电器原理图详解

电池充电器原理图详解(附图) 时间:2012-06-27 11:49:27 来源:中国装备制造网点击量:42 锂电池充电器原理图就是什么呢?在充电时,手机与电动车使用得充电器多为锂电池充电器,那么您知道锂电池充电器原理图就是什么呢?下面世界工厂网小编就与大家聊聊锂电池充电器原理图,也长长见识。 锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,就是因为它除监视电池得充电状态外,还能分阶段控制电池得最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA与70mA,最后以10mA左右得涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。 本装置电路如附图所示。IC1构成频率约1Hz1得多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1、25V,电路由+15V经R1给电池提供约10mA得充电电流。通电后IC1起振,其③脚输出得脉冲触发IC2工作,使输出端Q1~Q5依次出现高电平,经不同得分压电阻分压后,IC3得输出电压按6V、7V、8V、9V、10V依次递增,充电电流也因此在70mA至270mA之间依次递增。当Q6输出高电平时IC2被复位,此后电路在IC1输出脉冲得作用下重复上述过程。 锂电池得标称电压为3、6V,通常放电至3V即需充电,终止充电电压最高为4、2V。IC4构成电池端电压检测电路,其门限电压即电池充电终止电压可通过RP在4~4、2V范围

基于欧姆龙PLC温度控制系统设计

基于欧姆龙PLC温度控制系统设计 一、设计目的和要求 (一)目的 设计锅炉温度电加热控制系统,温度设定在30—60℃可调,超调≤±1℃,稳态误差≤±0.5℃,用组态软件实现温度曲线监控。通过本次设计,掌握过程控制工程设计技术。 (二)要求 1、综合运用计算机、PLC、单片机、智能仪表、温度传感器等组成控制系 统对模拟工业对象的电加热锅炉进行控制。 2、掌握温度对象数学模型测试技术。 3、掌握PID、PWM算法程序设计技术。 4、掌握控制参数整定技术。 5、掌握组态软件监控设计技术。 6、提高要求:设计程序控温算法程序,实现锅炉温度升温—保温曲线控制。 二、设计内容及步骤 1、设计温度检测和变送电路,包括热电阻、热电偶安装设计。 2、设计电加热主回路,包括防干烧联锁、导线线径计算、空开、继电器、 接触器选用等。 3、设计力控组态软件程序,实现温度曲线监控。 4、设计PLC控制程序。 5、测试温度对象的数学模型,写出传递函数。 6、认真学习欧姆龙PLC的PID控制算法,针对自己的控制对象,选择合适 的PID控制规律,整定PID参数。主要包括:控制周期、P、I、D参数。 7、在力控组态软件中用脚本语言自主编写位置式PID、PWM算法程序进行 温度控制。 8、撰写设计说明书,主要包含: 系统设计思想 控制系统电气设计 系统运行监控曲线和技术数据(温控曲线、调节时间、超调量、稳态误差) 程序清单和说明 PID/PWM控制参数设置 画出PLC硬件配置图或单片机电路图、程序流程图、实验台安装图(含锅炉和传感器)、管道仪表流程图、控制回路接线图等。 三、设计方案论证 (一)主要设备 CQM1H 温度传感器智能仪表AI808 加热丝继电器手动给定阀门开度接触器继电器

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

欧姆龙omron E2E接近开关样本

744 技术指南(技术篇) (1332) 相关信息 通用接近开关 E2E 一般环境下检测磁性金属有无的 标准型 ■种类丰富。 可根据条件选择最佳型号。 ■标准采用电缆保护器 ■检测面采用抗切削油的材质,耐环境性能优越 详情请参见763 页的「请正确使用」 。 圆柱型接近开关选择指导

E2E 745 注.长机身型、传送耦合器、电源耦合器请参见「样本无登载机种一览表」(→954页) 。 ?? ? E2E-X ?D ??? ? E2E-X ?E ??? ? E2E-X ?Y ???????2? E2E-X ?T1??????2? E2E-X ?T1 ? E2E-X ?D ? M1?G ?E2E-X ?E ? M1E2E-X ?Y ? M1 ?Ё? E2E-X ?D1-M1?G ?J ?T ? ? ?E2E-X ?D1-R E2E-X ?E1-R ? 乥????NO ?E2E-X ??15 ??2? E2E-X ?D ??? ? E2E-X ?E ???2? E2E-X ?D1-M1J-T ? E2E-X ?D1S ˉ40?ˇ85?E2E-X ?E ?E2E-X ?Y ?ˉ25?ˇ70?E2E-X ?D ?E2E-X ?T1 ? ??2? E2E-X ?D ?

E2E 746种类 本体 直流2线式/导线引出型(带自我诊断功能的为3线式) *1.备有不同频率E2E-X □D15(如E2E-X3D15-N)。 *2.备有自动(遥控)导线型,即为型号末尾带有(-R)的,(如E2E-X4MD1-R)但E2E-X2D1-N的则为E2E-X2D1-R。*3.库存导线标准长度为5m。请在型号末尾指定导线长度(例:E2E-X3D1-N 5M)。 直流2线式/接头型(带自我诊断功能的为3线式) *2.详见→761页。

相关文档
最新文档