线性调频信号的平坦度对脉冲压缩性能的影响

线性调频信号数字脉冲压缩技术分析_郑力文

2011年1月1日第34卷第1期 现代电子技术 M odern Electro nics T echnique Jan.2011V ol.34N o.1 线性调频信号数字脉冲压缩技术分析 郑力文,孙晓乐 (中国空空导弹研究院,河南洛阳 471009) 摘 要:在线性调频信号脉冲压缩原理的基础上,利用M atlab 对数字脉冲压缩算法进行仿真,得到了雷达目标回波信号经过脉冲压缩后的仿真结果。运用数字脉冲压缩处理中的中频采样技术与匹配滤波算法,对中频采样滤波器进行了优化,降低了实现复杂度,减少了运算量与存储量。最后总结了匹配滤波的时域与频域实现方法,得出在频域实现数字脉冲压缩方便,运算量小,更适合线性调频信号。 关键词:线性调频信号;脉冲压缩;中频采样;匹配滤波 中图分类号:T N911-34 文献标识码:A 文章编号:1004-373X(2011)01-0039-04 Digital Pulse C ompression Technology of Linear Frequency Modulation Signal ZH ENG L-i w en,SU N X iao -le (Chi na Airborne Missi le Academy,L uo yang 471009,China) Abstract :Based o n the pr inciple of pulse com pr essio n techno lo gy o f linear fr equency mo dulat ion signal,the simulatio n r e -sult of radar echo sig nal co mpressed by the pulse can be ga ined by using M atlab to simulate the dig ital pulse com pr essio n algo -r ithm.Co mbining the techno log y o f IF sampling with the matching filt er alg or ithm in the digit al pulse compression processing and optimazing the I F sampling filter,which can remarkably reduce the complex ity and decr ease t he mult iplier operation and the memo ry.Finally ,the implementation methods of matching filter algo rithm in time domain and fr equency doma in are summar ized,the dig ital pulse compression can be im plemented on frequency do main. Keywords :linear frequency modulatio n signal;pulse com pr essio n;IF sampling ;matching f ilter 收稿日期:2010-07-22 为了提高雷达系统的发现能力,以及测量精度和分 辨能力,要求雷达信号具有大的时宽带宽积[1-2]。但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能通过加大信号的时宽来得到。然而单载频脉冲信号的时宽和带宽乘积接近1,故大的时宽和带宽不可兼得。因此,对这种信号来说,测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。在匹配滤波器理论的指导下,提出了线性调频脉冲压缩的概念,即在宽脉冲内附加线性调频,以扩展信号的频带,提供了一类信号,其时宽带宽乘积大于1,称之为脉冲压缩信号或大时宽带宽积信号。线性调频信号是应用最广泛的脉冲压缩信号,因此线性调频信号的特性、脉冲压缩的原理及其实现技术都是比较受人关注的[3-5]。 1 线性调频信号脉冲压缩基本原理1.1 线性调频信号简介 线性调频信号是通过非线性相位调制或线性频率调制(LFM )来获得大的时宽带宽积[6-7],这种信号又称 为chirp 信号,它是研究得最早而且应用最广泛的一种脉冲压缩信号。线性调频信号的时域波形如图1所示, 其频谱如图2所示。 线性调频信号可以表示为: x (t)=A #r ect t S #exp j 2P f 0t +L t 2 2 (1) 式中:A 为信号幅度;rect (t/S )为矩形函数,即: rect (t/S )= 1, t/S \1/20, t/S <1/2 (2) 线性调频信号的瞬时角频率X i 为: X i =d U d t =2P f 0+L t (3) 图1 线性调频信号的时域波形 在脉冲宽度S 内,信号的角频率由2P f 0-L S /2变

线性调频脉冲雷达信号matlab仿真

二〇一年十月 课题小论文 题 目:线性调频(LFM )脉冲压缩雷达仿真学院:专 业: 学生姓名:刘斌学号:年 级: 指导教师:

线性调频(LFM )脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目 标对电磁波的散射能力。再经过时间R 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()() M i i i h t t σδτ==-∑(1.1)

线性调频脉冲压缩雷达仿真

一. 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号(也称Chirp 信号)的数学表达式为: 22() 2()()c K j f t t t s t rect T e π+= (2.1) 式中c f 为载波频率,()t rect T 为矩形信号, 11()0,t t rect T T elsewise ? , ≤? =?? ? (2.2) B K T = ,是调频斜率,于是,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 2.1 图2.1 典型的chirp 信号(a )up-chirp(K>0)(b )down-chirp(K<0) 将2.1式中的up-chirp 信号重写为: 2()()c j f t s t S t e π= (2.3) 式中, 2 ()( )j Kt t S t rect e T π= (2.4) 是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生2.4式的chirp 信号,并作出其时域波形和幅频特性,如图2.2。

%%demo of chirp signal T=10e-6; %pulse duration10us B=30e6; %chirp frequency modulation bandwidth 30MHz K=B/T; %chirp slope Fs=2*B;Ts=1/Fs; %sampling frequency and sample spacing N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); %generate chirp signal subplot(211) plot(t*1e6,real(St)); xlabel('Time in u sec'); title('Real part of chirp signal'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('Frequency in MHz'); title('Magnitude spectrum of chirp signal'); grid on;axis tight; 仿真结果显示: 图2.2:LFM信号的时域波形和幅频特性

线性调频(LFM)信号脉冲压缩仿真

随机信号处理实验 ————线性调频(LFM)信号脉冲压缩仿真 姓名:钱振宇 学号: 0904210144

一、实验目的: 1、了解线性FM 信号的产生及其性质; 2、熟悉MATLAB 的基本使用方法; 3、利用MATLAB 语言编程匹配滤波器。 4、仿真实现FM 信号通过匹配滤波器实现脉压处理,观察前后带宽及增益。 5、步了解雷达中距离分辨率与带宽的对应关系。 二、实验内容: 1、线性调频信号 线性调频矩形脉冲信号的复数表达式为: ()()2001222j f t j f t ut lfm t t u t Arect S e e ππτ??+ ?????== ??? ()211,210,2 j ut t t t u t Arect rect t e πττττ?≤??????==? ? ??????>??为信号的复包络,其中为矩形函数。 0u f τ式中为脉冲宽度,为信号瞬时频率的变化斜率,为发射频率。 当1B τ≥(即大时宽带宽乘积)时,线性调频信号特性表达式如下: 0()2LFM f f f rect u B S -??= ???幅频特性: 2 0()()4LFM f f f u ππφ-=+相频特性: 20011222i d f f t ut f ut dt ππ????=+=+ ???? ???信号瞬时频率: 程序如下: %%产生线性调频信号 T=10e-6; %脉冲宽度 B=400e6; %chirp signal 频带宽度400MHz K=B/T; %斜率 Fs=2*B;Ts=1/Fs; %采样频率与采样周期 N=T/Ts %N=8000 t=linspace(-T/2,T/2,N); %对时间进行设定 St=exp(j*pi*K*t.^2) %产生chirp signal

雷达线性调频信号(LFM)脉冲压缩

西南科技大学 课程设计报告 课程名称: 设计名称:雷达线性调频信号的脉冲压缩处理 姓名: 学号: 班级: 指导教师: 起止日期: 2010.12.25-----2011.1.5

课程设计任务书 学生班级:学生姓名:学号: 设计名称:雷达线性调频信号的脉冲压缩处理 起止日期:2010、12、25——2011、1、03 指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

雷达线性调频信号的脉冲压缩处理 一、 设计目的和意义 掌握雷达测距的工作原理,掌握匹配滤波器的工作原理及其白噪声背景下的匹配滤波的设计,线性调频信号是大时宽频宽积信号;其突出特点是匹配滤波器对回波的多普勒频移不敏感以及更好的低截获概率特性。LFM 信号在脉冲压缩体制雷达中广泛应用;利用线性调频信号具有大带宽、长脉冲的特点,宽脉冲发射已提高发射的平均功率保证足够的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲已提高距离分辨率,较好的解决了雷达作用距离和距离分辨率之间的矛盾;。而利用脉冲压缩技术除了可以改善雷达系统的分辨力和检测能力,还增强了抗干扰能力、灵活性,能满足雷达多功能、多模式的需要。 二、 设计原理 1、匹配滤波器原理: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为)(t x : )()()(t n t s t x += 其中:)(t s 为确知信号,)(t n 为均值为零的平稳白噪声,其功率谱密度为2/No 。 设线性滤波器系统的冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应: )()()(t n t s t y o o += 输入信号能量: ∞<=?∞ ∞-dt t s s E )()(2 输入、输出信号频谱函数: dt e t s S t j ?∞ ∞--=ωω)()( )()()(ωωωS H S o = ωωωπωωd e S H t s t j o ?∞ -=)()(21)( 输出噪声的平均功率: ωωωπ ωωπd P H d P t n E n n o o ??∞∞-∞∞-==)()(21)(21)]([22 ) ()()(2)()(21 2 2 ωωωπ ωωπ ωωd P H d e S H SNR n t j o o ? ? ∞ ∞ -∞ ∞-=

线性调频(LFM)脉冲压缩雷达仿真

线性调频(LFM )脉冲压缩雷达仿真 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()()M i i i h t t σδτ== -∑ (1.1)

基于MATLAB的线性调频信号的仿真..

存档编号________ 基于MATLAB的线性调频信号的仿真 教学学院 届别 专业 学号 指导教师 完成日期

内容摘要:线性调频信号是一种大时宽带宽积信号。线性调频信号的相位谱具有平方律特性,在脉冲压缩过程中可以获得较大的压缩比,其最大优点是所用的匹配滤波器对回波信号的多普勒频移不敏感,即可以用一个匹配滤波器处理具有不同多普勒频移的回波信号,这些都将大大简化雷达信号处理系统,而且线性调频信号有着良好的距离分辨率和径向速度分辨率。因此线性调频信号是现代高性能雷达体制中经常采用的信号波形之一,并且与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟,因而可在工程中得到广泛的应用。 关键词:MATLAB;线性调频;脉冲压缩;系统仿真

Abstract:Linear frequency modulation signal is a big wide bandwidth signal which is studied and widely used. The phase of the linear frequency modulation signal spectra with square law characteristics, in pulse compression process can acquire larger compression, its biggest advantage is the use of the matched filter of the echo signal doppler frequency is not sensitive, namely can use a matched filter processing with different doppler frequency shift of the echo signal, these will greatly simplified radar signal processing system, and linear frequency modulation signal has a good range resolution and radial velocity resolution. So linear frequency modulation signal is the modern high performance radar system often used in one of the signal waveform, and compared with other pulse pressure signal, it is easy to use digital technologies to produce, and the technology of the more mature, so in engineering can be widely applied. Keywords:MATLAB, LFM, Pulse compression, System simulation

雷达线性调频脉冲压缩的原理及其MATLAB仿真

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM)脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar(RAdio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关

由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R,为了探测这个目标,雷达发射信号()s t,电磁波以光速C向四周传播,经过时间R C后电磁波到达目 标,照射到目标上的电磁波可写成:()R -。电磁 s t C 波与目标相互作用,一部分电磁波被目标散射, 被反射的电磁波为()R σ?-,其中σ为目标的雷达 s t C 散射截面(Radar Cross Section ,简称RCS),反映目标对电磁波的散射能力。再经过时间R C后, 被雷达接收天线接收的信号为(2)R σ?-。 s t C 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI(线性时不变)系统。 图 1.2:雷达等效于LTI系统

雷达线性调频脉冲压缩的原理及其MATLAB仿真汇总

线性调频(LFM )脉冲压缩雷达仿真 宋萌瑞 201421020302 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成:

雷达线性调频信号的脉冲压缩处理

题目 : 雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽 10us ,带宽 40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后 的脉冲宽度为多少?用图说明脉压后的脉冲宽度, 内差点看 4dB 带宽,以该带宽说明距离分辨 率与带宽的对应关系。 分析过程: 1、线性调频信号( LFM ) LFM 信号(也称 Chirp 对于一个理想的脉冲压缩系统, 要求发射信号具有非线性的相位谱, 并使其包络接近矩形; 其中 S(t) 就是信号 s(t) 的复包络。由傅立叶变换性质, S(t) 与 s(t) 具有相同的幅频特性,只 是中心频率不同而已。因此, Matlab 仿真时,只需考虑 S(t) 。以下 Matlab 程序产生 S(t) , 并作出其时域波形和幅频特性,程序如下: T=10e-6; % 脉冲时宽 10us B=40e6; % 带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title(' 线性调频信号 '); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); 信号)的数学表达式为: 式中 f c 为载波频率, rect s(t) rect( t )e 为矩形信号 , j2 (f c t 2t ) rect(T t ) 0, t T el se 上式中的 up-chirp 信号可写为 : s(t) 当 TB>1时, LFM 信号特征表达式如下: S(t)e j2 fct S LFM ( f ) k 2rect ( f B f c ) LFM ( f ) (f f c ) 4 S(t) rect (T t )e j Kt

线性调频信号matlab仿真

实验一 雷达信号波形分析实验报告 一、 实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3了解雷达常用信号的频谱特点和模糊函数。 二、实验参数设置 信号参数范围如下: (1)简单脉冲调制信号: (2)载频:85MHz (3)脉冲重复周期:250us (4)脉冲宽度:8us (5)幅度:1V (2)线性调频信号 载频:85MHz 脉冲重复周期:250us 脉冲宽度:20us 信号带宽:15MHz 幅度:1V 三、 实验仿真波形 1.简单的脉冲调制信号 程序: Fs=10e6; t=0:1/Fs:300e-6; fr=4e3; f0=8.5e7; x1=square(2*pi*fr*t,3.2)./2+0.5; x2=exp(i*2*pi*f0*t); x3=x1.*x2; subplot(3,1,1);

plot(t,x1,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid; subplot(3,1,2); plot(t,x2,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('连续正弦波信号载波频率f0=85MHz') grid; subplot(3,1,3); plot(t,x3,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('·幅度/v') title('脉冲调制信号') grid; 仿真波形: 0123x 10-4-101 时 间 /s 幅 度 / v 脉冲信号 重复周期T=250us 脉冲宽度为8us 1 2 3 x 10 -4 -1 1 时间/s幅度/v连续正弦波信号

雷达线性调频信号的脉冲压缩处理

题目:雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽10us ,带宽40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。 分析过程: 1、线性调频信号(LFM ) LFM 信号(也称Chirp 信号)的数学表达式为: )2(22)()(t k t f j c e T t rect t s +=π 式中c f 为载波频率,()t rect T 为矩形信号, 11()0,t t rect T T elsewise ? , ≤?=?? ? 上式中的up-chirp 信号可写为: 2()()c j f t s t S t e π= 当TB>1时,LFM 信号特征表达式如下: )(2)(B f f rect k S c f LFM -= 4 )()(πμπφ+-=c f LFM f f 2 ()()j Kt t S t rect e T π= 对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接近矩形; 其中)(t S 就是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而已。因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生S(t),并作出其时域波形和幅频特性,程序如下: T=10e-6; %脉冲时宽 10us B=40e6; %带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title('线性调频信号'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); title('线性调频信号的幅频特性'); grid on;axis tight; 仿真波形如下: 图2:LFM信号的时域波形和幅频特性 2、匹配滤波器: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为) x: (t t x+ = s n t )( )( )(t 其中:)(t s为确知信号,)(t No。 n为均值为零的平稳白噪声,其功率谱密度为2/

第三章 脉冲压缩雷达简介

第三章 脉冲压缩雷达简介 3.1 脉冲压缩简介 雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。具有大时宽带宽的信号通常被称作脉冲压缩信号。 脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。 3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念 发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩 比 ,即 0D ττ= (3-1) 因为01B τ=,所 (3-1)可写成 D B τ= (3-2) 即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。大时宽带宽矩形脉冲信号的复包络表达式可以写成: (),/2/2 ()0,j t Ae T t T u t θ?-<<=? ? 其他 (3-3) 匹配滤波器输出端的信噪比为:

()0 0S N E N = (3-4) 其中信号能量为[13] : 212 E A T = (3-5) 这种体制的信号具有以下几个显著的特点: (1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。 (2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。 (3)有利于提高系统的抗干扰能力。 当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度 τ 的限制。 (2)收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损失。 (4)存在一定的距离和速度测定模糊。适当选择信号参数和形式可以减小模糊。但脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 3.2.2 线性调频脉冲信号 线性调频脉冲压缩体制的发射信号,其频谱在脉冲宽度内按线性规律变化,即用对载频进行调制的方法展宽发射信号的频谱,使其相位具有色散。同时,在 t P 受限情况下为了充分利用发射机的功率,往往采用矩形宽脉冲包络,线性调 频脉冲信号的复数表达式可写成[16][17]: 2 00() 2 ()()()t j t j t t s t u t e Arect e μωωτ + ==

线性调频信号脉冲压缩-数字下变频程序 DDC

线性调频信号脉冲压缩-数字下变频程序DDC clc; clear all; close all; B=5e6; %%信号带宽 f0=30e6; %中频 fs=40e6; %采样频率 fs1=(20/3)*1e6; %%抽取后频率 T=24.9e-6; %%时宽 k=B/T; fk=127; %%做DDC时的低通滤波器的阶数 fid=fopen('20090724fc1yindao4-0.dat','r'); sss=fread(fid,32*4096,'int16'); fclose(fid); figure(100);plot(sss);grid on;xlabel('点数');ylabel('幅度');title('32个周期信号时域波形');grid on; L=length(sss); N=4096; R=fix(L/N); for r=1:R ss(r,:)=sss((r-1)*N+1:1:r*N); end figure(1);plot(ss(R,:));xlabel('点数');ylabel('幅度');title('信号时域波形');grid on; %%%%%%%%%%%%%%% 低通滤波器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ff=[0 1/8 1/4 1]; aa=[1 1 0 0]; b=firpm(fk,ff,aa); [h,w]=freqz(b,1,1024); % figure(2); % f=linspace(0,fs/2,1024); % plot(f/1e6,20*log10(abs(h)));xlabel('f/Mhz');ylabel('dB');title('低通滤波器的幅频响应');grid on; %%%%%%%%%%%%%%% DDC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ddcs=zeros(R,N+fk); for r=1:1:R n=-N/2:1:N/2-1; si=ss(r,:).*cos(2*pi*f0*n/fs); sq=-ss(r,:).*sin(2*pi*f0*n/fs); I=conv(si,b);

线性调频信号产生方法

线性调频信号产生方法研究 摘要:本文利用fpga与dac5686完成了线性调频信号产生电路的设计与实现,该方法降低了系统软硬件设计的难度,缩短了开发周期,并提高了设计的可靠性,具有较高的实用价值和良好的应用前景。文章分析了线性调频信号,给出了信号产生电路硬件设计和控制电路软件设计方案,并通过功能实现验证文中方法的有效性。abstract: a generation module of lfm signal based on fpga and dac5686 is designed and realized in this paper. this technique decreases the difficulty of hardware and software design of the system, reduces development cycle and improves design reliability, has higher practical value and good application prospect. lfm signal is analyzed, based on which signal generation circuit and software of control circuit design project is put forward, and the effectiveness of this method is verified through the function realization. 关键词:线性调频;信号产生;fpga;dac5686 key words: lfm;signal generation;fpga;dac5686 0 引言 为了能够探测远距离目标,同时又具备较高的距离分辨力,脉冲压缩雷达通常发射较宽脉冲的线性调频(lfm)信号,而在接收时进行脉冲压缩。因而,如何产生良好的线性调频信号,对于脉冲压

巴克码—线性调频脉冲多普勒雷达matlab代码

巴克码—线性调频脉冲多普勒雷达matlab代码%% 雷达系统仿真 %% % 发射信号为13位巴克码和线性调频混合调制的信号,线性调频的中心频率为30MHz, % 调频带宽为4MHz,每一位码宽为10微秒,发射信号的帧周期为1毫秒 % 该雷达具有数字化正交解调、数字脉冲处理、固定目标对消、动目标检测(MTD)、 % 和恒虚警(CFAR)处理等功能 close all;clear all;clc; %%%%%%%%%%%%%%% 产生雷达发射信号 %%%%%%%%%%%%% code=[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1]; % 13位巴克码 tao=10e-6; % 脉冲宽度10us fc=28e6; % 调频信号起始频率 f0=30e6; % 调频信号中心频率 fs=100e6; % 采样频率 ts=1/fs; % 采样间隔 B=4e6; % 调频信号调频带宽 t_tao=0:1/fs:tao-1/fs; % 调制信号,对于线性调频来说,调制信号就是时间序列 N=length(t_tao); k=B/fs*2*pi/max(t_tao); % 调制灵敏度,也就是线性调频的步进系数 n=length(code); pha=0; s=zeros(1,n*N); for i=1:n

if code(i)==1 pha=pi; else pha = 0; end s(1,(i-1)*N+1:i*N)=cos(2*pi*fc*t_tao+k*cumsum(t_tao)+pha); end t=0:1/fs:n*tao-1/fs; figure,subplot(2,1,1),plot(t,s); xlabel('t(单位:S)'),title('混合调制信号(13为巴克码+线性调频)'); s_fft_result=abs(fft(s(1:N))); subplot(2,1,2),plot((0:fs/N:fs/2-fs/N),abs(s_fft_result(1:N/2))); xlabel('频率(单位:Hz)'),title('码内信号频谱'); %%%%%%%%%%%%%%%%%%% 产生脉冲压缩系数 %%%%%%%%%%%%%%%% %--------------------- 正交解调 --------------------% N=tao/ts; n=0:N-1; s1=s(1:N); local_oscillator_i=cos(2*pi*f0/fs*n); % I路本振信号 local_oscillator_q=sin(2*pi*f0/fs*n); % Q路本振信号 fbb_i = local_oscillator_i.*s1; % I路解调 fbb_q = local_oscillator_q.*s1; % Q路解调 window=chebwin(51,40); % 50阶cheby窗的FIR低通滤波器 [b,a]=fir1(50,2*B/fs,window); fbb_i=[fbb_i,zeros(1,25)]; % 因为该FIR滤波器有25个采样周期的延迟,为了保证

雷达信号的脉冲压缩原理

第二章 脉冲压缩 2.1 概述 表2.1 窄脉冲高距离分辨力雷达的能力 窄脉冲具有宽频谱带宽。如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。假设调制后的脉冲带宽增加了B ,由接收机的匹配滤波器压缩后,带宽将等于1/B ,这个过程叫脉冲压缩。 脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。 脉冲压缩比定义为宽脉冲宽度T 与压缩后脉冲宽度τ的之比,即/T τ。带宽B 与压缩后的脉冲宽度τ的关系为1/B τ≈。这使得脉冲压缩比近似为BT 。即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽 积表征。 这种体制最显著的特点是: ⑴ 它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B τ≥,这两个信号参数基本上是独立的,因而可以分别加以选择

来满足战术要求。在发射机峰值功率受限的条件下,它提高了发射机的平均功率P增加了信号能量,因此扩大了探测距离。 av ⑵在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。这一处理过程称之为“脉冲压缩”。 ⑶有利于提高系统的抗干扰能力。对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。 当然,采用大时宽带宽信号也会带来一些缺点,这主要有: ⑴最小作用距离受脉冲宽度 限制。 ⑵收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 ⑶存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB~35dB 以上,但将有1dB~3dB的信噪比损失。 ⑷存在一定的距离和速度测定模糊。 总之,脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 根据上面讨论,我们可以归纳出实现脉冲压缩的条件如下: ⑴发射脉冲必须具有非线性的相位谱,或者说,必须使其脉冲宽度与有效频谱宽度的乘积远大于1. ⑵接收机中必须具有一个压缩网络,其相频特性应与发射信号实现“相位共轭匹配”,即相位色散绝对值相同而符号相反,以消除输入回波信号的相位色散。 第一个条件说明发射信号具有非线性的相位谱,提供了能被“压缩”的可能性,它是实现“压缩”的前提;第二个条件说明压缩网络与发射信号实现“相位共轭匹配”是实现压缩的必要条件。只有两者结合起来,才能构成实现脉冲压缩的充要条件。 综上所述,一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱与相位谱)实现完全的匹配。 根据这些要求,可用下面的框图来描述一个理想的脉冲压缩系统, 如图2.1所示。

相关文档
最新文档