7.综合除法与余数定理

7.综合除法与余数定理
7.综合除法与余数定理

综合除法与余数定理

【内容综述】

数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。

【要点讲解】

1、综合除法

在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可

以推得(此处用表示关于x的多项式)除以的商式系数和余数有如下规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以

b加的第二项系数得商式的次高次项系数,以此类推最后得余数。

★例1 计算()

分析把除式变成形式用综合除法,

解:,

∴商式为,余式为-38

说明用综合除法计算时要注意:

(1)被除式与除式按降幂排列后的缺项要用0补足;

(2)除式要变成的形式(b可以是负数)

★★例2 用综合除法计算

(1);

(2)

解:(1)

∴商式为,余式为-3

(2)用除,只需先以除,再把求得的商用2除,而余数不变。

∴商式为,余式为。

说明一般地,多项式除以一次二项式,用综合除法先将多项式除以,所得的商式除以p就是所求的商式,所得的余数就是所求的余数。

2、余数定理

若多项式f(x)除以的商式为p(x),余数为r,则

当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。

余数定理多项式除以()所得的余数等于。

特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。

由余数定理易知多项式除以的余数就是的多项式

的值。

余数定理告诉我们,可以不做除法求除以的余数;反过来在计算

复杂时也可以用综合法求。

★★★例3 一个关于x的二次多项式,它被除余2,它被除时

余28,它还可被整除,求。

解:设由题意得

解得a=3,b=1,c=2。

说明因能被整除,所以是的因式,于是可设

,再由,,列出a,b的方程求解。

★★★★例4 利用余数定理判断能否被a-b,a+b整除。

分析含,即把看成是含字母a的多项式,要判断

能否被a-b,a+b整除,即判断,是否为零。

解:令=

当a=b时,,故能被a-b整除;

当a=-b时,

故当n为偶数时,能被a+b整除,当n为奇数时,不能被a+b整除,

余式为.

★★★★例5 试确定a和b,使能被整除。

解:由于,因此,若设,

假如能被整除,则x+1和x+2必是的因式,因此,当x=-1,

,即

当x=-2时,即

由①,②联立,则得时,能被整除。

强化训练

A 级

★1、当多项式除以多项式时,其余式为()。

(A)2 (B)-2 (C)2x-2 (D)-2x-2

★★2、多项除以多项式x-3所得余数为()。

(A)-71 (B)71 (C)-59 (C)59

★★3、若多项式含有因式x-1和x-2,则mn=_________。

★★4、求(除以的商式和余式。

B 级

★★5、设,以1991除x,所得余数是()。

(A)0 (B)1 (C)2 (D)4

★★★6、已知,则

值为()。

(A)30 (B)-30 (C)32 (D)-32

★★★7、如果,则_______。

★★★8、已知是二元二次式的一个因式,则a+b= 。

★★★★9、已知能被整除,试求a,b的值。

参考答案

A 级

1、(C)。

2、(D),提示:利用余数定理。

3、-100,提示:利用余数定理,得从而m=-5,n=20。

4、商式=,余式=

B 级

5、(B),提示:

6、(C),提示:含,得

即。

7、5,提示,

=。

8、-3,提示:含x=y=1,则原式为零,即。

9、含因能整除,因此由余数定理,当

时,即由此得a=11,b=-6。

综合除法与余数定理

学科:奥数 教学内容:综合除法与余数定理 【内容综述】 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 【要点讲解】 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得 (此处用表示关于x 的多项式)除以的商式系数和余数有如下 规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以 b 加的第二项系数得商式的次高次项系数,以此类推最后得余数。 ★例1 计算() 分析 把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2 )除式要变成的形式(b可以是负数) ★★例2 用综合除法计算 (1 ); (2 ) 解:(1 ) ∴商式为,余式为-3 (2 )用 除 ,只需先以 除, 再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以, 所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 ★★★例3 一个关于x的二次多项式,它被除余2,它被除时 余28,它还可被整除,求。 解:设由题意得 解得a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 ★★★★例4 利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。 解:令= 当a=b时,,故能被a-b整除;

综合除法与余数定理

综合除法与余数定理Revised on November 25, 2020

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。 ∴Q=542-+x x , R=6。 下面我们将综合除法做进一步的推广,使除式为二次或者二次以上的多项式时也能够利用综合除法来求商和余式。

初中数学竞赛——余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

7.综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 41264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同 -7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面, 同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,

初中数学竞赛余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++L ,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++L 是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

综合除法与余数定理修订版

综合除法与余数定理修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是 )(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++-

∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

综合除法与余数定理含答案

综合除法与余数定理 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得(此处用表示关于x的多项式)除以的商式系数和余数有如 下规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数 乘以b加的第二项系数得商式的次高次项系数,以此类推最后得余数。 例1 计算() 分析把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2)除式要变成的形式(b可以是负数) 例2用综合除法计算 (1); (2) 解:(1) ∴商式为,余式为-3 (2)用除,只需先以除,再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以 ,所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 例3一个关于x的二次多项式,它被除余2,它被除时余28, 它还可被整除,求。 解:设由题意得 解得 a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 例4利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。

综合除法(1)

综合除法与余数定理 一、知识提要与典型例题 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 (一)、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 826322 4 1264414072++--+--++-444344421 ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。

最新综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

2-2 综合除法、大除法.讲义学生版

板块一 综合除法、多项式除法 记号()f x 关于x 的代数式常用记号()f x 或()g x 等表示,例如,用()f x 表示代数式223x x +-,则可记为 ()223f x x x =+-. 这时()1f 就表示1x =时,代数式223x x +-的值,即()2121130f =?+-=,同样地,有 ()2020033f =?+-=-;()()()2 121132f -=?-+--=-等等. 用()f x 可以代表关于x 的各种不同的代数式,但在同一个问题中,不同的代数式要用不同的字母表示,如()f x ,()g x ,()q x ,()r x 等. 综合除法 在学习多项式除法时,我们有带余除法: ()()()()f x g x q x r x =?+ (1) 其中()f x 表示被除式,()g x 表示除式,()q x 表示商式,()r x 表示余式,且余式()r x 的次数小于除式()g x 的次数. 如果()g x 是一次式x a -,则()r x 的次数小于1,因此,()r x 只能为常数(0或非零常数).这时,余式也叫余数,记为r ,即有 ()()()f x x a q x r =-?+ (2) 当一个多项式除以一个形如x a -的一次式时,有一种简便的运算方法——综合除法,我们用一个例子来说明,如求()2357f x x x =+-除以2x +所得的商式和余式. 解析:先用一般的竖式除法计算 2231 23573672 5 x x x x x x x x -++-+---- 所以,商式为31x -,余数为5-. 从运算中我们可以发现上述运算实际上是它们系数之间的运算,所以我们可以省去字母,将上面的除法用下面的简便方式来表示. 3 5 72 6 2 3 1 5 +----- 商式为31x -,余数为5-. 这种简便的除法,称为综合除法,其演算过程如下: ⑴被除式按x 的降幂排列好,依次写出各项的系数,遇到缺项,必须用“0”补足. ⑵把除式x a -的常数项的相反数a 写在各项系数的左边,彼此用竖线隔开. 例题精讲 综合除法和余数定理

综合除法与余数定理

综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3 474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 826322 4 1264414072++--+--++-444344421 ∴)2()74142(34 -÷-++x x x x 的商是263223+--x x x ,余式是8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用32- x 去除被除式,再把所得的商缩小3倍即可。 541615 -123332 10 8216231033-++++-+++-+ )()()(1)()()()(11x r x aq x g a x r x q x g x f +?=+?= ∴Q=542-+x x , R=6。 显然,上式是等式,所以可以对未知数赋值,然后解方程求得各个系数。

综合除法、余数定理

综合除法、余数定理 内容讲解 一般地,多项式f(x)除以一次多项式(x-a)?的商式系数和余数有如下规律:商式的最高次项系数就是f(x)(按降幂排列后)的第一项系数,把这个数乘以b后再加上f(x)的第二项系数就得商的次商为次项系数,如此类推最后得余数,这种方法叫做综合除法. 余数定理:多项式f(x)除以(x-a)所得的余数等于f(a).如果f(x)能被(x-a)?整除,也就是(x-a)是f(x)的因式.反之,如果(x-a)是f(x)的因式,那么f(x)?能被(x-a)整除.因此,由余数定理,容易得出: 因式定理:如果f(a)=0,那么(x-a)是f(x)的因式,反之,如果(x-a)是f(x)?的因式,那么f(a)=0. 例题剖析 例1 用综合除法求(3x3+5x2-2)除以(x+3)的商式和余数. 分析:整式的除法我们可以用竖式法和分离系数法,这里我们主要是熟悉综合除法. 解:把除式变成(x-a)形为x-(-3). 如右式所示: 所以商式=3x2-4x+12. 余数=-38. 评注:在用综合除法时,①被除式和除式均按降幂排列,其缺项要用“0?”补项.②除式一定要变成(x-a)的形式.③若f(x)的除式为px-q形(p≠0),?可先变除式为:p(x- )。再用综合除法求出除以(x- )的商式Q′(x)和余数k′,则f(?x)?÷(px-q)的商式为Q (x)= Q′(x),余数R=R′. 例2 分解因式x4+2x3-9x2-2x+8. 分析:原式可能有x±1,x±2,x±4,x±8因式,由于f(1)=0,f(-1)=0,?所以由因式定理,原多项式含有(x-1)(x+1)这两个因式,然后用综合除法即可求解. 解:∵f(1)=0,f(-1)=0,∴原式中含有(x-1)和(x+1)这两个因式.?由综合除法得: 原式=(x-1)(x+1)(x-2)(x+4) 评注:(1)如果多项式f(x)中各项系数的和等于零,那么f(x)有一次因式(x-1);若奇次项的系数的和等于偶次项系数的和,则f(x)有一次因式(x+1),记住这个结论很有用. (2)本题用分组分解也较简单,请同学们自己求解. 例3 已知x2+x-6是多项式2x4+x3-ax2+6x+a+b-1的因式,求a,b的值. 分析:此题如果用以前的方法求解,就显得特别的繁琐,?但用因式定理就比较简单.

综合除法与余数定理

综合除法与余数定理 Document number:NOCG-YUNOO-BUYTT-UU986-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式 )(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。

综合除法与余数定理

综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除 法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。 本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式 f(x) 除以除式g(x),(g(x) 0)得商式q(x)及余式r(x)时,就有下列等式: f (x) g(x) q(x) r(x)。 其中r(x)的次数小于g(x)的次数,或者r(x) 0。当r(x) 0时,就是f(x)能 被g(x)整除。 F 面我们介绍一个一元多项式除以另一个一元多项式的简便运算一一综合 除法。 ? ?? (2x 4 14x 4 7x 3) (x 2)的商是 2x 3 3x 2 6x 2,余式是 & 上述综合除法的步骤是: (1) 把被除式按降幕排好,缺项补零。 (2) 把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开 第七节 综合除法与余数定理 例1、 14x 4 7x 3除以x 2所得的商和余式。 2 7 0 14 4 2 4 6 12 4 2 3 6 商的各项的系数 2 8 余式 解: 用综合除法求2x 4

(3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0 的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14 的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式& 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式, 但一次项系数不是1,能不能利用综合除法计算呢? 例2、求(3x3 10x2 23x 16) (3x 2)的商式Q和余式R。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用x Z去 3 除被除式,再把所得的商缩小3倍即可。 2 3 3 10 23 16- 3 2 8 10 3 3 12 15 L 6 1 4 5 ?I Q=x2 4x 5, R=6b

综合除法与余数定理

综合除法与余数定理 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式 )(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。 ∴Q=542-+x x , R=6。 下面我们将综合除法做进一步的推广,使除式为二次或者二次以上的多项式时也能够利用综合除法来求商和余式。

初中数学竞赛——余数定理和综合除法培训资料

初中数学竞赛——余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++L ,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++L 是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式() Q x 和余式()R x .

综合除法与余数定理

综合除法与余数定理 TYYGROUP system office room 【TYYUA16H-TYY-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式 )(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。

综合除法

第五节综合除法、余数定理 内容讲解 一般地,多项式f(x)除以一次多项式(x-a)?的商式系数和余数有如下规律:商式的最高次项系数就是f(x)(按降幂排列后)的第一项系数,把这个数乘以b后再加上f(x)的第二项系数就得商的次商为次项系数,如此类推最后得余数,这种方法叫做综合除法.余数定理:多项式f(x)除以(x-a)所得的余数等于f(a).如果f(x)能被(x-a)?整除,也就是(x-a)是f(x)的因式.反之,如果(x-a)是f(x)的因式,那么f(x)?能被(x-a)整除.因此,由余数定理,容易得出: 因式定理:如果f(a)=0,那么(x-a)是f(x)的因式,反之,如果(x-a)是f(x)?的因式,那么f(a)=0. 例题剖析 例1 用综合除法求(3x3+5x2-2)除以(x+3)的商式和余数. 分析:整式的除法我们可以用竖式法和分离系数法,这里我们主要是熟悉综合除法.解:把除式变成(x-a)形为x-(-3). 如右式所示: 所以商式=3x2-4x+12. 余数=-38. 评注:在用综合除法时,①被除式和除式均按降幂排列,其缺项要用"0?"补项.②除式一定要变成(x-a)的形式.③若f(x)的除式为px-q形(p≠0),?可先变除式为:p(x- )。再用综合除法求出除以(x- )的商式Q′(x)和余数k′,则f(?x)?÷(px-q)的商式为Q(x)= Q′(x),余数R=R′. 例2 分解因式x4+2x3-9x2-2x+8. 分析:原式可能有x±1,x±2,x±4,x±8因式,由于f(1)=0,f(-1)=0,?所以由因式定理,原多项式含有(x-1)(x+1)这两个因式,然后用综合除法即可求解.解:∵f(1)=0,f(-1)=0,∴原式中含有(x-1)和(x+1)这两个因式.?由综合除法得: 原式=(x-1)(x+1)(x-2)(x+4) 评注:(1)如果多项式f(x)中各项系数的和等于零,那么f(x)有一次因式(x-1);若奇次项的系数的和等于偶次项系数的和,则f(x)有一次因式(x+1),记住这个结论很有用. (2)本题用分组分解也较简单,请同学们自己求解. 例3 已知x+x-6是多项式2x4+x3-ax2+6x+a+b-1的因式,求a,b的值. 分析:此题如果用以前的方法求解,就显得特别的繁琐,?但用因式定理就比较简单.解:∵x2+x-6=(x+3)(x-2),又x2+x-6是多项式2x4+x3-ax2+bx+a+b-1的因式. ∴x+3,x-2是它的两个因式.由因式定理,得f(-3)=0,f(2)=0,即 ∴a=16,b=3. 评注:因式定理在因式分解及其他地方得到广泛的应用,必须高度重视并熟悉掌握.例4 2x+1除6x4-5x3-3x2-x+4所得的余数. 分析:我们可以用竖式除法,分离系数法和综合除法求此题的余数,这里我们主要尝试余数定理求解. 解:∵2x+1=2[x-(- )] 由余数定理,得:r=f(- )=6×(- )4-5×(- )3-3×(- )2-(- )+4=4 .

第15讲——综合除法和余数定理

第15讲 综合除法与余数定理 一、知识提要与典型例题 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 (一)、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 82632241264 41407 2++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢?

相关文档
最新文档