atmega16开发板电路原理图

51单片机最小系统电路介绍

51单片机最小系统电路介绍 单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。 单片机最小系统晶振Y1也可以采用6MHz或者,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好 口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。其他接口内部有上拉电阻,作为输出口时不需外加上拉电阻。 设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N乘以机器周期Tcy就是定时时间t。 " 设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。 标识符号地址寄存器名称 P3 0B0H I/O口3寄存器 PCON 87H 电源控制及波特率选择寄存器 SCON 98H 串行口控制寄存器 SBUF 99H 串行数据缓冲寄存器 TCON 88H 定时控制寄存器 TMOD 89H 定时器方式选择寄存器 TL0 8AH 定时器0低8位 - TH0 8CH 定时器0高8位 TL1 8BH 定时器1低8位 TH1 8DH 定时器1高8位

xinlinx-Spartan6开发板原理图详解

SP601 Hardware User Guide UG518 (v1.7) September 26, 2012

? Copyright 2009–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. DISCLAIMER The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR ST ATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. Y ou may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at https://www.360docs.net/doc/0618353418.html,/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: https://www.360docs.net/doc/0618353418.html,/warranty.htm#critapps. Revision History The following table shows the revision history for this document. Date Version Revision 07/15/09 1.0Initial Xilinx release. 08/19/09 1.1?Added Appendix B, VITA 57.1 FMC LPC Connector Pinout. ?Updated Figure1-17. ?Updated Table1-4, Table1-19, and Table1-22. ?Added introductory paragraph to Appendix C, SP601 Master UCF. ?Miscellaneous typographical edits and new user guide template. 05/17/10 1.2?Updated Figure1-1, Figure1-2, Figure1-14, Figure1-18, Table1-9, Table1-1, Table1-11, and Table1-16. ?Added Figure1-7, Figure1-8, and Table1-13. ?Updated 9. VITA 57.1 FMC-LPC Connector, page25, Appendix B, VITA 57.1 FMC LPC Connector Pinout, and Appendix C, SP601 Master UCF. 06/16/10 1.3Reversed order of 15. Configuration Options and 16. Power Management. Updated 1. Spartan-6 XC6SLX16-2CSG324 FPGA and 2. 128 MB DDR2 Component Memory. Added Table1-26. Added UG394, Spartan-6 FPGA Power Management User Guide to Appendix D, References. 09/24/10 1.4Added Power System Test Points, including Table1-25. 02/16/11 1.5Added note and revised header description to indicate the I/Os support LVCMOS25 signaling on page34. Revised oscillator manufacturer information from Epson to SiTime on page page23 and page51. 07/18/11 1.6Corrected wording from “PPM frequency jitter” to “PPM frequency stability” in section Oscillator (Differential), page23. Added Table1-15, page27. 09/26/12 1.7Added Regulatory and Compliance Information, page53. SP601 Hardware User Guide https://www.360docs.net/doc/0618353418.html, UG518 (v1.7) September 26, 2012

单片机最小系统原理图

单片机最小系统 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的 系统. 对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路. 下面给出一个51单片机的最小系统电路图. 说明

复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让R C组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍. 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 单片机:一片AT89S51/52或其他51系列兼容单片机 特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的. 复位电路: 一、复位电路的用途 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 单片机复位电路如下图:

二、复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢? 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充

单片机最小系统电路图

单片机最小系统电路图

————————————————————————————————作者:————————————————————————————————日期: 2

单片机基础实践 D0D1D2D3D4D5D6D7EA ALE PSEN P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78RST 9P3.0(RXD)10P3.1(TXD)11P3.2(INT0)12P3.3(INT1)13P3.4(T0)14P3.5(T1)15P3.6(WR)16P3.7(RD)17XTAL218XTAL119GND 20 P2.0 21 P2.122P2.223P2.324P2.425P2.526P2.627P2.728PSEN 29ALE 30EA 31P0.732P0.633P0.534P0.435P0.336P0.237P0.138P0.039Vcc 40U1 STC89C52 P10P11P12P13P14P15P16P17P20 P21P22P23P24P25P26P27P30P31P32P33P34P35P36P37X2X1 RST Vcc 图1 单片机STC89C52电路图

4 3 2 Vcc R11k D LED 4 3 123456789J1 CON9 D0D1D2D3D4D5D6D7 Vcc 5 43+ C8 1 234 B1 R2 Vcc RST 图2 电源指示灯 图3 单片机P0口上拉电阻 图4 复位电路 Y C1 C2 X1 X2 2 1 D 123 4 56K1 1234USB USB VCC 图5 晶振电路 图6 USB 供电电路

单片机最小系统电路

单片机最小系统的相关知识 复位电路: 一、复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。单片机复位电路如下图: 二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?

在单片机系统中,系统上电启动的时候复位 一次,当按键按下的时候系统再次复位,如果释 放后再按下,系统还会复位。所以可以通过按键 的断开和闭合在运行的系统中控制其复位。 开机的时候为什么会复位:在电路图中,电 容的的大小是10uF,电阻的大小是10k。所以根 据公式,可以算出电容充电到电源电压的0.7倍 (单片机的电源是5V,所以充电到0.7倍即为 3.5V),需要的时间是10K*10UF=0.1S。也就是 说在单片机启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V 的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位:在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 晶振电路: 晶振电路:晶振是晶体振荡器的简称在 电气上它可以等效成一个电容和一个电阻并 联再串联一个电容的二端网络电工学上这个 网络有两个谐振点以频率的高低分其中较低 的频率是串联谐振较高的频率是并联谐振由于晶体自身的特性致使这两个频率的距离相当的接近在这个极窄的频率范围内晶振等效为一个电感所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路由于晶振等效为电感的频率范围很窄所以即使其他元件的参数变化很大这个振荡器的频率也不会有很大的变化 晶振有一个重要的参数那就是负载电容值选择与负载电容值相等的并联电容就可以得到晶振标称的谐振频率

智嵌STM32F107网络互联开发板V2.2硬件使用手册

志峰物联公司版权所有技术支持QQ:498034132I STM32F107网络互联开发板V2.2硬件使用手册 版本号:A 拟制人:赵志峰 时间:2013年7月1 日

目录 1本文档编写目的 (1) 2硬件接口说明 (1) 3核心硬件电路说明 (2) 3.1电源电路 (2) 3.2按键与LED电路 (3) 3.3JTAG下载电路 (4) 3.4外扩存储电路 (5) 3.5RS232通讯电路 (5) 3.6RS485通讯电路 (6) 3.7CAN通讯电路 (6) 3.8USB电路 (6) 3.9DS18B20电路 (7) 3.10以太网接口电路 (8) 3.112.4G无线接口 (8) 4使用注意事项 (8)

1本文档编写目的 本使用手册是针对STM32F107网络互联开发板V2.2的硬件而编写的,包括硬件接口说明、核心硬件电路说明、使用注意事项等内容。 2硬件接口说明 该开发板的硬件结构如图1所示: STM32F107VCT6 LED USB OTG USB HOST DS18B20 图1硬件结构框图 开发板实物接口如图2所示: CAN2_L CAN2_H CAN1_L CAN1_H RS232RS485_B RS485_A 2.4G USB USB OTG USB 5V DS18B20JTAG CAN1 图2开发板硬件接口

注意:DS18B20的安装方向: DS18B20安装方式 3核心硬件电路说明 3.1电源电路 开发板供电方式有两种:5V电源适配器供电和USB供电。(1)5V适配器供电 直接将5V适配器插在J6上即可为板子供电,电路如图3所示:

单片机最小系统讲解

晶振:一般选用11.0592M,因为可以准确地得到9600波特率和19200波特率 晶振电路:单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振和瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。 复位电路:给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利

用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,这时如果手按着一直不放,系统将一直复位,不能正常工作,在这里我们需要注意用的电容是电解电容,是有正负的,如果接反了,他就会爆炸,我们可以用并口或者串口把程序下到单片机中,这样我们就可以省去了买烧录器, 3、电源,说了半天还没有说到电源,要不单片机怎么工作呀,图中没有给出,第20管脚是地GND,第40管脚是电源VCC,一般我们在电源vcc处。加一个0.1uf的瓷片电容,滤掉电源中的高频雑波,使系统更安全。注意51单片机使用的是5付直流电源。 89c51内部有一个用于构成振荡器的高增益反向放大器,该放大器的输入输出引脚为XTAL1和XTAL2,它们跨接在晶体振荡器和用于微调的电容,便构成了一个自激励振荡器 电路中的C1、C2的选择在30PF左右,但电容太小会影响振荡的频率、稳定性和快速性。晶振频率为在1.2MHZ~12MHZ之间,频率越高单片机的速度就越快,但对存储器速度要求就高。为了提高稳定性我们采用温度稳定性好的NPO电容,采用的晶振频率为12MHZ。 重点介绍: C1、C2作用:震荡补偿电容,可以放宽起震频率,让时钟电路容易起震。 C3的作用:为极性电容,上电瞬间,电容导通,可以通交流阻直流。给RST连续两个机器周期的高电平,即可完成上电复位,复位

单片机最小系统

单片机最小系统 STC89C52单片机简介 概述 STC89C5是51系列单片机的一个型号,它是STCME公司生产的。 STC89C5是一个低电压,高性能CMOS 位单片机,片内含8k bytes的可反复擦写的Flash 只读程序存储器和256 bytes的随机存取数据存储器(RAM,器件采用STCMEL 公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的STC89C52单片机可为您提供许多较复杂系统控制应用场合。 STC89C52有40个引脚,32个外部双向 输入/输出(I/O )端口,同时内含2个外中断

口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,STC89C52 可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 STC89C52有PDIP、PQFP/TQF及PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性 兼容MCS5指令系统 8k可反复擦写(>1000次)Flash ROM 32 个双向I/O 口? 256x8bit 内部RAM 3个16位可编程定时/计数器中断?时钟频率0-24MHZ 2个串行中断 可编程UART串行通道 2个外部中断源 共8个中断源 2个读写中断口线

3级加密位 低功耗空闲和掉电模式 软件设置睡眠和唤醒功能8051单片机的引脚功能

MCS-51系列单片机一般采用40个引脚,双 列直插式封装,用HMO 工艺制造,其外部 引脚排列如图所示。其中,各引脚的功能为: (a ) DIP 引脚图 (b ) 逻辑符号 8051单片机的引脚 ⑴主电源引脚 Vcc (40脚):接+ 5V 电源正端 Vss (20脚):接+ 5V 电源地端 一般Vcc 和Vss 间应接高频去耦电容和低频 滤波电容。 ⑵外接晶体或外部振荡器引脚 F1.0 Vcc F1.1 FO.O Pl.2 PD.l Pl.3 P0.2 P] J P0.3 Pl.S P0.4 Pl.6 9051 PQ.5 Pl.7 P66 KST/V FD PCI] P3.0/RxD E£/T FF F3.1;TsD ALE/PROG P3.27IKT0 PSEW F3,3/IIII1 F2.7 F3.4/T0 F2.S P3.5u/Tl F2.5 P3.fi/TC P2.4 F3.7/RP F2.3 XIAL2 F2.2 STAL1 F2J Vss P2.0 XT2L1 XTAL2 EA/Vpr PSEII — ALE/PROG * RST/VPD - 「 K K D -----* T K D — INTO —K) 8051 (地址/■ 数 据总枝) 口 3 P3(I T1TO I1WED II] 40 2 37 6 36 35 7 34 3 33 11 13 28 14 27 15 16 17 24 19 23 22 19 20 21 _1 10 32 31 39 33 FD 口 P1 口 门用P2 (地址 总线)

战舰STM32开发板原理图3(共7份)

Title: Author:Date: Size:Revision:File: Version:ALIENTEK 3.5' TFTLCD Module 2012-10-250 ATOM A43.5TFTLCD.SchDoc V1.2 GND 1VDD 2IOVCC 3CS 4RS 5WR 6RD 7RST 8DB0 9DB110DB211DB312DB413DB514DB615DB716DB817DB918DB1019DB1120DB1221DB1322DB1423DB1524FMARK 25Y-26X-27Y+28X+29LEDK130LEDK231LEDK332LEDK433LEDK534LEDK635LEDA 36GND 37TFTLCD TFT3.5' CS 1RS 2WR 3RD 4RST 5DB06DB17DB28DB39DB410DB511DB612DB713DB814DB915DB1016DB1117DB1218DB1319DB1420DB1521GND 22BL 23VDD3.324VDD3.325GND 26GND 27BL_VDD 28MISO 29MOSI 30T_PEN 31MO 32T_CS 33CLK 34LCD TFT_LCD2 LEDK1LEDK2LEDK3LEDK4T_CLK T_CS T_MISO T_MOSI T_PEN R11100K X+ X-Y+Y- C3 104 C4 104 TVDD TVDD C2 10uF VCC3.3 VCC 1X+2Y+3X-4Y-5GND 6IN37IN48Vref 9VCC 10PEN 11DOUT 12BUSY 13DIN 14CS 15CLK 16 U1 XPT2046 R1/R2:BACKLIGHT VOLTAGE SEL R4 10R Q1 S8050 GND R9 1K BL_CTR R310R LCD_RST LCD_CS LCD_RS LCD_WR LCD_RD LCD_D0LCD_D1LCD_D2LCD_D3LCD_D4LCD_D5LCD_D6LCD_D7LCD_D8LCD_D9 LCD_D10LCD_D11LCD_D12LCD_D13LCD_D14LCD_D15 GND C1104VCC3.3LEDK1LEDK2LEDK3LEDK4LEDK5LEDK6LEDA LEDA R1 0R R20R VCC3.3 BL_VDD BL_VDD R510R R610R R810R R1010R R12 10R LEDK5LEDK6X+X-Y+Y-LCD_RST LCD_CS LCD_RS LCD_WR LCD_RD LCD_D0LCD_D1LCD_D2LCD_D3LCD_D4LCD_D5LCD_D6LCD_D7LCD_D8LCD_D9LCD_D10LCD_D11LCD_D12LCD_D13LCD_D14LCD_D15GND GND VCC3.3BL_CTR GND T_CS T_MISO T_PEN T_MOSI T_CLK VCC3.3T_BUSY T_BUSY R710K A L I E N T E K S T M 3 2 开发板 配套模块开源电子网 https://www.360docs.net/doc/0618353418.html,

单片机_最小系统原理解析

单 片 机 最 小 系 统 原 理 DOC格式.

一、题目:单片机最小系统 二、引言: 由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国单片机应用领域中的主流。目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。 单片机最小系统是在以MCS-51单片机为基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时围,扩展键盘显示接口。适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。因此,研究单片机最小系统有很大的实用意义。 三、关键字: DevKit MCS51 Lite 、AT89S51、AD/DA、RS232串口、串行EEPROM存储器、蜂鸣 器、独立按键、LED、8段数码管。

四、目的要求 4.1 目的: 通过对单片机最小系统的研究,掌握单片机各引脚功能,理解单片机工作过程及原理,以及与各种外部扩展器件的连接,能够自己运用单片机来解决实际问题。 4.2 任务: 根据单片机最小系统的连接说明图,完成单片机最小系统的焊接以及调试。掌握Isplay、keil 等单片机相关软件的使用。理解小系统的工作原理,掌握实际运用单片机小系统。 五、系统原理 MCS51 Lite 是由电源、复位及振荡电路、蜂鸣器电路、RS232串口电路、八段数码管显示电路、按键及LED电路、串行存储器电路、AD/DA转换电路、JTAG下载接口、Byte Blaster II下载线等部分组成。 5.1 电源 电源接口电路图 MCS51 Lite的电源通过计算机的USB口供给,使用套件提供的USB A转B口电缆连接计算机USB口与开发板即可。在电源电路中接入了电源指示LED,使用330Ω电阻限流。并提供两个测试点来测量5V电是否正常。 5.2 复位及振荡电路 复位及振荡电路图 复位电路由按键复位和上电复位两部分组成。AT89S系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC 充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为8.2K和10uF。 按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。MCS51 LITE 使用22.1184MHz的晶体振荡器作为振荡源,由于单片机部带有振荡电路,所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF至50pF之间。 5.3 蜂鸣器电路 蜂鸣器电路图 蜂鸣器使用PNP三极管进行驱动控制,板上使用的是直流蜂鸣器,当P3.7输出低电平时,蜂鸣器鸣叫。由于蜂鸣器为感性原件,可以在两端并接一个二极管来起到泄放作用。 5.4 RS232串口电路 RS232串口电路图 RS232串口电路使用MAX232CPE作为电平转换芯片,并通过套件提供的串口电缆连接

Protel-DXP最小单片机系统电路板设计

江西机电职业技术学院EDA课程设计报告 班级: 姓名: 实训地点: 指导教师: 2013年 5月

实训课题单片机最小系统电路设计 一、实训目的 1、熟悉Protel DXP的操作 2、掌握用Protel DXP绘制原理图的方法 3、掌握用Protel DXP制作PCB板的方法 二、实训要求 利用protel DXP软件完成单片机最小系统的PCB板的设计。 三、实训内容 1、元件符号及封装编辑。 2、原理图绘制。 3、PCB板。 4、DRC报告。 四、报告内容、设计数据及附图 1、电路原理基本分析 2、电路模块功能的介绍。(电源模块、单片机最小系统:复位电 路、晶振电路(离X1,X2引脚近些,否则不易起振)、P1口LED电路) 51单片机复位电路工作原理(网址:) 1、复位电路的用途 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑

内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 2、复位电路的工作原理 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S 内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位 在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 总结: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。 晶振电路的作用(网址:) 电容大小没有固定值。一般二三十p。晶振是给单片机提供工作信号脉冲的。这个脉冲就是单片机的工作速度。比如12M晶振。单片机工作速度就是每秒12M。和电脑的CPU概念一样。当然。单片机的工作频率是有范围的。不能太大。一般24M就不上去了。不然不稳定。接地的话数字电路弄的来乱一点也无所谓。看板子上有没有模拟电路。接地方式也是不固定的。一般串联式接地。从小信号到大信号依次接。然后小信号连到接地来削减偕波对电路的稳定性的影响,所以晶振所配的电容在10pf-50pf之间都可以的,没有什么计算公式。但是主流是接入两个33pf的瓷片电容,所以还是随主流。 晶振电路的原理

单片机入门指南:单片机最小系统组成电路及其作用

单片机入门指南:单片机最小系统组成电路及其作用 下面我们首先来简单介绍下51单片机各个管脚的具体作用,然后再重点给大家介绍单片机最小系统的概念、组成及其各部分电路原理图的实际用途。 按照集成电路的管脚识别方法,缺口朝上,逆时针转一圈,单片机的引脚编号从1到40,如图所示。图中同时给出了各个管脚的名称。我们完全不需要刻意去记这些管脚顺序和名称,在需要的时候查一下就好了,如果用的比较多,后来自然就记住了。 按照图中的大括号的提示,我们把P0.0~P0.7这样八个管脚称为一组IO口,叫做P0,同样有P1、P2和P3。IO口(IO = Input / Output),顾名思义,就是输入输出接口,它是单片机与外界进行信息交流的途径。之后我们主要的学习内容,也是围绕IO口进行的。另外这32个IO口又有一些在括号中标注的管脚名称,叫做第二功能;第二功能在特定的情况下会被启用,没有启用第二功能时,它们就只是起到IO口的作用。例如P3.0和P3.1又叫做RXD和TXD,它们有串口的作用,可以用来给单片机下载程序,也可以用来和电脑进行数据的收发,即串口通信。除32个IO口外,还有八个管脚:其中29~31号脚一般用得不多,暂不做介绍;40脚VCC、20脚GND、9号脚RST以及18、19号脚XTAL1、XTAL2很快就会在下面的单片机最小系统中进行详细讲解。 什么是单片机最小系统呢?最小系统,就是指单片机能正常工作最简单的电路。对51单片机来说,最小系统一般包括:电源、单片机、时钟电路和复位电路。其电路图如下: 现在向大家介绍下这些电路的作用。 电源电路:作为电子器件,51单片机当然少不了电源供电,它一般使用5V电源,我们可以从大家所熟悉的USB接口获取5V电源。在图中,每个VCC符号都是共同连接在5V 电源正极的;而所有的GND符号连接在一起,共同接到电源负极。图中之所以没有把它们连接到一起,而是使用多个VCC和GND符号,是为了让电路图看起来更清晰简洁(VCC = V olt Current Condenser,表示供电电压;GND = Ground,接地的意思,可以简单理解为连接到电源负极,并且我们以GND作为参考电压,GND的电压值始终为0V)。 特别注意,一定不要把单片机接到过高的电压上,或者将电源正负极接反,很可能烧坏单

奋斗STM32开发板显示例程讲解-3寸屏(LGDP5420)

奋斗版 STM32 开发板例程文档———图片及字符显示例程实验
https://www.360docs.net/doc/0618353418.html,
图片及字符显示例程
实验平台:奋斗版STM32开发板MINI、V2、V2.1、V3 实验内容:本例程演示了在3寸TFT屏是显示一副16位色图片,并在图片上透明 叠加两个不同显示方向的字符串, 该实验学习了3寸TFT 16位色显示程序的编制。
预先需要掌握的知识
1. 3寸TFT显示模块。
3寸TFT显示器:(关于3寸TFT的详细资料请参考光盘奋斗板文档目录下\奋斗开发板各种配件的硬件 文档\奋斗板配3寸显示模块文档\下的SPFD5420A手册.pdf和3寸屏(240X400)规格书.pdf), 3显示模块采 用的是基于LGDP5420驱动的3寸 TFT显示器(400X240),规格如下:
引脚定义
淘宝店铺:https://www.360docs.net/doc/0618353418.html,
1

奋斗版 STM32 开发板例程文档———图片及字符显示例程实验
https://www.360docs.net/doc/0618353418.html,
3TFT显示屏焊接在奋斗显示转接板上,在屏上贴有触摸屏,通过40芯的接口与V3或者MINI连接。40芯接口 定义如下
淘宝店铺:https://www.360docs.net/doc/0618353418.html,
2

奋斗版 STM32 开发板例程文档———图片及字符显示例程实验
https://www.360docs.net/doc/0618353418.html,
40芯里包含了16位数据线,读写线,命令/数据控制线,片选线,LCD硬件复位线,背光控制线以及触摸控 制线。奋斗板V3和MINI就是通过这个接口来控制显示。 奋斗板MINI和V3都是选用了具有16位FSMC接口 STM32F103VET6作为MCU, FSMC接口也可以称为16位并行接口,时序同I8080接口。按照显示屏驱动电路 LGDP5420的手册,为了达到色彩与显示效率的平衡,奋斗板采用了16位 64K色接口模式。
在这个模式每个像素用5位红色6位绿色5位蓝色总共16位来表示, 根据分辨率,一帧图像占用 400*240*2=192000字节。 FSMC总线和TFT数据线的连接关系如下
STM32 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 A16
FSMC
LGDP5420A DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 RS nWR nRD nCS nRESET


数据控制线第15位 数据控制线第14位 数据控制线第13位 数据控制线第12位 数据控制线第11位 数据控制线第10位 数据控制线第9位 数据控制线第8位 数据控制线第7位 数据控制线第6位 数据控制线第5位 数据控制线第4位 数据控制线第3位 数据控制线第2位 数据控制线第1位 数据控制线第0位 指令/数据控制 写控制 读控制 LCD片选控制 LCD复位控制
nWE nOE NE1 PE1
淘宝店铺:https://www.360docs.net/doc/0618353418.html,
3

51单片机最小系统设计

一、内容及要求 内容:设计制作一个51最小系统,用最小系统控制8个发光2极管。 要求:全部点亮,依次点亮,交换点亮;用最小系统控制蜂鸣器;用最小系统控制电机。 二、设计思路 使用AT89C51单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。 八个发光二极管D1-D8分别接在单片机的P2.0-P2.7接口上,当给P2.0口输出“0”时,发光二极管点亮,当输出“1”时,发光二极管熄灭。可以运用输出端口指令MOV P0,A或MOV P0,#DATA,只要给累加器值或常数值,同理,接在P2.1~P2.7口的其他7个LED的点亮和熄灭的方法同LED1。因此,要实现 图2-1 主程序流程图 流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的成流水灯了。在此我们还应注意一点,由于人眼的视觉暂留效应

以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到闪烁效果。 程序启动时跳转到键盘判断模块程序中,此程序里面包含Key1~Key5的按键情况判断,循环检测直到有按键按下的时候,程序转去相对应按键的彩灯显示的花型模块,与此同时,当按键Key6有闭合时,程序中调用延时程序程序时,给延时参数赋值上另一个值,是延时程序延时时间发生改变,以达到不同快慢节奏闪烁的彩灯。具体程序流程图2-1所示。 三、硬件设计 3.1 直流稳压电源电路 对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源电路的稳定可靠是系统平稳运行的前提和基础。电子设备除用电池供电外,还采用市电(交流电网)供电。通过变压、整流、滤波和稳压后,得到稳定的直流电。直流稳压电源是电子设备的重要组成部分!本项目直流稳压电源为+5V。如下图所示: 直流稳压电源的制作一般有3种制作形式,分别是分立元件构成的稳压电源、线性集成稳压电源和开关稳压电源。下图稳压电源采用的是三端集成稳压器7805构成的正5V直流电源。 图3-1 三端固定式集成稳压电源电路图 AT89C51单片机的工作电压范围:4.0V—5.5V,所以通常给单片机外接5V 直流电源。由于时间关系,此处用3节1.5V的干电池供电,在此不在赘述此稳压电源电路图原理。 3.2单片机最小系统 要使单片机工作起来,最基本的电路的构成由单片机、时钟电路、复位电路等组成。单片机最小系统如下图3-2所示。

相关文档
最新文档