IKW50N60T中文资料

Low Loss DuoPack : IGBT in Trench and Fieldstop technology

with soft, fast recovery anti-parallel EmCon HE diode

? Very low V CE(sat) 1.5 V (typ.)

? Maximum Junction Temperature 175 °C

? Short circuit withstand time – 5μs

? Designed for :

- Frequency Converters - Uninterrupted Power Supply

? Trench and Fieldstop technology for 600 V applications offers :

- very tight parameter distribution

- high ruggedness, temperature stable behavior - very high switching speed - low V CE(sat)

? Positive temperature coefficient in V CE(sat) ? Low EMI

? Low Gate Charge

? Very soft, fast recovery anti-parallel EmCon HE diode

? Complete product spectrum and PSpice Models : https://www.360docs.net/doc/0418949393.html,/igbt/ Type

V CE

I C

V CE(sat ),Tj=25°C

T j,max Marking Code

Package Ordering Code

IKW50N60T 600V 50A 1.5V

175°C

K50T60 TO-247 Q67040S4718

Maximum Ratings

Parameter Symbol Value Unit Collector-emitter voltage

V C E 600

V DC collector current, limited by T jmax T C = 25°C T C = 100°C

I C

801)

50

Pulsed collector current, t p limited by T jmax

I C p u l s 150

Turn off safe operating area (V CE ≤ 600V, T j ≤ 175°C) - 150 Diode forward current, limited by T jmax T C = 25°C T C = 100°C

I F

100 50

Diode pulsed current, t p limited by T jmax I F p u l s 150

A

Gate-emitter voltage V G E ±20

V

Short circuit withstand time 2) V GE = 15V, V CC ≤ 400V, T j ≤ 150°C t S C 5 μs

Power dissipation T C = 25°C P t o t 333 W Operating junction temperature T j -40...+175 Storage temperature

T s t g -55...+175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s

-

260

°C

1) Value limited by bond wire

2)

Allowed number of short circuits: <1000; time between short circuits: >1s.

P-TO-247-3-1 (TO-220AC)

Thermal Resistance Parameter Symbol Conditions Max. Value Unit

Characteristic

IGBT thermal resistance, junction – case

R t h J C

TO-247 AC 0.45 Diode thermal resistance, junction – case R t h J C D TO-247 AC

0.8 Thermal resistance, junction – ambient R t h J A TO-247 AC

40

K/W

Electrical Characteristic, at T j = 25 °C, unless otherwise specified

Value

Parameter Symbol Conditions min. Typ. max. Unit

Static Characteristic

Collector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =0.2mA 600 - - Collector-emitter saturation voltage

V C E (s a t )

V G E = 15V, I C =50A T j =25°C T j =175°C

- - 1.5 1.9 2 - Diode forward voltage

V F

V G E =0V, I F =50A T j =25°C T j =175°C

- - 1.65 1.6 2.05 - Gate-emitter threshold voltage V G E (t h ) I C =0.8mA,V C E =V G E 4.1 4.9 5.7

V Zero gate voltage collector current

I C E S V C E =600V , V G E =0V T j =25°C T j =175°C

- -

- -

40 1000

μA

Gate-emitter leakage current I G E S V C E =0V,V G E =20V - - 100 nA Transconductance g f s V C E =20V, I C =50A - 31 - S Integrated gate resistor R G i n t

- ?

Dynamic Characteristic Input capacitance C i s s - 3140 - Output capacitance

C o s s - 200 -

Reverse transfer capacitance C r s s V C E =25V, V G E =0V, f =1MHz - 93 - pF

Gate charge

Q G a t e

V C C =480V, I C =50A V G E =15V

- 310 - nC

Internal emitter inductance

measured 5mm (0.197 in.) from case L E TO-247-3-1

- 7 - nH Short circuit collector current 1)

I C (S C )

V G E =15V,t S C ≤5μs V C C = 400V, T j ≤ 150°C

- 458.3 - A

1)

Allowed number of short circuits: <1000; time between short circuits: >1s.

Switching Characteristic, Inductive Load, at T j =25 °C

Value

Parameter Symbol Conditions min. Typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 26 - Rise time

t r - 29 -

Turn-off delay time t d (o f f ) - 299 - Fall time t f - 29 -

ns Turn-on energy E o n - 1.2 - Turn-off energy E o f f - 1.4 - Total switching energy

E t s

T j =25°C,

V C C =400V,I C =50A,V G E =0/15V,

R G = 7 ?, L σ1)=103nH, C σ1)

=39pF Energy losses include

“tail” and diode

reverse recovery. - 2.6 - mJ Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 143 - ns Diode reverse recovery charge Q r r - 1.8 - μC Diode peak reverse recovery current I r r m - 27.7 - A Diode peak rate of fall of reverse recovery current during t b

di r r /dt

T j =25°C,

V R =400V, I F =50A, di F /dt =1280A/μs

- 671 - A/μs

Switching Characteristic, Inductive Load, at T j =175 °C

Value

Parameter Symbol Conditions min. Typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 27 - Rise time

t r - 33 -

Turn-off delay time t d (o f f ) - 341 - Fall time t f - 55 -

ns Turn-on energy E o n - 1.8 - Turn-off energy E o f f - 1.8 - Total switching energy

E t s

T j =175°C,

V C C =400V,I C =50A,V G E =0/15V,

R G = 7 ?

L σ1)=103nH, C σ1)

=39pF Energy losses include

“tail” and diode

reverse recovery. - 3.6 - mJ Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 205 - ns Diode reverse recovery charge Q r r - 4.3 - μC Diode peak reverse recovery current I r r m - 40.7 - A Diode peak rate of fall of reverse recovery current during t b

di r r /dt

T j =175°C

V R =400V, I F =50A, di F /dt =1280A/μs

- 449 - A/μs

1)

Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.

I C , C O L L E C T O R C U R R E N T

100Hz

1kHz

10kHz

100kHz

I C , C O L L E C T O R C U R R E N T

1V 10V

100V 1000V

1A

10A

100A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 1. Collector current as a function of

switching frequency

(T j ≤ 175°C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 7?) Figure 2. Safe operating area

(D = 0, T C = 25°C, T j ≤175°C; V GE =15V)

P t o t , P O W E R D I S S I P A T I O N

25°C

50°C 75°C 100°C 125°C 150°C

0W 50W 100W 150W 200W 250W 300W

I C , C O L L E C T O R C U R R E N T

0A

20A

40A

60A

80A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of

case temperature (T j ≤ 175°C)

Figure 4. Collector current as a function of

case temperature

(V GE ≥ 15V, T j ≤ 175°C)

I C , C O L L E C T O R C U R R E N T

0V

1V

2V 3V

0A

20A 40A 60A 80A 100A 120A

I C , C O L L E C T O R C U R R E N T

0V 1V

2V 3V 4V

0A

20A 40A 60A 80A 100A 120A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristic

(T j = 25°C)

Figure 6. Typical output characteristic

(T j = 175°C)

I C , C O L L E C T O R C U R R E N T

0A

20A

40A

60A

80A

V C E (s a t ), C O L L E C T O R -E M I T T S A T U R A T I O N V O L T A G E

0°C

50°C

100°C

150°C

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

V GE , GATE-EMITTER VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristic

(V CE =10V)

Figure 8. Typical collector-emitter

saturation voltage as a function of junction temperature (V GE = 15V)

t , S W I T C H I N G T I M E S

0A 20A 40A 60A 80A

t , S W I T C H I N G T I M E S

0?

5?

10?15?20?25?

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a

function of collector current (inductive load, T J =175°C,

V CE = 400V, V GE = 0/15V, R G = 7?, Dynamic test circuit in Figure E) Figure 10. Typical switching times as a

function of gate resistor (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, I C = 50A, Dynamic test circuit in Figure E)

t , S W I T C H I N G T I M E S

25°C

50°C

75°C 100°C 125°C 150°C V G E (t h ), G A T E -E M I T T T R S H O L D V O L T A G E

-50°C

0°C 50°C

100°C 150°C

T J , JUNCTION TEMPERATURE

T J , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a

function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C = 50A, R G =7?, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as

a function of junction temperature (I C = 0.8mA)

E , S W I T C H I N G E N E R G Y L O S S E S

0A

20A

40A

60A

80A

0.0mJ

2.0mJ

4.0mJ

6.0mJ

8.0mJ

E , S W I T C H I N G E N E R G Y L O S S E S

0?10?20?

0.0m

1.0m

2.0m

3.0m

4.0m

5.0m

6.0m

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical switching energy losses

as a function of collector current (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, R G = 7?, Dynamic test circuit in Figure E) Figure 14. Typical switching energy losses

as a function of gate resistor (inductive load, T J = 175°C,

V CE = 400V, V GE = 0/15V, I C = 50A, Dynamic test circuit in Figure E)

E , S W I T C H I N G E N E R G Y L O S S E

S

25°C

50°C 75°C 100°C 125°C 150°C

0.0mJ

1.0mJ

2.0mJ

3.0mJ

E , S W I T C H I N G E N E R G Y L O S S E S

T J , JUNCTION TEMPERATURE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 15. Typical switching energy losses

as a function of junction temperature

(inductive load, V CE = 400V, V GE = 0/15V, I C = 50A, R G = 7?, Dynamic test circuit in Figure E)

Figure 16. Typical switching energy losses

as a function of collector emitter voltage

(inductive load, T J = 175°C, V GE = 0/15V, I C = 50A, R G = 7?, Dynamic test circuit in Figure E)

V G E , G A T E -E M I T T E R V O L T A G E

0V

5V

10V

15V

c , C A P A C I T A N C E

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 17. Typical gate charge

(I C =50 A)

Figure 18. Typical capacitance as a function

of collector-emitter voltage (V GE =0V, f = 1 MHz)

I C (s c ), s h o r t c i r c u i t C O L L E C T O R C U R R E N T

12V

14V

16V

18V

0A 100A 200A 300A 400A 500A 600A 700A 800A t S C , S H O R T C I R C U I T W I T H S T A N D T I M E

10V

11V 12V 13V 14V

0μs

2μs

4μs

6μs

8μs

10μs

12μs

V GE , GATE -EMITTETR VOLTAGE

V GE , GATE -EMITETR VOLTAGE

Figure 19. Typical short circuit collector

current as a function of gate-emitter voltage

(V CE ≤ 400V, T j ≤ 150°C)

Figure 20. Short circuit withstand time as a

function of gate-emitter voltage (V CE =600V , start at T J =25°C, T Jmax <150°C)

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

10-2

10-1

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

10-2

10-1

10

t P , PULSE WIDTH

t P , PULSE WIDTH

Figure 21. IGBT transient thermal resistance

(D = t p / T )

Figure 22. Diode transient thermal

impedance as a function of pulse width (D =t P /T )

t r r , R E V E R S E R E C O V E R Y T I M E

0ns

50ns 100ns 150ns

200ns 250ns 300ns

Q r r , R E V E R S E R E C O V E R Y C H A R G E

700A/μs

800A/μs 900A/μs 1000A/μs

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 23. Typical reverse recovery time as

a function of diode current slope (V R =400V, I F =50A,

Dynamic test circuit in Figure E)

Figure 24. Typical reverse recovery charge

as a function of diode current slope

(V R = 400V, I F = 50A,

Dynamic test circuit in Figure E)

I r r , R E V E R S E R E C O V E R Y C U R R E N T

700A/μs 800A/μs 900A/μs 1000A/μs

0A

10A

20A

30A

40A

d i r r /d t , D I O D E P E A K R A T E O F F A L L

O F R E V E R S E R E C O V E R Y C U R R E N T

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 25. Typical reverse recovery current

as a function of diode current slope

(V R = 400V, I F = 50A,

Dynamic test circuit in Figure E) Figure 26. Typical diode peak rate of fall of

reverse recovery current as a function of diode current slope (V R =400V, I F =50A,

Dynamic test circuit in Figure E)

I F , F O R W A R D C U R R E N T

0V

1V 2V

0A

20A 40A 60A 80A 100A 120A

V F , F O R W A R D V O L T A G E

0°C

50°C 100°C 150°C

0.0V

0.5V

1.0V

1.5V

2.0V

V F , FORWARD VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 27. Typical diode forward current as

a function of forward voltage

Figure 28. Typical diode forward voltage as a

function of junction temperature

dimensions TO-247AC

symbol[mm] [inch]

min max min max

A 4.78 5.28 0.1882 0.2079

B 2.29 2.51 0.0902 0.0988

C 1.78 2.29 0.0701 0.0902

D 1.09 1.32 0.0429 0.0520

E 1.73 2.06 0.0681 0.0811

F 2.67 3.18 0.1051 0.1252

G 0.76 max 0.0299 max

H 20.80 21.16 0.8189 0.8331

K 15.65 16.15 0.6161 0.6358

L 5.21 5.72 0.2051 0.2252

M 19.81 20.68 0.7799 0.8142

N 3.560 4.930 0.1402 0.1941

?P 3.61 0.1421

Q 6.12 6.22 0.2409 0.2449

Published by

Infineon Technologies AG,

Bereich Kommunikation

St.-Martin-Strasse 53,

D-81541 München

? Infineon Technologies AG 2004

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题
相关文档
最新文档