离心机之离心力G和转速RPM之间的换算

离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速RPM之间的换算

离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。

此外,物质在介质中沉降时还伴随有扩散现象。扩散是无条件的绝对的。扩散与物质的质量成反比,颗粒越小扩散越严重。而沉降是相对的,有条件的,要受到外力才能运动。沉降与物体重量成正比,颗粒越大沉降越快。对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。因为颗粒越小沉降越慢,而扩散现象则越严重。所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。

离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。它们的关系是:F=ˉ2 R

为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g (约等于

9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60 000 r/min 时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。

因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值)也大一倍。转速(r/min)和离心力(g值)之间的关系可用下式换算:

G=1.11×(10^-5)×R×[rpm]2

G为离心力,一般以g(重力加速度)的倍数来表示;

10-5即:10的负五次方;

[rpm]2即:转速的平方;

R为半径,单位为厘米。

例如,离心半径为10厘米,转速为8000,其离心力为:

G=1.11*10(-5)*10*(8000)2=7104

即离心力为7104g. 而当离心力为8000g 时,其转速应为:8489即约为8500rpm。

值得注意的是,这里跟半径是相关的。也就是说,不同的离心机其换算关系是不一样的。普通离心机可以用计算器算一下,很准。而低温离心机则不须如此费事。上面有按钮可以在rpm与g之间切换,非常方便。以前的文章,尤其是国内的文章通常以rpm来表示。现在多倾向于以g来表示。

常见国产离心机大全》》》》

TDL-6M台式低速冷冻离心机

Mini-10K迷你高速离心机介绍

Mini-4K/6K手掌式离心机掌上离心机

LD-5M立式低速冷冻离心机

KC-LXJ超大容量冷冻离心机/血袋离心机

LD-6M立式低速大容量冷冻离心机介绍

TD-4Z低速自动平衡离心机介绍

TD-400台式低速离心机

TD-420台式低速离心机介绍

TGL-16S微量高速冷冻离心机介绍

TD-500台式低速离心机介绍

TG-16S微量高速离心机

TGL-16台式高速冷冻离心机

TGL-17台式高速冷冻离心机

TGL-18台式高速冷冻离心机

LG-18立式高速冷冻离心机介绍

TD-5Z低速多管架自动平衡离心机介绍TG-16台式高速离心机介绍

TD-5低速多管架离心机介绍

LG-22立式高速冷冻离心机介绍

TD5-I低速大容量离心机介绍

TG-17台式高速离心机介绍

TGL-19台式多功能冷冻离心机介绍TD-5M低速大容量离心机介绍

TG-18型台式高速离心机介绍

TGL-20型台式高速冷冻离心机介绍DD-4000低速大容量离心机介绍LG-10M高速冷冻大容量离心机

LG-21M立式高速冷冻离心机

TD-6M台式低速大容量离心机

离心机之离心力G和转速RPM之间的换算

离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。 此外,物质在介质中沉降时还伴随有扩散现象。扩散是无条件的绝对的。扩散与物质的质量成反比,颗粒越小扩散越严重。而沉降是相对的,有条件的,要受到外力才能运动。沉降与物体重量成正比,颗粒越大沉降越快。对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。因为颗粒越小沉降越慢,而扩散现象则越严重。所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。 离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。它们的关系是:F=ˉ2 R 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g (约等于 9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60 000 r/min 时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值)也大一倍。转速(r/min)和离心力(g值)之间的关系可用下式换算: G=1.11×(10^-5)×R×[rpm]2 G为离心力,一般以g(重力加速度)的倍数来表示;

离心力和转速之间的简单换算

离心力和离心转速的换算是经常用到的,具体的计算公式如下: RCF = 1.118 ×10-5×N2×R RCF表示相对离心力,单位为g N表示转速,单位为rpm转/分 R表示离心半径,单位为cm。 离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。它们的关系是:F=ˉ2R 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g(约等于9.8m/s2)得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60000r/min时,离心力是240000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值)也大一倍。转速(r/min)和离心力(g值)之间的关系可用下式换算: 其换算公式如下:Mt\lS_x~RV G=1.11*10(-5)*R*(rpm)2 G为离心力,一般以g(重力加速度)的倍数来表示。 10(-5)即:10的负五次方。 (rpm)2即:转速的平方。 R为半径,单位为厘米。 例如,离心半径为10厘米,转速为8000, 其离心力为: G=1.11*10(-5)*10*(8000)2=7104 即离心力为7104g.而当离心力为8000g时,其转速应为:8489即约为8500rpm. 值得注意的是,这里跟半径是相关的。也就是说,不同的离心机其换算关系是不一样的。 普通离心机可以用计算器算一下,很准。而低温离心机则不须如此费事。上面有按钮可以在rpm与g之间切换,非常方便。 以前的文章,尤其是国内的文章通常以rpm来表示。现在多倾向于以g来表示。 转速有离心力(×g)和每分钟转速(rpm)两种表示方式,有些离心机没有自动切换功能。下面的公式可以帮助解决这个问题: g=r×11.18×10-6×rpm2(式中r为有效离心半径,即从离心机轴心到离心管桶底的长度) 如:转速为3000rpm,有效离心半径为10cm,则离心力为=10×11.18×10-6×30002=1006.2(×g)。

离心机转速与离心力的换算

离心机转速与离心力的换算:(离心机分离因素计算公式) 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。 2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω2r/mg= ω2r/g= (2*π*r/r*rpm)2*r/g注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数: 1、沉降系数(sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r 或者F=V.D.ω2r (1) 上述表明:被离心物质所受到的离心力与该物质的质量、体积、密度、离心角速度以及旋转半径呈正比关系。离心力越大,被离心物质沉降得越快。

离心力的换算(1)

离心力的换算 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm) ?2*r/g 注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数:

1、沉降系数(sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r或者F=V.D.ω2r (1) 上述表明:被离心物质所受到的离心力与该物质的质量、体积、密度、离心角速度以及旋转半径呈正比关系。离心力越大,被离心物质沉降得越快。 在离心过程中,被离心物质还要克服浮力和摩擦力的阻碍作用。浮力F}和摩擦力F}}分别由下式表示: F’=V.D’.ω2r (2) F’’=f dr/dt (3) 其中D}为溶液密度,f为摩擦系数,dr/dt为沉降速度(单位时间内旋转半径的改变)。 基本原理 在一定条件下,可有: F=F’+F’’

离心机之离心力G和转速RPM之间的换算

离心机之离心力G和转速rpm的换算 离心原理: 当含有细小颗粒的悬浮液静置时,由于重力场的作用使得悬浮的颗粒逐渐下沉。粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。如红细胞,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。(浮力) 此外,物质在介质中沉降时还伴随有扩散现象。扩散是无条件的绝对的。扩散与物质的质量成反比,颗粒越小扩散越严重。而沉降是相对的,有条件的,要受到外力才能运动。沉降与物体质量成正比,颗粒越大沉降越快。对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。因为颗粒越小沉降越慢,而扩散现象则越严重,故需利用离心机产生强大的离心力,才能迫使这些微粒克服扩散沉降。(扩散)离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F)的大小取决于离心转头的角速度(w,r/min)和物质颗粒距离心轴的距离(r,cm)。它们的关系是:F=rw^2 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60 000 r/min时,离心力=0.06*6000^2/9.8=220 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的22万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值)也大一倍。转速(r/min)和离心力(g值)之间的关系可用下式换算:

离心机转速换算公式(rpm与g)

离心机转速换算公式(rpm与g)

离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或

r/min)表示:一般情况下,低速离心时常以r /min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm)?2*r/g = (2*π* rpm)?2*r/g =(2*π)?2/g * rpm^2* r 注:rpm应折换成转/秒,r转换成m =(2*π/60)?2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示; rpm(revolution per minute,或r/min)表示离心机每分钟的转数。rmp与g之间的换算公式

7602000离心机计算说明书(中文)

LW760×2000型 卧式螺旋离心机 计算说明书 廊坊市管道人机械设备有限公司

目录 一、基本参数 (3) 二、生产能力计算 (4) 1、分离因素 (4) 2、生产能力 (4) 三、传动部件选型与设计 (5) 1、电机选型与校核 (5) 、启动转鼓等转动件所需功率 (6) 、启动物料达到工作转速所需功率 (6) 、克服轴与轴承摩擦所需功率 (7) 、克服空气摩擦所需功率 (8) 、卸出物料所需功率 (8) 、卧螺离心机功率确定 (10) 、主电机选型与校核 (10) 、副电机选型与校核 (11) 2、差速器选型与校核 (11) 3、轴的强度校核 (11) 四、有限元分析 (13) 1、排渣能力计算 (13) 2、参数计算 (14) 3、材料力学分析 (14) 4、有限元加载分析 (14)

五、轴承寿命计算 (19) 一、 2C r F r F G g ω== 基本参数

序号名称代号单位数值1转鼓有效长度L m2 2转鼓内直径D m 3转鼓转速n rpm1800 4转鼓与螺旋的转速差n rpm30 5重力加速度g m/s2 6半锥角α°8 m 7柱筒段沉降区长度L 1 m 8锥段长度L 2 m 9物料环内径r 1 m 10转鼓内径r 2 11锥段小端出渣口半径r m 3 12液层深度h m kg/m32000 13固相密度ρ s kg/m31050 14液相密度ρ L 15液相粘度μkg/m*s 16临界粒径d μm7 e 17转鼓质量m Kg3150

二、 生产能力计算 1、 分离因数 被分离的物料在离心力场中所受的离心力和它所受的重力的比值,称为分离因数r F ,即: 2222 c r F m r r F G mg g ωω=== 式中 m ——离心力场中物料的质量(kg ) ω——转鼓角速度:2/60188.5/r d n a s ωπ== 2r ——转鼓内半径: 2r =380mm 将上述各数据代入可得分离因数: 222 188.50.38 13789.8 r r F g ω?=== 2、 生产能力 本设计以Σ理论计算卧螺沉降离心机的生产能力。 对于具有圆锥形转鼓的螺旋型离心机,实际生产能力的计算公式可表达为: 3(/)g Q v m h η=∑(见《离心机原理结构与设计计算》) 式中 η——修正系数: 0.3674 0.3359 L 16.44de L ρηρ???? ?= ? ? ??? ?? 沉降 ; ∑——当量沉降面积,对于卧螺离心机,表达为: 22121121(1)()3234r F D L L πζζζζ? ?=-++-+????∑其中2 h r ζ= g v ——给定液体中作沉降式的极限沉降速度:2 /18(/)g e v d g m s ρμ=?

关于离心机及rpm单位与g(RCF)单位的换算

关于离心机及rpm单位与g(RCF)单位的换算 离心技术在生物科学,特别是在生物化学和分子生物学研究领域,已得到十分广泛的应用,每个生物化学和分子生物学实验室都要装备多种型式的离心机。离心技术主要用于各种生物样品的分离和制备,生物样品悬浮液在高速旋转下,由于巨大的离心力作用,使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离,而沉降速度取决于颗粒的质量、大小和密度。 基本原理: 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“F”由下式定义,即: F = m&S226;a = m&S226;ω2 r a — 粒子旋转的加速度, m — 沉降粒子的有效质量,ω—粒子旋转的角速度, r—粒子的旋转半径( cm )。 通常离心力常用地球引力的倍数来表示,因而称为相对离心力“ RCF ”。或者用数字乘“g”来表示,例如25000×g,则表示相对离心力为25000。相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g” (980cm/sec2),此时“RCF”相对离心力可用下式计算: ∴19×10-5×(rpm)2 r RCF = 1.1 ( rpm — revolutions per minute每分钟转数,r/min ) 由上式可见,只要给出旋转半径r,则RCF和rpm之间可以相互换算。但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“ra v”代替: ra v=( r min+rmax) / 2 一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g” 表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。因此在报告超离心条件时,通常总是用地心引力的倍数“×g”代替每分钟转数“rpm”,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。科技文献中离心力的数据通常是指其平均值(RCFa v),即离心管中点的离心力。

离心力和转速之间的简单换算(精)

离心力和离心转速的换算是经常用到的,具体的计算公式如下: RCF = 1.118 ×10-5×N2×R RCF表示相对离心力,单位为g N表示转速,单位为rpm转/分 R表示离心半径,单位为cm。 离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F的大小取决于离心转头的角速度(ˉ,r/min和物质颗粒距离心轴的距离(r,cm。它们的关系是:F=ˉ2R 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g(约等于9.8m/s2得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60000r/min时,离心力是240000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值也大一倍。转速(r/min和离心力(g值之间的关系可用下式换算: 其换算公式如下:Mt\lS_x~RV G=1.11*10(-5*R*(rpm2 G为离心力,一般以g(重力加速度的倍数来表示。 10(-5即:10的负五次方。 (rpm2即:转速的平方。 R为半径,单位为厘米。

例如,离心半径为10厘米,转速为8000, 其离心力为: G=1.11*10(-5*10*(80002=7104 即离心力为7104g.而当离心力为8000g时,其转速应为:8489即约为8500r pm. 值得注意的是,这里跟半径是相关的。也就是说,不同的离心机其换算关系是不一样的。 普通离心机可以用计算器算一下,很准。而低温离心机则不须如此费事。上面有按钮可以在rpm与g之间切换,非常方便。 以前的文章,尤其是国内的文章通常以rpm来表示。现在多倾向于以g来表示。 转速有离心力(×g和每分钟转速(rpm两种表示方式,有些离心机没有自动切换功能。下面的公式可以帮助解决这个问题: g=r×11.18×10-6×rpm2(式中r为有效离心半径,即从离心机轴心到离心管桶底的长度 如:转速为3000r pm,有效离心半径为10cm,则离心力为=10×11.18×10- 6×30002=1006.2(×g。

离心机转速与离心力的换算

离心机转速与离心力的换算 (离心机分离因素计算公式) 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。 2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2)

同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm) ?2*r/g 注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数: 1、沉降系数(sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r 或者F=V.D.ω2r (1)

离心机分类及转速和离心力的关系

离心机分类及转速和离心力的关系 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。离心机的作用原理有离心过滤和离心沉降两种。离心过滤是使悬浮液在离心力作用下产生的离心压力,作用在过滤介质上,使得液体通过过滤介质成为滤液,而固体颗粒则被截留在过滤介质表面,实现了液-固分离;离心沉降是利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。 台式高速冷冻离心机HR/T20M 离心技术的发展是日新月益,产品也是五花八门,可根据您的需求为您推荐合适的离心机,离心机这个产品不比一般的实验室仪器,为了自身和他人的安全着想,一点要买有质量保证的离心机。 1.高速与超速离心机是生化实验教学和生化科研的重要精密设备,因其转速高,产生的离心力大,使用不当或缺乏定期的检修和保养,都可能发生严重事故,因此使用离心机时都必须严格遵守操作规程。 常规台式高速离心机是实验室基础设备,广泛用于样品的分离。接下来我们了解一下离心机分类和离心机转速和离心力的关系.同时我们在选购离心机的时候注意事项. 2.离心机的分类方式 A.按转速来分:低速离心机(10000rpm以下)、高速离心机(10000-30000rpm)、超高速离心机(30000rpm以上) B.按外观样式来分:迷你离心机、台式离心机、立式离心机、三足式离心机

C.按是否制冷:常温离心机、冷冻离心机 D.按分离方式:沉降离心机、过滤离心机 E.按转子的类别:水平转子、角转子 高速离心机按结构和分离要求,可分为过滤离心机、沉降离心机和分离机三类。衡量离心分离机分离性能的重要指标是分离因数,表示被分离物料在转鼓内所受的离心力与重力的比值,通常分离因数越大,分离速度越快,效果越好。 TL5R立式冷冻自动脱帽离心机 3. 离心机的转速(rpm)和离心力(g)的关系 离心力G和转速RPM之间的换算其换算公式如下: G=1.11×10^(-5)×R×(rpm)^2 其中,G为离心力,一般以g(重力加速度)的倍数来表示。 10^(-5) 即10的负五次方,(rpm)^2转速的平方,R为半径,单位为厘米。 例如,离心半径为10厘米,转速为8000RPM,其离心力为: G=1.11*10(-5)*10*(8000)2=7104即离心力为7104g.

离心机离心力的计算

离心机离心力的计算 通常离心力常用地球引力的倍数来表示,因而称为相对离心力“ RCF ”。或者用数字乘“g” 来表示,例如25000×g,则表示相对离心力为25000。相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g”(980cm/sec2), 此时“RCF”相对离心力可用下式计算: RCF = 1.119×10-5×(rpm)2 r ( rpm — revolutions per minute每分钟转数,r/min ) 由上式可见,只要给出旋转半径r,则RCF和rpm之间可以相互换算。但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“ra v”代替:ra v=( r min+rmax) / 2 一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g” 表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。因此在报告超离心条件时,通常总是用地心引力的倍数“×g”代替每分钟转数“rpm”,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。科技文献中离心力的数据通常是指其平均值(RCFa v),即离心管中点的离心力。 为便于进行转速和相对离心力之间的换算,Dole 和Cotzias 利用RCF的计算公式,制作了转速“rpm”、相对离心力“RCF”和旋转半径“r”三者关系的列线图,图式法比公式计算法方便。换算时,先在r标尺上取已知的半径和在rpm标尺上取已知的离心机转数,然后将这两点间划一条直线,与图中RCF标尺上的交叉点即为相应的相对离心力数值。注意,若已知的转数值处于rpm标尺的右边,则应读取RCF标尺右边的数值,转数值处于rpm标尺左边,则应读取RCF 标尺左边的数值。 基本原理: 1.重力场中的沉降 2.相对离心力:离心力长相对离心力用Relative centrifugal force ,RCF来表示,它的大小一般用相当于地心引力(重力加速度g)的倍数来表示, 3.沉降速度:沉降速度是指离心力的作用下单位时间内物质颗粒沿半径方向运动的距离。

离心机转数与离心力的换算

离心机转数与离心力的换算 r为离心机转轴中心与离心套管底部内壁的距离;rpm(revolution per minute)为离心机每分钟的转数;RCF(relative eentrifugal force)为相对离心力,以地心引力,即重力加速度的倍数来表示,一般用g表示。 利用下表,已知离心机r和g就可求出rpm;反之,r和rpm已知,也可求出g。例如,在r标尺上取已知的r半径值和在g标尺上取已知相对离心力值,这两点间线的沿长线在rpm标尺的交叉点即为rpm。 注意,若已知的g值处于g标尺的右边,则应读取rpm标尺的右边数值,否则反之。g和rpm也可通过下边公式来换算: RCF=1.119×105×rx(rpm)2 离心机的离心力g和转速r/min 如何换算 离心力Centrifugal force (F)离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力 Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm) ?2*r/g 注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560

离心机分离因素的计算方法

离心机分离因素计算公式 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min

来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm)?2*r/g 注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 本站关键字:离心机|实验室离心机|上海离心机|医用离心机

离心机计算

正文字体大小:大中小 离心机转速与离心力的换算:(离心机分离因素计算公式) (2007-08-13 17:21:16) 转载 标签: 职场/励志 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。 2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n 或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω2r/mg= ω2r/g= (2*π*r/r*r pm)2*r/g注:rpm应折

换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数:

相关文档
最新文档