灭火机器人报告

灭火机器人报告
灭火机器人报告

目录

第一章引言 (1)

1.1课题背景 (1)

1.2实现功能 (1)

1.3模拟房子介绍 (1)

第二章系统整体方案设计 (2)

2.1系统硬件设计 (2)

2.2系统软件设计 (2)

第三章硬件设计 (3)

3.1电源管理模块 (3)

3.1.1稳压芯片LM7805CV (3)

3.1.2电源模块电路原理图 (3)

3.2电机驱动芯片L298N (4)

3.2.1 L298N的逻辑功能: (4)

3.2.2外形及封装: (4)

3.2.3 L298N电路原理图: (5)

3.3避障检测传感器HS0038 (5)

3.3.1 HS0038简介: (5)

3.3.2 HS0038特点: (5)

3.3.3 检测原理: (6)

3.3.4 HS0038与单片机连接原理图: (6)

3.4地面灰度检测传感器ST188 (6)

3.4.1 ST188特点: (6)

3.4.2 检测原理: (6)

3.4.3 应用范围: (6)

3.4.4 外形尺寸(单位mm): (7)

3.4.5 ST188原理图: (7)

3.5火焰传感器 (8)

3.5.1火焰传感器使用 (8)

第四章软件设计 (8)

4.1灭火机器人行进路线分析 (8)

4.2软件流程图 (10)

第五章调试记录及实验心得 (11)

5.1调试记录 (11)

5.2实验心得 (11)

参考文献 (14)

附录1: 程序清单 (30)

附录2: 灭火机器人实物图及灭火场地 (30)

第一章引言

1.1课题背景

随着社会的进步,机器人技术的不断发展使得机器人的应用领域不断扩展,从以往多应用于工业领域而渐渐融入人们的生活。灭火机器人作为消防部队中的新兴力量,加入了抢险救灾的行列。灭火机器人是一个集信号检测、传输、处理和控制于一体的控制系统,代表了智能机器人系统的发展方向。

1.2 实现功能

制造一个自主控制的机器人在一间平面结构房子模型里运动,找到一根蜡烛并尽快将它熄灭,这个工作受地面摩擦、机器人惯性、机器人电机的转数差、齿轮箱与轮子的摩擦、电压变化等多个因素影响,它模拟了现实家庭中机器人处理火警的过程,蜡烛代表家里燃起的火源,机器人必须找到并熄灭它。

1.3 模拟房子介绍

模拟房子平面图单位:mm

图1.1 灭火机器人比赛场地(国际赛制)

比赛场地的墙壁33cm高,由木头做成。墙壁刷成白色。比赛场地的地板将是被漆成黑色的光滑木制表面。在所有的房间和走廊的地板上,可能会铺有小地毯,不会有粗毛地

前进子程序 转弯子程序 灰度子程序

壁障子程序 火焰子程序

停止子程序 毯。场地中所有的走廊和门口宽都是46cm 。门口并没有门,而是一个46cm 的开口,将会有一个白色的2.5cm 宽的白色带子或白漆印迹表示房间入口。

第二章 系统整体方案设计

2.1 系统硬件设计

本次设计的目的是设计一个在规定区域能自主搜索火源并实施灭火的智能机器人小车,本次设计使用的主控芯片使用了STC89C52单片机,所以设计重点在传感器和电机驱动上。系统总体设计框图如图2.1:

图2.1 系统总体设计框图

2.2 系统软件设计

软件设计方案是以上述硬件电路为基础的,包括电机控制模块、传感器模块的程序设计与实现。程序设计采用C 语言编写,编程环境是集成Keil C51编译器的集成编译环境。灭火机器人设计的软件设计结构框图如图2.2所示。

MCU

小车电

传感器

传感器

电源部分

风扇

灭火机器人系

电机控

传感器

图2.2 系统软件设计框图

第三章硬件设计

3.1电源管理模块

电源是任何一个系统稳定运行的前提条件,为了使机器人运行稳定,单片机和电机的供电系统采用独立供电的方法。

3.1.1稳压芯片LM7805CV、LM7812CV

LM7805CV的技术指标如下表:

表3-1 稳压芯片7805参数

LM7812CV的技术指标如下表:

表3-2 稳压芯片7812参数

3.1.2电源模块电路原理图

由于单片机及所有的传感器系统供电采用的是5V的电源,而车体要良好的运行电机的供电电压应该达到12V,所以在电源的处理上采用了稳压芯片7805CV和7812CV。

图3.1 电源部分电路图

3.2电机驱动芯片 L298N

L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电阻器,形成电流传感信号。L298可驱动2个电机,OUT1、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。也利用单片机产生PWM信号接到ENA,ENB端子,对电机的转速进行调节。

3.2.1 L298N的逻辑功能:

表3-3 SHARP GP2D12实物图

3.2.2外形及封装:

图3.2 L298N实物图

3.2.3 L298N电路原理图:

由于一片L298N可以直接驱动两个电机,但是为了加大驱动力,我们采用两路并联的方式来驱动电机。

图3.3 L298N电路图

3.3避障检测传感器 HS0038

3.3.1 HS0038简介:

HS0038B -系列微型接收机红外遥控器控制系统。PIN二极管和前置上组装引线框架,环氧包被设计成红外过滤器。该解调输出信号可直接解码的微处理器。HS0038B是标准的红外遥控接收器系列,支持所有主要传输代码。

3.3.2 HS0038特点:

1、光检测器和放大器一体封装

2、内部可集成PCM频率过滤器

3、与TTL和CMOS电平兼容

4、改进的屏蔽电场,抗干扰能力强

3.3.3 检测原理:

红外发射管发射出经过调制过的38KHZ的红外光,当前方没有障碍物时,接收器收不到红外光,相反当前方有障碍物时,接受器可以收到红外光。根据此原理,机器人可以感知前方的路况从而决定是否前行。

3.3.4 HS0038与单片机连接原理图:

图3.4 H0038电路图

HS0038内部集成了红外接收——运放——验波电路——带通滤波(中心频率)——整形电路——驱动电路,通过加入38k的调制信号可使该电路抗干扰能力增强,减少了自然光的影响。其实在红外发射和VCC之间有一变位器,阻值为2~5欧左右此图没标上.

3.4地面灰度检测传感器ST188

3.4.1 ST188特点:

1、采用高发射功率红外二极管和高灵敏度光电晶体管组成。

2、检测距离可调整范围大,4--13 mm可用。

3、采用非接触方式。

3.4.2 检测原理:

ST188是红外收发一体的器件,发射管发射出红外光线,接收管就可以根据接收的红外光线的强弱,感知地面的灰度。由于此模拟房间的地面被处理成为黑白两种颜色,通过比较器设置灰度的门限值,可以很方便的感知地面的颜色,从而做出相应的决策。

3.4.3 应用范围:

1、IC卡电度表脉冲数据采样。

2、集中抄表系统数据采集。

3、传真机纸张检测。

4、地面灰度检测,正反转速测量、行程测量等。

3.4.4 外形尺寸(单位mm ):

图3.5 ST188实物图

3.4.5 ST188原理图:

5

6

A

B

C

D

6

5

Title Num ber

Revision

Size B

Date:18-Oct-2008Sheet of

File:

C:\PROGRAM FILES\DESIGN E XPLORER 99 SE\EXAMPLES\My Design.ddb

Drawn By :U1

ST188

R1

120R

R210K

R5RES2

R3

1K

VCC

1

2

6

7

8

U2A

LM324

1

16

2

R4A

10K

D1LED

VCC

VCC

Port VCC

图3-6 ST188电路图

图3-7 L324图

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相

互独立。

3.5火焰传感器

此传感器本品可广泛应用于灭火机器人比赛中测量火焰值、足球比赛时,用于确定足球的方向。下图为火焰传感器实物图。

图3.8 火焰传感器实物图

3.5.1火焰传感器使用

此传感器具有优良的火焰探测性能,可根据可见光、红外光强弱变化输出电平的大小。其输出端口是一个四针的插头,其中黑色线为地线、红色线为电源线(+5V)、黄色线为信号线,用于输出测量的红外光强度电平、棕色线为信号线,用于输出可见光强度电平。

第四章软件设计

4.1 灭火机器人行进路线分析

当小车处于起点,小车要开始搜索房间有两种路径可以选择,一是不过台阶,绕着4号房间向外搜索。二是直接过台阶,然后开始搜索。显然直接过台阶可以节省很多的时间,路径更短,因为我们制作的小车为履带结构,结合我们小车的特点和前面分析,我们选择过台阶。

过台阶后,小车处于3号和4号房间中间,由图可知,沿着右走的方案比较好,因此我们采用是右手规则,首先搜索的是3号房间,如图中的红色箭头。当在3号房间发现火源时,小车进入房间并灭火,灭火后按原路返回;如没有发现火源,小车继续按右手规则

搜索房间,直到搜索4号房间,不管有没有搜索到火源,从4号房间出来都绕着4号房间返回起点,因为回家过程中的时间不记入总时间,而绕行比较安全,小车比较好控制。

1

2

3

4

灭火路线

回家路线

图4.1 灭火机器人行进路线

4.2 软件流程图

开始

搜索3号房间

是否有火搜索2号房间是否有火搜索1号房间是否有火搜索4号房间是否有火

灭火

火已灭

3号房间回家

4号房间回家

停止

灭火

火已灭

2号房间回家

灭火

火已灭

3号房间回家

灭火

火已灭

3号房间回家是

否否否否

否是

图4.2 灭火小车软件设计流程图

第五章调试记录及实验心得

5.1 调试记录

?前方传感器检测最佳距离12cm ,500R的电位器逆时钟旋转可加大发射管的发射功

率,检测距离可变远。

?地面灰度传感器:测试距离2.5cm,黑地面输出电压1.3-1.5V;白纸输出3.8-4.5V;

?前方火焰传感器最远测试距离2.5m,此次使用有效距离0.8m,输出电压0.6V,探测

角度+30°。

?转弯:

动作延时常数动作延时常数原地右转90 18 原地左转90 19

右后转180 37 左后转180 37

?电池电压:5V供电的电压不得低于7.2V。

? 5.2 实验心得

伊超:

本次的灭火机器人小车设计主要涉及驱动模块壁障模块,灰度模块,灭火模块,单片机开发,程序设计等等。在这次试验中硬件部分和软件部分基本是我一个人完成的。在硬件焊接时,我遇到了很多问题,比如两个电机不能同时驱动,H0038不能检测,没有A/D 转换,单片机引脚不够用等等,通过我解决这些问题,我也学会了实验室的许多仪器的使用,我也体会到一个人的力量是有限的,在软件设计当中,我也遇到了许多问题,比如不能产生38KHZ方波,还有在调车时,不知怎么就是车跑的不稳定,原来是在整个系统当中没有反馈的设计,所以我又令设计了一下传感器位置,加了一个反馈调节,这样系统才能运行的稳定,这时我才知道系统反馈是多么的重要,在程序编程方面,我体会到硬件设计如果比较好的话,软件编程是比较容易的,所以这才启发我如果想搞好硬件,软件必须要懂,要想编出一个比较漂亮的程序,硬件设计也要必须懂,只有软硬兼顾,这才能开发出一个比较好的系统。

在智能车的设计中,电源部分可以说是核心的核心,电源设计显得尤为重要,特别是使用电池供电的系统。电池在充电后,电压会变的很高,额定7.2V电压冲完电电压会达到8.5V,但在使用初,电压降的会很快,对系统的稳定性造成很大威胁,所以必须使用稳压芯片,而稳压芯片的压差在2V左右;另外,电源部分的滤波电容也是非常重要的,一般采用10uF的电解电容和104瓷片电容构成滤波电路。稳压芯片的采用虽然能减小电压的波动,但是并不能消除。所以,电压的变化还是对机器人的运动有一定的影响。

此外,由于地面的摩擦、机器人惯性、机器人电机的转数差、齿轮箱与轮子的摩擦等因素,控制机器人直行和转90度有一定的难度,要经过反复的调试、降低机器人的速度、通过传感器矫正等才能达到比较精确的控制。所以在做的过程中,选择一个好的、稳定的车模是必须的。

通过这次比赛,我不仅学到的好多知识,而且锻炼了我分析问题和处理问题的能力及组织策划能力,我编程能力大大的提到了,并且焊接电路我也进一步提高了很多。同时,一个人的能力及思想是有限的,团结就是力量,通过这次合作,进一步加强了我们的团队合

刘少龙:

这次弄灭火机器人,收获真的不小,学到了不少东西,学会了如何去思考问题,如何设计一个比较简洁的方法,去实现机器人的动作,同时兼顾可能出现的一些特殊情况,还有程序执行的复杂度,与小车动作的流畅。写一个比较完整的程序真的很锻炼思维。关于硬件电路的设计,我没有从一开始接触,但基本上就是数字电路,51单片机的一个小系统,运行很稳定,倒是红外传感器让人还学了点东西,三极管与滑动变阻器的接法红外接收管与单片机的连接。这次用的是HS38B20,直接输出数字量。调试过程中发现灵敏度不好调,可能是提前没有计算好滑动变阻器的阻值吧。最终采用了特殊方法调试好了。接继电器时也遇到了一些实际问题,单片机的I/O口电流太小不能驱动NPN三极管。最终加到了带上拉电阻的P0口上问题解决,其实在其他口上接上适当的上拉电阻问题也应该解决。关于火焰传感器也是同灰度一样加在了四路集成运放上,做的电压比较器,所以数模转化问题简化了。调试过程中发现太阳光对火焰传感器的影响很大,所以白天要在传感器上加一个罩子或者通过调节滑动变阻器调节LM324输入引脚的比较电压。第一次写出一个真正实用程序

梁瑞华:

通过灭火机器人的制作,我对机器人的组成和原理,传感器有了全新的认识。

本次的灭火机器人小车设计主要涉及到单片机开发、机器人组成和原理、电机与驱动、传感器知识及程序算法设计等。使用最多的是传感器,传感器是机器人的眼睛,只有传感器正确的识别道路,机器人才能正确搜寻房间。因此传感器的设置很重要,须多次调试得出最佳参数值,如电压值、测试距离、探测角度等。在整个实验过程中是最关键、最麻烦的就是系统的整体调试,我们要调节各个参数,保证车子能正常完成各个功能。同时还要考虑出现的各种不良因素,这要求制作的机器人的适应能力好,到达现场时需要调整的参数越少越好。

在控制机器人小车精确转弯时一定要使用相关硬件器件进行控制,比如指南针或者采用好的算法不需要进行精确转弯。还要考虑机器人的行走路径的选择,因为我们制作的小

车为履带结构,结合我们小车的特点和前面分析,我们选择过台阶直接过台阶,然后开始搜索。显然直接过台阶可以节省很多的时间,路径更短。

需要注意的是在平时调试时尽量在自己的比赛场地调试,虽然在现场比赛时,所有的比赛场地采用的都是相同的材料,各个部分看起来都是一样的,实际中却会有很大差异。

通过本次设计,将我把所学的理论知识真正应用到实际当中,不仅加深了对理论知识的理解,同时还进行了拓展、发散。在整个过程中,我还体会到团队合作的无穷力量。

参考文献

[1] 《国际赛制机器人灭火比赛规则》.PDF

[2] 李全利、迟荣强. 单片机原理及接口技术. 北京:高等教育出版社,2004.1

[3] 谭浩强. C程序设计(第二版). 北京:清华大学出版社,1999.12

[4] 童诗白、华成英. 模拟电子技术基础(第三版). 北京:高等教育出版社,2003.12

[5] 康华光. 电子技术基础数字部分(第四版). 北京:高等教育出版社,1900.1

[6] 黄智伟. 全国大学生电子设计竞赛电路设计. 北京:北京航空航天大学出版社,2006.12

[7] 黄智伟. 全国大学生电子设计竞赛系统设计. 北京:北京航空航天大学出版社,2006.12

[8] 文艳、谭鸿. Protel 99 SE电子电路设计. 北京:机械工业出版社,2006.8

程序请单附录1:

#include

#include

#define uchar unsigned char

#define uint unsigned int

sbit led1=P1^5; //红外发射管

sbit led2=P1^6; //

sbit led3=P3^7;

sbit s1=P1^1; //红外接收管用于壁障检测sbit s2=P1^2;

sbit s3=P1^4;

sbit styou=P0^0; //灰度

sbit stzuo=P0^1;

sbit huo=P2^0; //火

sbit feng=P0^7; //风

sbit en1=P2^2; //电机1 /* L298的Enable A */ sbit en2=P2^5; //电机2

sbit in1_1=P2^3; /* L298_1的Input 1 *左* */ sbit in1_2=P2^4; /* L298_1的Input 2 */

sbit in2_1=P2^6; /* L298_2的Input 1 *右* */ sbit in2_2=P2^7;/* L298_2的Input 2 */

uchar t=0; /* pwm调速中断计数器*/

uchar suozuo=100; /* 电机速度值参数:0~100 */ uchar suoyou=57;

uchar i=0 ;

uchar k=0; //房间标志变量

uchar h=0;//火焰标志

uchar m=0;//寻找灰度标志

uchar z=0; //回家灰度标志

void stop();//停止函数

void tiaoyou();//

void tiaozuo();//微调右

void qian()/前进函数

void delay(uint);

void zuo();//左90

void you();

void si();//左60

void tiaohuo();//调火

void pao();//跑函数

void init();//定时器

void dus(uchar);//小延时

void tiaohui();//灰度调节

void xun1();//房间里寻函数

void hui1();//回家函数

void hui2();//

void hui3();//

void hui4();//

void zhao();//在房间里找函数

void qian()//

{

in1_1=1;

in1_2=0;

in2_1=1;

in2_2=0;

}

void xun1()

{

in1_1=0;

in1_2=1;

in2_1=1;

in2_2=0;

delay(15);

while ((m==0)||(m==1)||(m==2)||(m==3))

{

if((styou==1)||(stzuo==1)) {

if (huo==1)

{

stop();

delay(1);

feng=1;

delay(20);

feng=0;

h=1;

si();

}

else

{

m++;

break;

}

}

else

{

if((s1==1)&&(s2==1))

{

qian();

delay(1);

}

else if((s1==0)&&(s2==1)) tiaozuo();

智能消防机器人

智能消防机器人 目录 第一章引言 (2) 1.1课题背景 (2) 1.2 Intelligent Design and manufacture of electric cars Fire..2 1.3 实现功能 (3) 1.4 模拟房子介绍 (3) 第二章系统整体方案设计 (4) 2.1系统硬件设计 (4) 2.2系统软件设计 (4) 第三章硬件设计 (5) 3.1 电源管理模块 (5) 3.11稳压芯片LM7805、7806CV (5) 3.12电源模块电路原理图 (5) 3.2 电机驱动芯BTS7960 (6) 3.21 BTS7960的逻辑功能 (6) 3.22 外形及封装 (6) 3.23BTS7960电路原理图 (7) 3.3地面灰度检测传感器 ST188 (7) 3.3.1 ST188特点 (7) 3.3.2 检测原理 (7) 3.3.3 应用范围 (7) 3.3.4 外形尺寸(单位mm) (7) 3.3.5 ST188原理图 (8) 3.4火焰传感器 (8) 3.4.1火焰传感器使用 (8) 3.5报警电路 (8) 第四章软件设计 (9) 4.1 灭火机器人行进路线分析 (9) 4.2 软件流程图 (11) 4.3软件开发平台介绍 (11) 第五章调试记录及实验心得 (12) 5.1 调试记录 (12) 参考文献 (13) 附录: 程序清单 (13)

第一章引言 1.1课题背景 如今国内外对消防设备的研究越来越重视,投入也越来越多。慢慢趋向于自动化、智能化。实现灭火、火场侦查、危险物品泄露探测、破拆等功能。本文设计主要完成的功能是扑火救人。 本设计是基于STC89C52单片机对电动车进行控制的自动控制系统,研究的内容有:主要方案论证、硬件设计、软件设计、系统实物调试。硬件设计主要有电机驱动电路、热光源采集电路、声音采集电路、电风扇驱动电路、停车信号采集电路、LCD显示电路、电源电路及单片机最小系统。本系统以STC89C52单片机作为控制核心,通过接受到热光源采集电路传送的信号和声音采集电路传送的信号,对电动车电机进行控制,从而实现对电动车的转向控制。当两处着火,一处是物品,另一处是人着火;电动车通过声音识别,优先将人身上的火扑灭。其所实现的功能相当于简易消防机器人。 【关键词】消防车热光源 STM32单片机 LM298 ST178 1.2Intelligent Design and manufacture of electric cars Fire Abstract Today, fire-fighting equipment at home and abroad more and more emphasis on the study, input more and more. Slowly tends to automation and intelligence. To achieve fire fighting, fire detection, hazardous materials leak detection, ripper and other functions. This function is primarily designed to complete fire fighting to save people. The design is based STC89C52 microcontroller to control for electric vehicle control system to study the contents of the following: the main program feasibility studies, hardware design, software design, system debugging in kind. Hardware design, main motor drive circuit, thermal light source acquisition circuit, the sound collection circuit, fan drive circuit, stopping the signal acquisition circuit, LCD display circuit, power circuit and microcontroller minimum system. The system STC89C52 microcomputer as the control core, through the acquisition circuit receives light transmitted thermal signal and voice signal acquisition circuit transmission of electric vehicle motors to be controlled in order to achieve steering control for electric vehicles. When the two fire, one is the items, another is a human on fire; electric vehicle through voice recognition, give priority to the human body fire. They achieve the functional equivalent of simple fire-fighting robot. 【Key words】:fire engine 、hot light、STM32 MCU 、LM298ST178

机器人灭火实验报告

“机器人设计与制作”课程设计报 告 机器人灭火实验 专业: 测控技术与仪器 班级: 测控081 设计人及学号: 指导教师: 完成日期: 卷问作用与与带置调高中资

一、设计目的: 通过本课程的学习和训练,应了解有关机器人技术方面的基本知识,掌握机器人学所涉及的技术的基本原理和方法,得到机器人技术开发的实践技能训练 。 1、巩固相关理论知识,了解机器人技术的基本概念以及有关电工电子学、单片机、传感器等技术。 2、通过使用机器人模型,编程处理机器人运动过程,分析机器人的控制原理。通过对其具体结构的了解,利用开发工具实现行走控制,并可以按预定的轨迹行走。 3、培养自学能力和独立解决问题的能力 二、设计任务: 机器人自主绕迷宫,发现火源报警。编写程序,使机器人完成给定的任务。 三、设计要求: 机器人灭火:通过机器人的I/O 口控制机器人在迷宫内自主行走,并且能够自主寻找火源并实施灭火。编写程序,使机器人完成给定的任务。 四、系统设计: 1、介绍所使用的硬件情况及工作原理。MT-UROBOT 概述 MT-UROBOT 是上海英集斯自动化技术有限公司设计制作的大学版机器人,它是专门为大学进行课程教学、工程训练、科技创新以及研究服务的新型移动智能机器人。 MT-UROBOT 结构 开关按钮 控制 MT-UROBOT 电源开关的按钮,按此按钮可以打开或关闭机器人电源。 “电源”指示灯 按下 MT-UROBOT 的开关后,这个灯会发绿光,这时可以与机器人进行交流了! “充电”指示灯 当你给机器人充电时,“充电”指示灯发红光。

“充电口” 将充电器的相应端插入此口,再将另一端插到电源上即可对机器人充电。 “下载口” “充电口”旁边的“下载口”用于下载程序到机器人主板上,使用时只需将串口连接线的相应端插入下载口,另一端与计算机连接好,这样机器人与计算机就连接起来了。 “复位/MTOS”按钮这是个复合按钮,用于下载操作系统和复位。当串口通信线接插在下载口上时,按击此按钮,机器人系统默认为此操作为下载操作系统;如果你想使用其复位功能则需要将通信线拔下,按击此按钮,机器人系统认为此操作为系统复位。 “运行”键打开电源后,按击“运行”键,机器人就可以运行内部已存储的程序,按照你的“指令”行动。 “通信”指示灯“通信”指示灯位于机器人主板的前方,在给MT-UROBOT 下载程序时,这个黄灯会闪烁,这样就表明下载正常,程序正在进入机器人的“大脑”即 CPU。 2、介绍编程思路和程序流程框图。 编程思路:采用使车一直左转的方法,通过小车上的1,2,3碰撞传感器感应遇到障碍物使小车以一定角度左转,然后再前进,采取左转行走的方法,让小车一直左转行走,在碰到障碍物以后自动退一小段再右转几十度继续左转行走,总能在最后绕迷宫行走一圈,从而走出迷宫并寻找到迷宫中的火源。以下是流程图:

灭火机器人项目可行性研究报告

灭火机器人项目可行性研究报告 第一章项目绪论 第二章项目建设背景及必要性 第三章项目选址科学性分析 第四章总图布置 第五章工程设计总体方案 第六章原辅材料及能源供应情况 第七章工艺技术设计及设备选型方案 第八章环境保护 第九章节能分析 第十章组织机构及人力资源配置 第十一章项目实施进度计划 第十二章投资估算与资金筹措 第十三章经济评价 第十三章综合评价结论及投资建议

第一章项目绪论 一、项目名称及提出背景 (一)项目名称 灭火机器人项目 (二)项目建设单位 项城某某股份有限公司 (三)项目提出理由 2015年是全面完成“十二五”规划的收官之年,也是全面深化改革的关键之年和全面推进依法治国的开局之年,更需要继续坚持稳中求进工作总基调,保持稳增长和调结构平衡,坚持宏观政策要稳、微观政策要活、社会政策要托底的总体思路,主动适应经济发展新常态,为深化改革开放和经济结构调整创造稳定的宏观环境,为经济社会发展创造良好预期和新的动力。 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在项城某某工业园区。 (二)项目用地性质及用地规模 1、该项目计划在项城某某工业园区建设,用地性质为工业用地。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用

地面积116667.3 平方米(折合约175.0 亩),代征地面积1050.0 平方米,净用地面积115617.3 平方米(折合约173.4 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照灭火机器人行业生产规范和要求进行科学设计、合理布局,符合灭火机器人制造和经营的规划建设需要。 (三)项目用地控制指标 1、该项目实际用地面积115617.3 平方米,建筑物基底占地面积79313.5 平方米,计容建筑面积130532.0 平方米,其中:规划建设生产车间106136.7 平方米,仓储设施面积14567.8 平方米(其中:原辅材料库房8786.9 平方米,成品仓库5780.9 平方米),办公用房5087.2 平方米,职工宿舍2890.4 平方米,其他建筑面积(含部分公用工程和辅助工程)1849.9 平方米;绿化面积7630.7 平方米,场区道路及场地占地面积28673.1 平方米,土地综合利用面积115617.3 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3000.0 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目建设的理由

灭火机器人程序

红外传感器接法 前红外:数字9 左红外:数字15 左45度角红外:数字10 右45度角红外:数字8 右红外:数字14 火焰传感器接法 左火焰:模拟3 中火焰:模拟5 右火焰:模拟4 (底部)灰度传感器:模拟2 声控传感器:模拟6 程序说明 #define p 120 //定义火焰传感器检测到火焰的返回值int k,j,i=0,n,b=1,c=1; //程序控制变量,不必更改 int m=i; int pro,end=1; void main() //主程序 { while(analog(6)>100) //声控启动 { } while(!(analog(2)>100)) //走出白色超始区 { motor(0,80); motor(1,80); } pro=start_process(test()); //启动地面标志线检测进程 while(1) //灭火与迷宫程序切换 { if (analog(3) { fire(); } else //没有发现火焰,进入迷宫子程序 { migong(); }

} void migong() //迷宫子程序 { if(digital(8)==0 II digital(9)==0) //如果前方或右45度角红外检测到障碍物,左转 { motor(0,-70); //根据情况,调节功率参数,以下雷同 motor(1,70); } else if(digital(14)==0 && digital(9)==1 && digital(8)==1) //如果只右方有障碍物,直行 { motor(0,100); motor(1,100); } else //如果没有障碍物,右转 { motor(0,100); motor(1,-100); motor(1,10); motor(0,90); } if((i>2)&&(i>m)) //如果标志线数大于2且标志线有变化(针对1、2、3号房间) { stop(); while(analog(3)>150 && analog(5)>150 && analog(4)>150) //如果没有检测到火焰 { motor(0,70); //右转 motor(1,-70); if(digital(14)==0) //右红外检测到障碍物,停止转动 break; } m=i+1; //更改标志线的对比变量 } if(i==1 && b && (analog(3)>150 && analog(5)>150 && analog(4)>150)) //4号房间,检测到第1条标志线,且没有火焰 { while(digital(9)==0 II digital(8)==0 II digital(14)==0) //任意右手红外传感器有障碍物,右转

灭火机器人项目研制报告

灭火机器人项目研制报告 宁夏吴忠市第三中学 一、研制名称:灭火机器人研制报告 二、研制目的: 随着社会的进步,机器人技术的不断发展使得机器人的应用领域不断扩展,从以往多应用于工业领域而渐渐融入人们的生活。通过组织学生参加机器人模型的设计、制作与演示,在学生中普及有关机器人技术的基础知识,使同学们在活动中发挥他们的创造性与能动性,培养学生利用机器人解决自然灾害的意识。人们常说:“水火无情”,火灾的发生造成了人们的财产损失与人身安全伤害,灭火机器人作为消防部队中的新兴力量,加入了抢险救灾的行列。在消防现场存在着爆炸、有害气体泄露、建筑坍塌及核辐射等众多不安全因素,为了解决在如此复杂环境中消防人员亲临火场时的人身安全问题,我们设计了这个灭火机器人,它的主要目的是使机器人能在一个规定的区域内自主搜索火源并实施灭火。灭火机器人的开发应用可以使消防人员不进入火场,通过消防机器人的自主灭火或消防人员的远程控制即可扑灭火灾。 三、研制内容、操作过程与步骤: (一)研制内容 1、设计来源: 火灾一直是人们面临的一大难题,各种各样的危险场所都会有不可避免的火灾出现,给社会以及人民群众的人身安全和财产安全造成了很多隐患,因此火灾的及时补救就成为了急需解决的问题。救火早一秒就少一些伤亡,也会少一些财产损失。尤其是对于一些封闭的场所,比如地下商场,消防车不易进入,消防人员在接到火灾报警时不能很快地到达现场,加之消防现场还存在着建筑坍塌,有害气体泄漏等不安全因素,对消防人员的人身安全造成了一定的危害。我们设计的灭火机器人在地下商场的基地放置,当检测到火源后,发出警报,并立即寻找火源的位置,用风扇扑灭火源。有些火灾区域对消防人员的生命可能造成危险的,消防人员可以通过远程控制扑灭火源进而减少人员伤亡。

消防机器人通用技术条件..

前言 本部分的第4、5、6、9章为强制性,其余为推荐性。 GAX X《消防机器人》目前拟分为9个部分: 一一第1部分:消防机器人通用技术条件; 一一第2部分:消防灭火机器人: 一一第3部分:消防侦察机器人; 一一第4部分:消防排烟机器人; 一一第5部分:消防救援机器人; 一一第6部分:消防洗消机器人; 一一第7部分:消防照明机器人; 一一第8部分:防暴机器人; 一一第9部分:排爆机器人: 本部分为GAXX的第1部分。 根据国内目前消防机器人的生产、使用情况以及今后较长时期内我国消防机器人的发展规划,编制了本部分标准。本部分标准首次发布。 本部分由中华人民共和国公安部提出。 本部分由全国消防标准化技术委员会第四分技术委员会(SAC/TCll3/SC4)归口。 本部分负责起草单位:公安部上海消防研究所。 本部分主要起草人

消防机器人通用技术条件 General specification for fire robot GAXX.-XXXX 1 范围 本标准规定了消防机器人的术语、分类、型号编制、功能、性能要求、试验方法、检验规则、标志、包装、运输、贮存等。 本标准适用于在陆地上行走的各类消防机器人,不适用于在空中或水面、水下等执行消防作业的其它特种机器人。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文 件,其最新版本适用于本标准。 GB/T 156—2007 标准电压 GB/T 191—2008 包装储运图示标志 GB/T 699—1999 优质碳素结构钢 GB/T 1173—1995 铸造铝合金 GB/T 1176—1987 铸造铜合金技术条件 GB/T 1348—1988 球墨铸铁件 GB/T 3766—2001 液压系统通用技术条件 GB 3836.1—2000 爆炸性气体环境用电器设备第一部分:通用要求 GB 4208—2007 外壳防护等级(1P代码) GB/T 4237—2007 不锈钢热轧钢板和钢带 GB 5083—1999 生产设备安全卫生设计总则 GB/T 7251.8—2005 低压成套开关设备和控制设备智能型成套设备通用技术要求 GB 7258—2004 机动车运行安全技术条件 GB/T 7932—2003 气动系统通用技术条件 GB/T 9439—1998 灰铸铁件 GB 12325—2003 电能质量供电电压允许偏差 GB 14097—1999 中小功率柴油机噪声限值 GB 15540—2006 陆地移动通信设备电磁兼容技术要求和测量方法 GB 17478—2004 低压直流电源设备的性能特性 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB 20891—2007 非道路移动机械用柴油机排气污染物排放限值及测量方法(中国I、II阶段) GB 50171—1992 电气装置安装工程盘、柜及二次回路结线施工及验收规范GB 50257—1996 电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范 GB/T 13384—1992 机电产品包装通用技术条件 JB/T 9773.2—1999 柴油机起动性能试验方法 3 术语 下列术语适用于本标准: 3.1消防机器人fire robot

智能灭火机器人的设计与实现

第18卷第3期电子设计工程2010年3月V01.18No.3ElectronicDesignEngineeringMar.2010 智能灭火机器人的设计与实现 李小燕,陈帝伊,马孝义 (西北农林科技大学水利与建筑工程学院电气系,陕西杨凌712100) 摘要:根据国际灭火机器人的比赛规则,给出灭火机器人的软硬件设计。该系统硬件设计是以嵌入式ARM966E.S为核心,科学布置6个红外测距传感器,实现远红外火焰传感器组.能够快速精确检测环境。并采用双电源供电,直流电机驱动。而系统软件设计采用优化的避障、灭火算法。实验证明.该设计大大提高系统的实时性、快速性和可靠性。机器人搜寻4个房间并完成灭火用时8S左右.达到国际先进水平。 关键词:机器人;嵌入式系统;传感器;灭火机器人 中图分类号:TP31l文献标识码:A文章编号:1674-6236(2010)03—005l—04 Designandimplementationofintelligentfire-nghtingrobot LIXiao-yan。CHENDi-yi,MAXiao-yi (ElectricDepartmentofCollegeofWaterResourcesandArchitecturalEngineering,NorthWestA&FUniversity, Yansting712100,China) Abstract:Accordingtotheruleofinternationalfire—fightingrobotrace.theha”dw呲andsoftware designofthefire-fight- ingrobota地presented.’nlehlLrdwal陀structureisbasedonembeddedARM966E-S.Sixinfrareddistancesen¥ol暗a弛dis—tributedscientificallyandthesectiOHoffar-infraredflamesensolt篙isdesignedcreatively,whichrealizesthefunctionofde-teetingenvironmentquicklyandaccurately.Dualpowersupplysolutionisadopted,andDCmotoristakenfitsdriver.The optimizedalgorithmsforobstacle-avoidanceandfire?extinguishing areintroducedin softwaredesign.Theexperimentsshow thatthereal-timecapability,rapidityandreliabihtyofthesystemarelargelyimprovedbythisdesign.Therobottakeseightsecondstosearchforfourroonlflandfinishesfire.fighting.whichreachestheintemationaladvancedlevel. Key words:robot;embeddedsystem;sensor;fire-fightingrobot 近年来。随着科技的迅速发展.智能机器人的研究在实 际应用中具有很大发展空间。机器人技术涉及人工智能、计 算机视觉、自动控制、精密仪器、传感和信息技术等领域,是 一门综合性很强的学科。代表一个国家的高科技发展水平【-1。 智能机器人是各国科学研究的重要方向删。机器人灭火比赛 是近几年国内外广泛开展的一项机器人竞赛。本文针对基于 嵌入式ARM9内核的智能灭火机器人系统进行优化设计。 1系统硬件设计 机器人灭火比赛的目的是在图l(尺寸单位:ram)所示的 平面结构房子模型里。将蜡烛代替的火源随机地放于其中一 间.要求机器人快速无碰撞找到火源并将其熄灭。 为满足比赛的功能要求,本设计的灭火机器人硬件结构 由控制器、传感器模块、电源模块、驱动模块、灭火装置以及 声音模块等组成.其总体结构如图2所示。 1.1嵌入式系统 由于该系统设计所用传感器较多,传感器系统在整个灭火过程中不断采集环境信息,故要求控制器的核心必须对实收稿日期:2009_07—24稿件编号:20090r7083 基金项目:国家“863”计划(2006AAl00209) 图1比赛场地平面图 时任务具有很强的支持能力。因此。选用以嵌入式CPUARM966E—S为核心的STR91lFAM44控制器.该器件具有32位高端ARM9处理器。实时处理信息的能力强,处理速度为1.1MIPS/MHz,达到2倍以上ARM7处理器的处理能力嘲。为 作者简介:李小燕(1985一),女,四川成都人。研究方向:智能机器人。 一5l一

机器人灭火竞赛规则

附件一 机器人灭火竞赛规则 一、任务 机器人灭火是模拟现实家庭环境中处理火警的过程。 制作一个由计算机程序控制的机器人,在一套模拟平面结构的房间里运动,找到代表房间里火灾点的正在燃烧的蜡烛并尽快将它扑灭。 二、标准 1.模拟房子平面结构和特性 竞赛场地平面结构示意图见《规则附件》。示意图中的尺寸供练习和实践时参考,竞赛场地的实际尺寸与示意图给定尺寸基本相同,但允许有1cm范围内制作误差。 模拟房间的墙壁高33cm,材质为木质。墙壁为白色。竞赛场地地板为黑色的光滑木制表面。地板允许有接口,接合处平整并为同样的黑色。有一些机器人可能采用泡沫、粉末或者其他物质来扑灭蜡烛火焰,所以每一场竞赛后应清理场地。但不保证每一个机器人在该次竞赛过程中,地板都能保持完全黑色。 竞赛场地模拟房间里的整体地面是水平的,没有斜坡和楼梯。场地平整度要求:在不连续区域小于0.3cm水平误差。 房间所有走廊和门框的宽度均不小于46cm。门框上没有门,在门框所在地面上用一条2.5cm宽的白线表示房间入口和门,白线本身的面积属于房间内的区域。 机器人必须从竞赛场地中代表起始位置的白色正方形中开始启动。如示意图中标有“H”的正方形,代表起始位置。实际竞赛场地并不标记“H”。代表起始位置的白色正方形为30cm×30cm边长,正方形的对角线交点将设在46cm走廊的纵向中心线上。 参赛选手可以用一些装置来校正机器人在正方形中的位置。一旦启动,它可以在竞赛场地中向所希望的方向横向或纵向运动。 最终竞赛场地以当天现场提供为准。 2.场地照明 竞赛场地周围的照明根据比赛实际场地条件确定。

参赛者在竞赛前将有时间了解场地及周围环境灯光。竞赛期间的照明条件是相对稳定不变的。机器人灭火竞赛的挑战性特点之一就在于机器人应能够在一个含不确定照明、阴影、散光等实际情况的环境中运行。 3.机器人 机器人整体外形尺寸在静止和运动状态下,都应保持在30cm×30cm×30cm之内,包括机器人的触角、探测物及装饰物;机器人的触角、探测物及装饰物均属于机器人的一部分。 对机器人的重量、制作材料、产品型号等不作限制。 4.蜡烛 蜡烛的火焰代表房间内机器人试图找到并扑灭的火源。火源的火焰位置有效高度(指火焰底部距场地表面的距离)在15cm至20cm 之间,火焰本身高度将控制在2cm至3cm之间。否则,将会调整或更换蜡烛。 蜡烛是直径1-2cm的白蜡烛。 当蜡烛的火焰位置在上述的有效高度范围内,机器人启动之后,不管此后蜡烛火焰具体高度是多少,要求机器人能发现火焰。 蜡烛被安装在一个7cm(长)×7cm(宽)×3cm(高)的半光泽黄色的木质基座上。 5.传感器 在没有与其他规则和规范有抵触的情况下,对传感器的型号没有限制。 6.家具 竞赛场地内有一件模拟家具。由抽签确定房间号之后,这件模拟家具将摆放在该房间的示意位置。机器人可以接触模拟家具。模拟家具是一个不大于12cm直径的半光泽黄色的木质圆柱,柱高30cm、重大于3公斤。 三、规则 1.机器人运行 机器人一旦启动必须在没有参赛选手的干预下自动控制,即:机器人必须是由计算机程序控制,而非人工现场控制。

家庭灭火机器人报告

家庭灭火机器人报告

名称:家庭灭火机器人设计报告学院:电子与信息工程学院 指导老师:李东 班级:电气二班 姓名:曾凡 时间:2013.6.23

目录 第一章绪论 (1) 1.1课题背景 (1) 1.2实现功能 (1) 第二章系统整体方案设计 (2) 2.1系统硬件设计 (2) 2.2系统软件设计 (2) 第三章硬件设计 (3) 3.1电源管理模块 (3) 3.1.1电源模块电路原理图 (3) 3.2电机驱动芯片L298N (4) 3.2.1.L298N电路原理图: (5) 3.3避障检测传感器HS0038 (5) 3.3.1 HS0038简介: (5) 3.3.3 检测原理: (5) 3.3.4 HS0038与单片机连接原理图: (6) 3.4地面灰度检测传感器ST188 (6) 3.4.2 检测原理: (6)

3.4.3 应用范围: (6) 3.4.5 ST188原理图: (7) 3.5火焰传感器 (7) 3.5.1火焰传感器使用 (7) 第四章软件设计 (8) 4.1灭火机器人行进路线分析 (8) 4.2软件流程图 (9) 第五章调试记录 (10) 5.1调试记录 (10) 第六章实验心得 (10) 参考文献 (12) 附录1: 程序清单 (13) 附录2: 灭火机器人实物图及灭火场地 (26)

第一章绪论 1.1课题背景 随着社会的进步,机器人技术的不断发展使得机器人的应用领域不断扩展,从以往多应用于工业领域而渐渐融入人们的生活。灭火机器人作为消防部队中的新兴力量,加入了抢险救灾的行列。灭火机器人是一个集信号检测、传输、处理和控制于一体的控制系统,代表了智能机器人系统的发展方向。 1.2 实现功能 制造一个自主控制的机器人在一间平面结构房子模型里运动,找到一根蜡烛并尽快将它熄灭,这个工作受地面摩擦、机器人惯性、机器人电机的转数差、齿轮箱与轮子的摩擦、电压变化等多个因素影响,它模拟了现实家庭中机器人处理火警的过程,蜡烛代表家里燃起的火源,机器人必须找到并熄灭它。 第二章系统整体方案设计 2.1 系统硬件设计 本次设计的目的是设计一个在规定区域能自主搜索火源并实施灭火的智能机器人小车,本次设计使用的主控芯片使用了STC89C52单片机,所以设计重点在传

灭火机器人设计

灭火机器人设计

毕业设计论文题目灭火机器人 专业名称机电一体化 学生姓名赵志祥 指导教师朱文琦 毕业时间 1

目录 第1章绪论 (2) 1.1 机器人产生的背景 (2) 1.2 灭火机器人设计的目的和意义 (3) 第2章系统设计方案研究 (4) 2.1 整体方案设计 (4) 2.2 硬件实现方案. (5) 2.3 软件总体设计方案......................................................................... (9) 第3章硬件单元电路设计 (10) 3.1 电源电路 (10) 3.2 微控制器模块的设计 (11) 3.3 电机驱动电路的设计 (15) 3.4 寻线电路的设计 (19) 3.5 火焰检测电路的设计 (24) 1

3.6 声音报警与灭火 (25) 第4章软件实现 (27) 4.1 软件开发平台介绍 (27) 4.2 主程序流程图 (28) 4.3 寻线程序流程图 (29) 4.4 灭火程序流程图 (29) 第5章统功能调试 (30) 结论 (33) 致谢 (34) 参考文献 (35) 1

附录 (36) 1

摘要 本设计主要灭火机器人的制作与研究,小车以单片机为控制核心,加以电源电路,机电驱动,光电传感电路,灭火风扇以及其它电路构成。电源电路提供系统所需的工作电源,专用电机驱动芯片驱动电机控制小车的前后移动和左右转向光电对管完成循迹和避障,光敏电阻传感器检测火焰,灭火风扇进行灭火。本设计制作的小车具有灭火功能,达到了实验现场灭火的目的,较好的完成了课题目标 关键词:传感器灭火机器人直流电机风扇 1

机器人灭火比赛规则

机器人灭火比赛规则 1.竞赛目的 制造一个计算机控制的机器人在一间平面结构房子模型里运动,找到一根蜡烛并尽快将它熄灭,这个工作受多个因素影响,它模拟了现实家庭中机器人处理火警的过程,那个蜡烛代表家里燃起的火源,机器人必须找到并熄灭它。 2.房子平面结构和特性 附件A为比赛场地平面结构图,图中的尺寸是近似的,真实的尺寸与给定值可相差2cm以内。 比赛场地的墙壁33cm高,由木头做成。墙壁刷成白色。比赛场地的地板将是被漆成黑色的光滑木制表面。地板的接合处要平整并漆上同样的黑色,不过不必非常平整,只要保证机器人可以处理0.3cm的不连续区域就可以了。场地中所有的走廊和门口宽都是46cm。门口并没有门,而是一个46cm的开口,将会有一个白色的2cm宽的白色带子或白漆印迹表示房间入口。 比赛场地的地板是黑色的,但是有一些机器人可能用泡沫、粉末或者其他的物质来熄灭蜡烛的火焰,所以每一个机器人比赛后会尽可能清洗好场地,但是不能保证地板在整个比赛过程中都保持黑色。 机器人将从一个标有“H”的代表起始位置的圆圈开始(见附件A)。真实的代表起始位置的白圈是实心的,不标记“H”。30cm直径的白色圆圈在46cm走廊的中心,也就是说在圆圈和墙壁之间将有8cm的空间。因此圆圈圆心在离两边墙壁24cm的地方。机器人必须在圆圈中启动。 3.场地照明 比赛场地周围的照明等级在比赛时才能确定。参赛者在比赛期间有时间了解周围的灯光等级及标定机器人。在在第一天调试设定后,比赛的照明将不会再调整来满足个别竞赛者的要求。比赛的挑战之一就是要求机器人能够在一个含不确定照明、阴影、散光等实际情况的环境中运行。 4.机器人运行 机器人一旦启动,机器人必须在没有人的干预下自己控制,也就是说是自主控制,而非人工控制。 机器人在运行过程中可以碰撞或接触墙壁,但是不能标记和破坏墙壁,如果碰到墙壁将会受到处罚。机器人不能在比赛场地中留下任何可以帮助它运行的标记。如果裁判认为机器人故意破坏了比赛场地(包括墙壁),机器人将被取消资格,当然这不包括运动中意外的标记或刮擦。 熄灭了蜡烛。 机器人在熄灭蜡烛前必须已经找到了它,而不是碰巧喷出CO 2 5.熄灭蜡烛 等,机器人不能运用任何破坏性的或危险的方法来熄灭蜡烛。它可以运用类似水、空气、CO 2 禁止使用任何危险的或可能破坏比赛场地的方法或物质。比如通过使燃放爆竹产生冲击来使蜡烛熄灭等,也不能通过碰倒蜡烛而使蜡烛熄灭。 蜡烛在燃着时不允许被撞倒。为了使蜡烛不因水或空气而轻易倒下,我们把它放在木质基座上。 机器人扑灭蜡烛的过程中的所造成的混乱(水、发酵粉、生奶油等)将在比赛间歇被裁判

消防机器人设计报告

消防机器人设计报告

基于ATmega2560单片机的智能避障灭火小车 一、设计方案: 1、控制系统: Arduino Mega2560是采用USB接口的核心电路板,具有54路数字输入输出,适合需要大量IO接口的设计。处理器核心是ATmega2560,同时具有54路数字输入/输出口(其中16路可作为PWM输出),16路模拟输入,4路UART接口,一个16MHz晶体振荡器,一个USB口,一个电源插座,一个ICSP header和一个复位按钮。Arduino Mega2560也能兼容为Arduino UNO设计的扩展板。 该核心电路板能提供大量IO接口,因此为以后的传感器和功能拓展提供了便捷,同时搭配传感器拓展板,在使用和调试便捷性上优于其它单片机。 Arduino2560原理电路: 2、传感器: 方案一:光电循迹传感器+火焰传感器+红外线测距传感器 光电开关在一般情况下,由三部分构成,它们分为:发送器、接收器和检测电路。

它的检测头里也装有一个发光器和一个收光器,它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光受光器是接收不到的,当有物体通过时挡住了光,并把光反射回来,受光器就接收到了光信号,输出一个开关信号。 当遇到黑色线格的时候,由于黑色吸收了大部分光线,因此光电开光就会输出电平变化,单片机接收到信号以后做出相应的动作。 火焰传感器的基本构成及原理: 火焰传感器由红外线接收管、电平比较电路、灵敏度调节电位器三部分组成。通过红外线接收管探测周围环境,当接收到较强的红外线的时候,由电平比较器反馈给单片机电平变化信号。可通过电位器调节火焰传感器的灵敏度。 红外测距传感器: 红外测距传感器由四部分构成,红外线二极管,红外线接收管,电平比较器,距离调节电位器。 通过红外线二极管发射出红外线,接收管收到物体反射的红外线,通过电平比较器后输出一个变化电平信号。通过电位器调节,可以控制接收管给电平比较器的信号,而达到控制探测距离的目的。但由于红外线测距模块对火焰比较敏感,因此用在消防机器人上面不是很合适。 方案二:光电循迹传感器+火焰传感器+超声波传感器 该方案使用了超声波测距模块,利用超声波发射和接收模组,通过一定频率的超声波并接收该频率的反射波,通过两者的时差进行计算,准确得出障碍距小车的距离,屏蔽了火焰对测距模块的影响,能有效应用于避障机构。 3、动力机构: 方案一、四线二相步进电机*2 该方案中,步进电机能够按照特定的步进角进行运转,设定好步数,电机则运行相应的角度以下图为例: 虽然步进电机能很准确的对小车进行控制,但是由于其功耗和控制电路的因素,该方案未采用。 方案二、直流减速电机*2 使用L298N驱动两个直流电机,L298N驱动电路如下图:

基于STM32的智能灭火机器人设计方案

143 电子技术 1 系统整体方案设计 智能灭火机器人在声音或人工启动后 ,左右两侧的电机被驱动旋转,小车在前进的过程中,通过两侧夹角固定红外传感器,来调整两轮的转速,是车体达到前行方向,前行过程中实时监测是否有火源存在,若火焰传感器检测到有火源时,向火源靠拢,当与货源达到一定距离时,温度传感器接收到信号,在单片机处理下使风扇转动,直至火源被灭才停止旋转,然后继续寻找下一火源。系统总体设计框图如图1。 基于 STM32 的智能灭火机器人设计方案 杨 斌,刘思美 (山东科技大学 电气与自动化工程学院 自动化系,山东 青岛 266590) 摘 要: 本系统以stm32微控制器为核心控制单元,以安装在车体两侧红外传感器来循迹,通过声音传感器启动,使用火焰传感器来检测火焰,以温度传感器检测与火源的距离,并用风扇来灭火。车身主要以相隔30度的五个红外传感器来调整车身的角度,实现了对运动方向的控制,进而躲避障碍物,实现了在规定区域能自主搜索火源并实施灭火的功效。关键词:stm32;传感器;灭火机器人DOI:10.16640/https://www.360docs.net/doc/1b209323.html,ki.37-1222/t.2016.10.127 图1 系统总体设计框图 2 系统硬件设计 2.1 结构设计 在综合考虑工作受地面摩擦、机器人惯性、机器人电机的转数差、齿轮箱与轮子的摩擦、电压变化等多个因素影响后,为了方便小车在前进过程中,能够直线前进,且没有左右较大的晃动,而且能够平稳转弯,我们采用圆形车体,两电机驱动,前后各安装一个万向轮。 车体主要由电路板,车底盘,风扇架,车轮等构成,为了更加节省车体空间,我们在设计电路板时,将稳压芯片,电机驱动,stm32芯片都焊接在一块板子上,使整个车体看起来更整洁更美观。在车体前方安装5个红外传感器,并且距中心红外各岔开30度,将两个传感器放在车盘后面,距中心岔开60度。这样能够使探测的范围更大,有利于对墙壁的探测。红外的距离大概8cm,经过检测,这样车体能够最快修正,更加平稳。电池放于车底盘下面,将车的重心降低,更有利于车体稳定。将风扇提高能够略高于火源,而温度传感器与火焰传感器一般与火源同等高度,风扇要有大概10度的向下倾角,这样就能保证最大范围的灭火。2.2 电源管理模块设计 电源管理模块包括稳压模块与驱动模块。由于单片机及所有的传感器系统供电采用的是5V 的电源,而车体要良好的运行电机的供电电压应该达到12V,所以在电源的处理上采用了稳压芯片,LM2596来稳5V,以供传感器使用,电机驱动模块使用直流12V,使用一款MC34063 升压芯片。由于传感器数量较多,尤其红外传感器所消耗的电流较大,这便是我们使用LM2596的原因。 电机驱动芯片我们采用的是 LR7843 ,电机驱动电路为一个由分立元件制作的直流电动机可逆双极型桥式驱动器,其功率元件由4片 N 沟道功率 MOS 管组成,额定工作电流可以轻易达到 100A 以上,大 大提高了电动机的工作转矩和转速。该驱动器主要由以下部分组成:功率 MOS 管栅极驱动电路、 IR2104驱动芯片、74HC08D 与门芯片等。2.3 传感器模块设计 红外传感器采用E18-D80NK,传感器具有探测距离远、受可见光干扰小、价格便宜、易于装配、使用方便等特点。红外发射管发射出经过调制过的38KHZ 的红外光,当前方没有障碍物时,接收器收不到红外光,相反当前方有障碍物时,接受器可以收到红外光。根据此原理,机器人可以感知前方的路况从而决定是否前行。声音传感器是固定频率声控的,内部含有鉴频器,可以对固定频率音频信号识别;放大器对麦克风的声音进行100倍放大,并从接口插针输出,可以精密多圈电位器调节频率。这样我们就可以更加准确的控制小车,不至于在杂音下启动。温度传感器采用的是DS18B20 测温模块,其板载DS18B20芯片,同时留有3P 圆孔座,方便插拔DS18B20芯片,芯片引脚已经全部引出,内置上拉电阻,方便使用,价格便宜,能够精确检测与火源距离,使小车实现完全自动化。火焰传感器与风扇模块选材,满足需求即可,但其位置有较为严格要求,火焰传感器最好使用5路,分布原理与红外传感器分布原理相似,方便在检测火源后校正角度。风扇最好选用大功率空心杯等,能够保证足够的风力灭火,使用继电器控制其开关。 3 软件设计 程序的开发是在Keil 开发环境下进行的,包括源程序的编写、编译和链接,并最终生成可执行文件。软件设计部分包括系统初始化、 数据采集与处理、 电机控制、灭火等部分。 在小车接收到信号启动后,实时监测是否有火源存在,在红外传感器没有检测到物体时,小车则向两边斜向靠拢,以便贴近障碍物行驶。若检测到火源,根据火焰传感器来判别火源的方向,并逐渐向火源靠拢,靠近过程中及时修正车体方向,在距火源达到一定距离后,温度传感器接收到信号,通过单片机控制继电开通,促使风扇转动,直至检测不到火源时风扇停止。为防止火复燃,需小车在原地静定几秒钟,确定无火源时再离开,继续寻找下一火源。 4 结论 顺应于现代灭火技术的理念,基于stm32核心处理器,合理搭建小车机械结构,使用红外传感器避障,声音传感器启动,火焰传感器检测火源,温度传感器控制与火源距离,用风扇灭火,我们设计出一种运行稳定,价格低廉,可靠且可行的全自动智能灭火机器人。参考文献: [1] (美)麦库姆.小型智能机器人制作全攻略[M].(第4版)北京:人民邮电出版社,2013(06). [2]蔡自兴等编.机器人学基础[M].(第2版)北京:机械工业出版社,2015(03). [3]刘火良,杨森编.STM32库开发实战指南[M].北京:机械工业出版社,2013(06). 作者简介:杨斌(1993-),男,河南卢氏人,本科。

灭火机器人课程设计资料报告材料

智能机器人课程设计 设计题目:灭火智能机器人的设计和实现

目录 第1章机器人系统总体方案设计 (4) 1.1 设计目标 (4) 1.2 机器人功能设计及指标要求 (4) 1.3 机器人系统总体结构设计 (5) 第2章机器人系统硬件详细方案设计 (6) 2.1 传感器选型 (6) 2.1.1 超声波测距传感器 (6) 2.1.2 红外避障传感器 (6) 2.1.3 火焰传感器 (7) 2.2 机器人系统硬件连接图 (7) 2.2.1 STM32单片机最小系统 (7) 2.2.2 电源模块 (8) 2.2.3 红外避障传感器 (9) 2.2.4 超声波测距传感器 (9)

2.2.5 火焰传感器 (9) 2.2.6 电机驱动模块 (10) 第3章机器人系统软件详细方案设计 (10) 3.1 主函数 (10) 3.2 超声波测距程序 (12) 3.3 红外避障引脚设置程序 (14) 3.4 电机驱动程序 (14) 3.5 火焰检测程序 (15) 第4章机器人系统开发调试步骤 (15) 4.1 传感器选型和引脚分配 (15) 4.2 传感器独立测试 (15) 4.2.1 超声波测距传感器测试 (15) 4.2.2 红外避障传感器测试 (15) 4.2.3 火焰传感器测试 (16) 4.3 电机独立测试 (16) 4.4 综合测试 (16) 第5章实验中遇到的故障及解决方法 (18) 第6章收获与体会 (18)

第1章机器人系统总体方案设计 1.1 设计目标 本次课程设计的目标是:在一辆两驱智能小车的基础上,搭载各种传感器,设计出一款具有自动避障和搜寻火点功能的智能机器人,可以完成简易的灭火功能。设定的实验环境为带有隔板障碍的4*4方格迷宫,如图1-1所示。起火点随机放置在其中一个方格中。机器人需要从起点开始搜寻火点,躲避障碍,最终靠近火点一定距离时,小车停止运动,进行接下来的灭火操作。 图1-1 机器人灭火场地布局图 本课设旨在通过一类典型智能机器人的设计、调试,掌握各环节和整个智能机器人系统的调试步骤与方法,加强基本技能训练,培养灵活运用所学理论解决控制系统中各种实际问题的能力。 1.2 机器人功能设计及指标要求 该智能机器人系统的主要功能包括:可以检测周围环境并发现障碍;可以灵活前后行进、停止和转向;可以根据障碍位置做出避障决策;可以准确搜寻到火焰位置并在火焰面前停止并进行灭火等。由于实验环境设定为方格迷宫,所以机器人的路径规划可以转化为迷宫的遍历问题,而且转向角度简化为90°和180°的组合问题。 整个搜寻过程中,小车尽量不碰撞到障碍物和墙壁,且从出发到找到火点的

相关文档
最新文档