Hadron and Photon Production in the Forward Region at RHIC and LHC

Hadron and Photon Production in the Forward Region at RHIC and LHC
Hadron and Photon Production in the Forward Region at RHIC and LHC

a r

X

i

v

:08

6

.

1

4

6

7

v

2

[

h

e p

-

p

h

]

2

6

A

u

g

2

8

Hadron and Photon Production in the Forward Region at RHIC and LHC M.A.Betemps a and V.P.Gon?c alves b a Conjunto Agrot′e cnico Visconde da Gra?c a,CAVG,Universidade Federal de Pelotas,Caixa Postal 460,CEP 96060-290,Pelotas,RS,Brazil b Instituto de F′?sica e Matem′a tica,Universidade Federal de Pelotas,Caixa Postal 354,CEP 96010-900,Pelotas,RS,Brazil

1Introduction

Quantum Chromodynamics (QCD)at high energies can be described by an ef-fective theory denoted Color Glass Condensate (CGC),which is a many-body theory of partons which are weakly coupled albeit non-perturbative due to the large number of partons (For reviews see Ref.[1]).Properties of the CGC are speci?ed by correlation functions of gluons which evolve with increasing

energy.They obey an in?nite hierarchy of non-linear evolution equations-the

Balitsky-JIMWLK hierarchy[2,3].In the mean?eld approximation,the?rst equation in the hierarchy decouples and it boils down to a single nonlinear

integro-di?erential equation:the Balitsky-Kovchegov(BK)equation[2,4].In particular,the BK equation determines in the large-N c limit the evolution

of the two-point correlation function,which corresponds to scattering ampli-

tude N(Y,r)of a dipole o?the CGC,with r the dipole size and Y∝ln s is the rapidity.This quantity encodes information about the hadronic scatter-

ing and thus about the non-linear and quantum e?ects in the hadron wave

function.Although the general solution to the BK equation still is not known, approximate solutions have been constructed which separately cover the non-

linear regime deeply at saturation and the linear regime,where N obeys the BFKL or DGLAP equation[5,6,7,8,9,10].The transition among these regimes

is speci?ed by a typical scale,which is energy dependent and is called satu-

ration scale Q s[Q2s∝Aαx?λ].Basically,the main properties of the solutions of the BK equation are:(a)for the interaction of a small dipole(r?1/Q s),

N(Y=ln1/x,r)≈r2,implying that this system is weakly interacting;(b) for a large dipole(r?1/Q s),the system is strongly absorbed and therefore

N(Y,r)≈1.This property is associated to the large density of saturated gluons in the hadron wave function.Moreover,the BK equation predicts the geometric scaling regime:at small values of x,instead of being a function of a priori the two variables r and x,N(Y,r)is actually a function of a single vari-able r2Q2s(x)up to inverse dipole sizes signi?cantly larger than the saturation scale.This scaling is obvious at r?1/Q s,but it is a non-trivial prediction for r<1/Q s.Furthermore,it breaks down for r?1/Q s(leading-twist regime), which implies a limited extension for the geometric scaling window.The scal-ing behavior is predicted to hold approximately in the range r gs r r s, where r gs≈1/Q gs(Q gs=Q2s/Λ)and r s≈1/Q s.The so-called extended scaling region is characterized by the geometric scaling momentum Q gs,which grows faster than the saturation scale with x and de?nes the upper bound in transverse momentum of the geometric scaling region.

The search of signatures for the parton saturation e?ects has been an ac-tive subject of research in the last years.In particular,the geometric scal-ing window has been observed in inclusive and di?ractive processes at HERA [11,12,13]and the observed[14,15]suppression of high p T hadron yields at for-ward rapidities in dAu collisions at RHIC had its behavior anticipated on the basis of CGC ideas[16].A current shortcoming of these analyzes comes from the non-existence of an exact solution of the non-linear equation in the full kinematic range,which implies the construction of phenomenological models satisfying the asymptotic behavior which is under theoretical control.Several models for the forward dipole cross section have been used in the literature in order to?t the HERA and RHIC data[5,6,7,8,9,10].In general,the adjoint dipole scattering amplitude is modeled in the coordinate space in terms of a

simple Glauber-like formula as follows N A(x,r)=1?exp ?1

and normalization of R hA for this rapidity.Assuming that this behavior also is present for other rapidities and for charged hadron production,we compare the CGC predictions with the BRAHMS data[14].Our results demonstrate that the study of the p T dependence of the ratio R hA allows to discriminate between the distinct phenomenological models.

Our second goal is to present the predictions of the CGC physics for photon production using a model for the scattering dipole amplitude which describes quite well the hadron production.As emphasized in Refs.[18,19,20],it is essen-tial to consider the electromagnetic probes of the CGC in order to determine the dominant physics in the forward region at RHIC and LHC.Distinctly from hadron production,there is no hadronization of the?nal state present in the description of the photon production cross section,which implies that it is a cleaner probe of the CGC.We estimate the ratio R hA for photon production at forward rapidities for RHIC and LHC energies and compare its behavior with that predicted for hadrons.Moreover,as a by product,we estimate the photon to pion production ratio and study its p T dependence.

The paper is organized as follows.In the next section(Section2)we brie?y review the hadron and photon production in the Color Glass Condensate for-malism and the main characteristics of the distinct parameterizations for the dipole amplitude scattering.In Section3we de?ne the nuclear modi?cation factor R hA and discuss the theoretical expectations for the behavior of this ratio.Moreover,we calculate the inclusiveπ0production in pp collisions using the CGC formalism and estimate the ratio R hA for pions and charged hadrons. Our predictions are compared with the STAR and BRAHMS data.The ratio R hA for photon production is estimated in Section4and the photon to pion production ratio is calculated.Finally,in the Section5our main conclusions are summarized.

2Hadron and Photon Production in the Color Glass Condensate Formalism

Lets consider the hadron production at forward rapidity in dAu collisions. As pointed in Ref.[21],it is a typical example of a dilute-dense process, which is an ideal system to study the small-x components of the Au target wave function.In this case the cross section is expressed as a convolution of the standard parton distributions for the dilute projectile,the dipole-hadron scattering amplitude(which includes the high-density e?ects)and the par-ton fragmentation functions.Basically,the minimum bias invariant yield for single-inclusive hadron production in hadron-hadron processes is described in the CGC formalism by[8,22]

d 2N pp (A )→hX

(2π)2

1 x F dx 1x 1x F

p T D h/q x 1x F p T D h/g x 1

dyd 2p T =

1x F f q/p (x 1,p 2T )N F x 2,x 1

x F ,p 2T ,

(3)

where p T and y are now the transverse momentum and rapidity of the pro-duced photons.In this equation,D γ/q is the quark-photon fragmentation func-tion.Distinctly from hadron production,the rate of photon production only depends of the quark content on the projectile hadron.It implies that for the region where the gluon contribution can be disregarded in hadron produc-tion,the behavior for hadron and production is expected to be similar

[18].Furthermore,the two cross sections are dependent on the fundamental dipole scattering amplitude,which is a building block of the CGC formalism.There-fore,if N F is constrained for instance in hadron production,the calculation of the photon production is straightforward.

The Eqs.(2)and (3)are only applicable to forward/backward rapidities in pp collisions.On the other hand,in hadron-nucleus collisions at high energies,due to the A dependence of the saturation scale,they are expected to also be valid for mid-rapidity.It is important to emphasize that the minimum bias cross sections discussed in our paper are obtained by impact-parameter averaging the inclusive hadron/photon production cross section,which in the CGC for-malism depends on the impact parameter only through the saturation scale.In Ref.[22]the author discuss two alternatives to implement this calculation,

which implies di?erent values for the e?ective saturation scale Q2s in mini-mum bias collisions.In what follows we assume that Q2s =A1/3eff Q20(x0/x2)λ, with A eff=18.5(20.0)for dAu(pP b)collisions,in order to compare our predictions with those obtained in Refs.[8,10].Moreover,as in Ref.[17],we assume A eff=1in the pp case.

The basic input for the calculations of the hadron and photon production are the dipole scattering amplitudes N A and N F,which are solutions of the Balitsky-JIMWLK hierarchy or the BK evolution equation in mean-?eld ap-proximation.As already explained in the introduction,the general solution to the BK equation still is not known,which implies that is necessary to consider phenomenological models,based on CGC physics,in order to calculate the ob-servables.In what follows we consider two distinct phenomenological models constructed to describe the RHIC data:the DHJ model[8]and the recently proposed BUW model[10].In these two models the adjoint dipole scattering amplitude in the momentum space is given by

N A(x,p T)=? d2re i p T· r 1?exp ?1

λy+d√

(ωa?1)+b,(6) whereω≡p T/Q s(x)and the two free parameters a=2.82and b=168are ?tted in order do describe the RHIC data on hadron production.The main di?erence between the parameterizations is the presence of terms in the DHJ model which violate the geometric scaling.Distinctly from the BUW model, which assumes that?γsatis?es the geometric scaling property,the DHJ one predicts that it behaves as log(p2T/Q2s(x))/y for large y and p2T>Q2s,violating the geometric scaling.Another important di?erence is that the large p T limit ofγ→1is approached much faster in the BUW model than in the DHJ one, which implies di?erent predictions for the large p T slope of the hadron and

photon yield.As shown in[10],both models describe quite well the dAu RHIC data for forward rapidities(y≥2.2),but the DHJ model fails to describe the large p T data for smaller rapidities,where the x2values probed are not very small.In next section we extend this analysis for pp collisions and calculate the nuclear modi?cation factor R hA for hadron production.

3The Nuclear Modi?cation Factor for Hadron Production

In order to disentangle the nuclear medium e?ects it is useful to compare the data from hadron-nucleus(hA)collisions to proton-proton(pp)using the nuclear modi?cation factor R hA de?ned as:

R hA=1

dyd2p T

/

d2N pp

K(η=3.3)=1.0for the DHJ(solid line)and BUW(long-dashed line)predictions. is larger for the proton than for the nucleus.The amount of suppression is estimated as being R hA≈1/N1?γcoll,whereγis the anomalous dimension which depends on the rapidity and transverse momentum.Thereforeγdetermines the maximal possible suppression of the nuclear modi?cation factor due to the saturation e?ects.As the phenomenological CGC-based models assume di?erent behaviors for the anomalous dimension,the analysis of R hA can be useful to constrain the QCD dynamics.

The RHIC data for R dAu[14]con?rm the qualitative expectations of CGC physics[16].Although it is a very important evidence for CGC physics,it is fundamental to demonstrate the quantitative agreement of the experimen-tal data with the CGC predictions.In Ref.[7]the authors have obtained a satisfactory description of the BRAHMS data for R dAu assuming that a CGC-based description of high-p T hadron production in pp collisions is valid(See also[28]).This is a strong assumption which should be veri?ed.In principle, it is expected that for large rapidities the proton saturation scale assumes a large value,which implies a large value for the geometric scaling momentum Q gs.Therefore,in this range the extended geometric scaling window becomes large and eventually covers the entire regime of particle production,since the DGLAP region is cut-o?by energy-momentum conservation constraints[17]. On the other hand,for mid-rapidity a CGC-based description for pp collisions may not be well-justi?ed.Consequently,it is important to test the applicabil-

(solid line)and BUW(long-dashed line)predictions.

ity of the CGC physics in pp collisions at RHIC and verify the rapidity range in which this approach can be used.Recently,the STAR collaboration[15] has reported the measurements of the production of forwardπ0mesons in pp and dAu collisions at√

Fig.3.Nuclear modi?cation ratio R dAu for charged hadrons andπproduction at RHIC energies.Data from BRAHMS[14]and STAR[15]collaborations.

K(η=3.3)

A similar study can be performed for theπ0production in dAu collisions.As in Refs.[8,10]we assume isospin invariance to obtain the parton distributions for a deuteron from those for a proton.In Fig.2we present a comparison between the DHJ and BUW predictions and the STAR data forη=4.We have that the two CGC-based predictions are very similar in this range,as already veri?ed in[10].An interesting aspect is that the K-factor necessary to describe the dAu data is identical to that used in the description of the pp data at the same rapidity.It implies that the resulting CGC prediction for the ratio R dAu at this rapidity would be independent of the K-factor.Moreover,the p T-behavior of this ratio would be a robust prediction of the CGC approaches. In Fig.3(right panel)we present our predictions for the ratio R dAu forπ0 production andη=4,where we have assumed that N coll=7.2as useful in the experimental analysis[14].We have that the normalization and the p T dependence of the experimental data are quite well described by the CGC-based predictions.It is a strong evidence for the CGC physics in the forward rapidity at RHIC.However,in order to discriminate between the DHJ and

BUW predictions we need to consider a larger range of rapidities. Motivated by the satisfactory description of theπ0data in pp collisions we extend our analysis for charged hadron production atη=2.2and3.2,where we still expect that a CGC calculation is valid.A current shortcoming is that there are not experimental data available in literature for charged hadron pro-duction at forward rapidities in pp collisions.Therefore,it is not possible to constrain the K-factor for these cross sections.On the other hand,for dAu collisions,the charged hadron spectra were studied by the BRAHMS collab-oration[14].We have calculated the corresponding cross section and veri?ed that the BUW model describe quite the data,while the DHJ model fails for central rapidity,as already veri?ed in[10].The basic di?erence between our results and those from[10]is that we have found a K-factor which is two times larger than that obtained in[10],which is directly associated to the treatment for the deuteron contribution to the cross section.In our case we have assumed that this contribution is normalized by the atomic number.It explains the di?erence by a factor two of our K-factor atη=4and that quoted in[10].A comment is order here.We have estimated the contributions of N F(x,k)and N A(x,k)for the charged hadron cross section in dAu colli-sions considering the BUW model and observed that,similarly to the DHJ one,the N F(x,k)contribution determines the large p T behavior of the cross section for forward rapidities at RHIC energy,while N A(x,k)is the relevant

contribution at mid-rapidity.

In order to calculate the ratio R dAu for charged hadron production and to com-pare with the BRAHMS data[14]we assume that the K-factor is the same in our dAu and pp calculations.This assumption is not trivial:as the saturation scale of the nucleus and the proton are distinct,di?erent dynamical e?ects are being probed for a?xed rapidity.Consequently,the normalization of our calculations of R dAu for charged hadron can be modi?ed in the future.On the other hand,we believe that the p T dependence predicted by the CGC physics is a robust result which is directly associated to the anomalous dimension considered in the distinct phenomenological models.In Fig.3(left and mid-dle panels)we present our predictions for R dAu in charged hadron production using the DHJ and BUW models.We have that the p T dependence predicted by these models is very distinct.While the DHJ model predict a ratio which is basically p T andηindependent,the BUW model predicts a strong p T de-pendence,with R dAu increasing almost linearly with p T,approaching one to large transverse momentum.Moreover,the BUW model also predicts a ra-pidity dependence for the ratio,with the slope increasing at smaller values of rapidity.These behaviors are observed in the experimental data.It is im-portant to emphasize that both models describe the dAu spectra forη=2.2 and3.2as shown in[10]and veri?ed in our calculations.Consequently,the p T dependence of the ratio is directly associated to the distinct predictions for the p T spectra in pp collisions,which are di?erent already atη=3.3,as

dAu

veri?ed in Fig.1.The reasonable agreement between the BUW model and the experimental data is a strong evidence of the CGC physics.Moreover,it

indicate that the dipole scattering amplitude satis?es the geometric scaling property in the forward RHIC kinematical range.

4The Nuclear Modi?cation Factor for Photon Production

The minimum bias yield for photon production in the CGC formalism can be

calculated using the Eq.(3).The basic input is the fundamental scattering amplitude N F,which also is present in the calculations of hadron production cross sections.In particular,at forward rapidities it determines the behavior of this cross section,since the projectile gluon distribution vanishes at x1→1. In the previous section we have estimated the di?erential cross section for

hadron production and obtained a quite well description of the p T spectra for pp and dAu collision at forward rapidities,which implies that the behavior of N F is reasonably well determined.It allows to obtain reliable predictions for the behavior of the photon production cross section.Currently,experimental results at RHIC shown that the prompt photon cross section at mid-rapidity scale with N coll[31],which indicate that the nuclear e?ects are small atη= 0.On the other hand,there is not available experimental data for photon production at forward rapidities in pp and dAu collisions.We focus our analysis in the calculation of the ratio R hA,as de?ned in the Eq.(7)above,at forward rapidities.Basically,we calculate the pp and hA minimum bias yields for photon production using Eq.(3),the CTEQ5L parameterization[29]for the parton distribution functions and the GRV parameterization for the quark-photon fragmentation function[32].Similarly to hadron production we assume that the K factor is the same for pp and hA collisions.In the particular case of dA collisions,we again assume N coll=7.2and the isospin symmetry in order to calculate the parton distributions of deuteron(For a recent discussion about isospin e?ects in prompt photon production in AA collisions see[33]).

s NN =200GeV)and forward rapidities (y =2.0,3.0,4.0).At smaller rapidities,a CGC description for pp collisions is expected to breaks down.In Fig.4we present our predictions for R dAu using the DHJ (left panel)and the BUW model (right model).There is a large di?erence between the behaviors predicted by the two models.While the DHJ model predicts an almost ?at ratio,which is p T and y independent,the BUW model predicts that the ratio is ?at only at very large rapidities,increasing with p T at smaller values of rapidity.This behavior is similar to that observed for hadron production.Consequently,the study of photon production can be an important search of information about the behavior of the scattering amplitude and the CGC physics.

A shortcoming for the quantitative understanding of the CGC physics at RHIC is associated to the limited phase space in transverse momenta,which implies that the transitions expected to occur between the saturation,extended ge-ometric scaling and DGLAP regimes are not easily observed.In contrast,at LHC energies the available phase space will be much larger even at large ra-pidities,allowing to study the di?erent regimes of the QCD at high energies in more detail.Here we study the charged hadron,π0and photon production in pp and pP b collisions at √

considering two values of rapidity at RHIC(y=2and y=4)and y=6at LHC energy.

Appendix I from[25].In Fig.5we present our predictions for the ratio R pP b. We can see that the magnitude and p T dependence is almost identical for the di?erent observables.A similar result was obtained in Ref.[34],where it was observed almost the same suppression as a function of transverse momentum for gluons and heavy quarks.Moreover,we observe that the ratio increases with the transverse momentum,as already veri?ed at RHIC.However,the ratio is almost one only at p T≥10GeV,which is directly associated to the larger window of the extended geometric scaling regime for the proton and nucleus at LHC energies.

Finally,as a by product we calculate the ratio between the photon and hadron cross sections.Distinctly from Ref.[35]we focus here in the transverse mo-mentum dependence of this ratio at?xed rapidity for dAu and pP b collisions at RHIC and LHC energies.It is expected that the K-factor cancels in this ra-tio,which implies that its behavior should not be modi?ed by next-to-leading corrections.Following Ref.[18]we focus in the low p T region and forward rapidities,where the fragmentation contribution for photon production is ex-pected to contributes signi?cantly for the produced photons.In Fig.6we present our predictions for ratioγ/π0,calculated using the Eqs.(2)and(3) considering the DHJ and BUW models.Due to the distinct phase space avail-able for the di?erent rapidities and energies,the curves in the?gure?nish in di?erent points.We can see the DHJ and BUW results are similar,with the ratio increasing in the small p T region and saturating at large values of the transverse momentum.It means that the ratioγ/π0is less sensitive to the phenomenological model used as input in our calculations and is mainly deter-mined by the photon and hadron fragmentation functions.Moreover,the ratio increases with the rapidity,as already veri?ed in[35],which is associated to the fact that the gluon contribution in the projectile hadron diminishes with the rapidity.Finally,it is interesting to observe that the distinct predictions for the ratio tends to a same value at large p T.

5Conclusions

The observed suppression of the normalized hadron production in dAu colli-sions as compared to pp collisions has been considered an important signature of the Color Glass Condensate physics.In the last years several models were proposed to describe the hadron spectra in dAu collisions,obtaining a satis-factory description of these experimental data.In general,these models have been extended for pp collisions in order to calculate the ratio R hA without a comparison with the corresponding experimental data.In this paper we have,for the?rst time,estimated the hadron production in pp and dAu col-lisions in a same theoretical formalism and compared these predictions with the experimental data.The comparison with the STAR data forπ0produc-tion allows to?x the free parameter in our calculations(the K-factor)and obtain a parameter free prediction for the nuclear modi?cation ratio R hA at η=4.For other rapidities,there are not available,simultaneously,pp and dAu experimental data for hadron production.In order to calculate the ratio R hA for these rapidities we have assumed that the K-factor is the same for pp and hA collisions.As discussed before,it is not a trivial assumption.How-ever,the predictions for the p T-dependence of the ratio are not a?ected by this choice.The comparison with the experimental data demonstrate that the BUW model,which assumes the geometric scaling property,is the adequate one for the RHIC kinematical range.

We also have investigated the photon production at forward rapidities,which is considered a cleaner probe of the CGC physics.We demonstrate that the behavior of the ratio for photons is similar to veri?ed for hadrons.It implies that the study of photon production is a useful search of information about the basic building block of the CGC formalism:the fundamental scattering amplitude.Finally,as a by product,we have estimated the ratio between the photon and hadron cross sections and demonstrated that is not sensitive to the phenomenological model used as input in the calculations. Acknowledgments

This work was partially?nanced by the Brazilian funding agencies CNPq and FAPERGS.

References

[1] E.Iancu and R.Venugopalan,arXiv:hep-ph/0303204.;H.Weigert,Prog.Part.

Nucl.Phys.55(2005)461;J.Jalilian-Marian and Y.V.Kovchegov,Prog.Part.

Nucl.Phys.56(2006)104.

[2]I.I.Balitsky,Nucl.Phys.B463(1996)99,Phys.Rev.Lett.81(1998)2024,

Phys.Rev.D60(1999)014020,Phys.Lett.B518(2001)235;I.I.Balitsky and

A.V.Belitsky,Nucl.Phys.B629(2002)290.

[3] E.Iancu,A.Leonidov and L.McLerran,Nucl.Phys.A692(2001)583;E.

Ferreiro,E.Iancu,A.Leonidov and L.McLerran,Nucl.Phys.A701(2002) 489;J.Jalilian-Marian,A.Kovner,L.McLerran and H.Weigert,Phys.Rev.D 55(1997)5414;J.Jalilian-Marian,A.Kovner and H.Weigert,Phys.Rev.D 59(1999)014014,ibid.59(1999)014015,ibid.59(1999)034007;A.Kovner, J.Guilherme Milhano and H.Weigert,Phys.Rev.D62(2000)114005;H.

Weigert,Nucl.Phys.A703(2002)823.

[4]Y.V.Kovchegov,Phys.Rev.D60(1999)034008,ibid.61(2000)074018.

[5]K.Golec-Biernat and M.Wustho?,Phys.Rev.D59(1999)014017,ibid.D60

(1999)114023;J.Bartels,K.Golec-Biernat,H.Kowalski,Phys.Rev.D66 (2002)014001;H.Kowalski and D.Teaney,Phys.Rev.D68(2003)114005;

H.Kowalski,L.Motyka and G.Watt,Phys.Rev.D74(2006)074016;K.Golec-

Biernat and S.Sapeta,Phys.Rev.D74(2006)054032;J.T.de Santana Amaral, M.B.Gay Ducati,M.A.Betemps and G.Soyez,Phys.Rev.D76(2007) 094018;C.Marquet,R.Peschanski and G.Soyez,Phys.Rev.D76(2007) 034011;G.Soyez,Phys.Lett.B655(2007)32.

[6] E.Iancu,K.Itakura,S.Munier,Phys.Lett.B590(2004)199.

[7] D.Kharzeev,Y.V.Kovchegov and K.Tuchin,Phys.Lett.B599(2004)23.

[8] A.Dumitru,A.Hayashigaki and J.Jalilian-Marian,Nucl.Phys.A765(2006)

464;Nucl.Phys.A770(2006)57.

[9]V.P.Goncalves,M.S.Kugeratski,M.V.T.Machado and F.S.Navarra,Phys.

Lett.B643(2006)273.

[10]D.Boer,A.Utermann,E.Wessels,Phys.Rev.D77(2008)054014

[11]A.M.Sta′s to,K.Golec-Biernat and J.Kwieci′n ski,Phys.Rev.Lett.86(2001)

596.

[12]C.Marquet and L.Schoe?el,Phys.Lett.B639(2006)471.

[13]V.P.Goncalves and M.V.T.Machado,Phys.Rev.Lett.91(2003)202002;

JHEP0704(2007)028.

[14]I.Arsene et al.[BRAHMS Collaboration],Phys.Rev.Lett.91(2003)072305;

Phys.Rev.Lett.93(2004)242303;Phys.Rev.Lett.94(2005)032301.

[15]J.Adams et al.[STAR Collaboration],Phys.Rev.Lett.97(2006)152302

[16]R.Baier, A.Kovner and U. A.Wiedemann,Phys.Rev.D68(2003)

054009;J.Jalilian-Marian,Y.Nara and R.Venugopalan,Phys.Lett.B577 (2003)54;D.Kharzeev,Y.V.Kovchegov and K.Tuchin,Phys.Rev.D68 (2003)094013;J.L.Albacete,N.Armesto,A.Kovner,C.A.Salgado and U.A.Wiedemann,Phys.Rev.Lett.92(2004)082001;E.Iancu,K.Itakura and D.N.Triantafyllopoulos,Nucl.Phys.A742(2004)182.

[17]D.Boer,A.Dumitru and A.Hayashigaki,Phys.Rev.D74(2006)074018

[18]J.Jalilian-Marian,Nucl.Phys.A753(2005)307

[19]M.A.Betemps and M.B.Gay Ducati,Phys.Rev.D70(2004)116005;Phys.

Lett.B636(2006)46.

[20]F.Gelis and J.Jalilian-Marian,Phys.Rev.D76(2007)074015

[21]E.Iancu,C.Marquet and G.Soyez,Nucl.Phys.A780(2006)52

[22]A.Hayashigaki,Nucl.Phys.A775(2006)51

[23]V.N.Gribov and L.N.Lipatov,Sov.J.Nucl.Phys.15(1972)438;G.Altarelli

and G.Parisi,Nucl.Phys.B126(1977)298;Yu.L.Dokshitzer,Sov.Phys.JETP 46(1977)641.

[24]F.Gelis and J.Jalilian-Marian,Phys.Rev.D66(2002)014021

[25]F.Arleo et al.,“Photon physics in heavy ion collisions at the LHC,”

arXiv:hep-ph/0311131.

[26]A.Accardi et al.,“Hard probes in heavy ion collisions at the LHC:PDFs,

shadowing and p A collisions,”arXiv:hep-ph/0308248.

[27]E.Iancu,AIP Conf.Proc.739(2005)362[arXiv:hep-ph/0408228].

[28]N.Armesto,C.A.Salgado and U.A.Wiedemann,Phys.Rev.Lett.94(2005)

022002

[29]https://www.360docs.net/doc/13270207.html,i et al.[CTEQ Collaboration],Eur.Phys.J.C12(2000)375.

[30]B.A.Kniehl,G.Kramer and B.Potter,Nucl.Phys.B582(2000)514.

[31]P.Stankus,Ann.Rev.Nucl.Part.Sci.55(2005)517.

[32]M.Gluck,E.Reya and A.Vogt,Phys.Rev.D48(1993)116[Erratum-ibid.D

51(1995)1427].

[33]S.Turbide,C.Gale,E.Frodermann and U.Heinz,Phys.Rev.C77(2008)

024909.

[34]K.Tuchin,Nucl.Phys.A798(2008)61.

[35]J.Jalilian-Marian,Nucl.Phys.A806(2008)305.

一维光子晶体带隙结构研究_张玲

第37卷第9期2008年9月 光 子 学 报 ACTA P HO TON ICA SIN ICA Vol.37No.9 September 2008 Tel :02928220149828313 Email :warltszhang @https://www.360docs.net/doc/13270207.html, 收稿日期:2007204228 一维光子晶体带隙结构研究 张玲,梁良,张琳丽,周超 (西安建筑科技大学物理系,西安710055) 摘 要:在考虑介质色散的基础上,研究了介质层厚度对光子晶体带隙结构的影响.利用传输矩阵法,计算了以Li F 和Si 两种材料组成的一维光子晶体带隙结构.结果表明,介质层厚度的增加会引起禁带的红移,厚度减小会引起蓝移.分析了含空气缺陷层、金属缺陷层的光子晶体结构,发现空气缺陷层对带隙结构的高反射区域变化不大,而在低反射区域,反射系数为零的波带之间出现了两边反射系数增加,中间反射系数减小的情况.在金属缺陷层的带隙结构中,金属对整个波长范围光的吸收作用不同,金属对低反射区1.6μm 、1.85μm 处透射率较大的透射光吸收作用明显,而在1.28~1.38μm 处透射率波长区间,几乎无吸收. 关键词:光子晶体;色散;带隙结构;空气缺陷层;金属缺陷层中图分类号:O734 文献标识码:A 文章编号:100424213(2008)092181524 0 引言 微加工技术的进步,使得光子晶体[1]在理论和实验研究上取得了重大进展,利用光子晶体可以制造出光通信中的许多器件,如光纤、微谐振腔,品质优良的光子晶体滤波器、集成光路等等[223].实验室一般采用不同折射率介质在空间的周期性排列形成光子晶体,Ward 等人提出一种增强块状金属反射能力的方法,他们预测含有Al/玻璃层的一维金属/电介质光子晶体比块状Al 的反射能力更强[4].对Au/MgF 2光子晶体透射性质的研究发现,周期性结构产生的透射共振使得光通过金属层的透射率大大增强,并有效抑制了吸收.通过控制金属层和电介质的厚度以及周期数,可以调节透射区域的波长范围、宽度和陡度[5].如果在光子晶体中引入缺陷,可使光子局域化[6],在有缺陷层的一维光子晶体(AB )n D m (BA )n 的带隙结构发现随着缺陷层厚度的增加,在禁带中出现的缺陷模向低频方向移动[7].还有一些金属/电介质光子晶体可以对某些晶体的闪烁光谱进行修饰,使得其对慢衰减成分的相对抑制比大大提升等等[8].本文在考虑色散关系的基础上对于LiF 与Si 构成的2元一维光子晶体的带隙结构进行了研究,通过改变介质层的厚度,分析了其带隙结构的变化,另外当该结构的光子晶体中有空气缺陷层、金属缺陷层时,其带隙结构的变化[2],并对计算结果做了分析. 1 理论模型 典型的光子晶体是由两种不同介电常量(εa ,εb ),厚度为(d a ,d b )的材料交替排列的其结构如图1,根据光在介质薄膜传播的传输矩阵方法,在第一 介质中的传输矩阵为 M a = cos δa isin δa /ηa i ηa sin δa cos δa (1) 图1 一维光子晶体模型 Fig.1 The structure of 12D photonic crystal 在第二介质中的传输矩阵为 M b = cos δb isin δb /ηb i ηb sin δb co s δb (2) 式(1)、(2)中δj =2πn j d j cos θ/λ,n j 、d j 、θj ,分别为第 j 层(j =(a ,b ))的折射率,介质层厚度,入射角, λ为真空中的波长,对于TE 波:ηj =n j cos θj ,对于TM 波ηj =n j /co s θj , 对于整个光子晶体的传输矩阵,若取层的对数为n ,则 M =(M a ,M b )n = M 11M 12M 21 M 22 (3) 设光子晶体周围材料的折射率为n 0,对于TE 波η0=n 0co s θ0,光在光子晶体传播时的反射系数和透射系数分别为 r = (M 11+M 12η0)η0-(M 21+M 22η0)(M 11+M 12η0)η0+(M 21+M 22η0) (4)

一级注册建筑师之建筑物理与建筑设备知识汇总

采光窗种类、特性及使用范围 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗口上沿高度的2倍,否则需要人工照明补充。 侧窗分单侧窗、双侧窗和高侧窗三种,高侧窗主要用于仓库和博览建筑。 (二)天窗:随着建筑物室内面积的增大,只用侧窗不能达到采光要求,需要设计天窗。天窗分为以下几种类型: 1.矩形天窗:这种天窗的突出特点是采光比侧窗均匀,即工作面照度比较均匀,天窗位置较高,不易形成眩光,在大量的工业建筑,如需要通风的热加工车间和机加工车间应用普遍。为了避免直射阳光射入室内,天窗的玻璃最好朝向南北,这样阳光射人的时间少,也易于遮挡。天窗宽度一般为跨度的一半左右,天窗下沿至工作面的高度为跨度的0.35-0.7倍。 2.横向天窗(横向矩形天窗):这种天窗比避风天窗采光系数高,均匀性好,省去天窗架,造价低,能降低建筑高度。设计时,车间长轴应为南北向,即天窗玻璃朝向南北。 3.锯齿形天窗:这种天窗有倾斜的顶棚作反射面,增加了反射光分量,采光效率比矩形天窗高,窗口一般朝北,以防止直射阳光进入室内,而不影响室内温度和湿度的调节,光线均匀,方向性强,在纺织厂大量使用这种天窗,轻工业厂房、超级市场、体育馆也常采用这种天窗。 4.平天窗:这种天窗的特点是采光效率高,是矩形天窗的2-3倍。从照度和亮度之间的关系式召E=L.Ω.cosa看出,对计算点处于相同位置的矩形天窗和平天窗,如果面积相等,平天窗对计算点形成的立体角大,所以其照度值就高。另外乎天窗采光均匀性好,布置灵活,不需要天窗架,能降低建筑高度,在大面积车间和中庭常使用平天窗。设计时应注意采取防止污染、防直射阳光影响和防止结露措施。 5.井式天窗:采光系数较小,这种窗主要用于通风兼采光,适用于热处理车间。 设计时,可用以上某一种采光窗,也可同时使用几种窗,即混合采光方式。 天然采光基本知识 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗

非制冷红外技术及应用

非制冷红外技术及应用 蓝海光学招募:镜头装配主管,镜头销售人员光学人生,你的精彩人生!一、红外热成像技术简介自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外辐射,红外图像传感器则将探测到的红外辐射转变为人眼可见的图像信息。红外成像技术涵盖了红外光学、材料科学、电子学、机械工程技术、集成电路技术、图像处理算法等诸多技术,红外成像装置的核心为红外焦平面探测器。 二、非制冷红外技术概述2.1 非制冷红外技术原理非制冷红外探测器利用红外辐射的热效应,由红外吸收材料将红外辐射能转换成热能,引起敏感元件温度上升。敏感元件的某个物理参数随之发生变化,再通过所设计的某种转换机制转换为电信号或可见光信号,以实现对物体的探测。 非制冷红外焦平面探测器分类2.2 非制冷红外探测器的关 键技术 热释电型红外辐射使材料温度改变,引起材料的自发极化强度变化,在垂直于自发极化方向的两个晶面出现感应电荷。通过测量感应电荷量或电压的大小来探测辐射的强弱。热释电红外探测器与其他探测器不同,它只有在温度升降的过程中才有信号输出,所以利用热释电探测器时红外辐射必须经过调制。探测材料:硫酸三甘肽、钽酸锂、钽铌酸钾、钛(铁

电)酸铅、钛酸锶铅、钽钪酸铅、钛酸钡热电堆由逸出功不同的两种导体材料所组成的闭合回路,当两接触点处的温度不同时,由于温度梯度使得材料内部的载流子向温度低的一端移动,在温度低的一端形成电荷积累,回路中就会产生热电势。(塞贝克效应Seebeck)而这种结构称之为热电偶。一系列的热电偶串联称为热电堆。因而,可以通过测量热电堆两端的电压变化,探测红外辐射的强弱。二极管型利用半导体PN结具有良好的温度特性。与其他类型的非制冷红外探测器不同,这种红外探测器的温度探测单元为单晶或多晶PN结,与CMOS工艺完全兼容,易于单片集成,非常适合大批量生产。热敏电阻型(微测辐射热计)利用热敏电阻的阻值随温度变化来探测辐射的强弱。一般探测器采用悬臂梁结构,光敏元吸收红外热辐射,由读出电路测量热敏材料电阻变化而引起的电流变化,通过读出电路对电信号采集分析并读出。探测器一般采用真空封装以保证绝热性好。探测材料:氧化钒、非晶硅、钛、钇钡铜氧等氧化钒VOx的TCR 一般为2%~3%,特殊方法制备的单晶态VO2和V2O5可达4%。VOx具有电阻温度系数大,噪声小的特点,被广泛用作非制冷式红外焦平面传感器的热敏材料。全球的非制冷红外热像仪市场中,使用VOx非制冷红外探测器的占80%以上。氧化钒VOx的制备方法:溅射法、溶胶-凝胶法、脉冲激光沉积法、蒸发法。读出电路IC技术ROIC对微弱的红

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

中远红外探测器发展动态

中远红外探测器发展动态 1 红外光电探测器的的历史 红外探测成像具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点在军用和民用领域都得到了极为广泛的应用按照探测过程的物理机理,红外探测器可分为两类即热探测器和光电探测器。光电探测器的工作原理是目标红外辐射的光子流与探测器材料相互作用,并在灵敏区域产生内光电效应。因具有灵敏度高、响应速度快的优点,光电探测器在预警、精确制导、火控和侦察等红外探测系统中得到广泛应用。 红外焦平面阵列可探测目标的红外辐射,通过光电转换、电信号处理等手段,可将目标物体的温度分布图像转换成视频图像,是集光、机、电等尖端技术于一体的红外光电探测器H。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。红外光电探测器研究从第一代开始至今已有40余年历史,按照其特点可分为三代。第一代(1970s~1980s)主要是以单元、多元器件进行光机串/并扫描成像,以及以4×288为代表的时间延迟积分(TDI,time delay integration)类扫描型(scanning)红外焦平面列阵。单元、多元探测器扫描成像需要复杂笨重的二维、一维扫描系统结构,且灵敏度低。第二代红外光电探测器是小、中规格的凝视型(staring)红外焦平面列阵。M×N凝视型红外焦平面探测元数从1元、N元变成M×N元,灵敏度也分别从l与N1/2增长M×N1/2倍和M1/2。而且,大规模凝视焦平面阵列,不再需要光机扫描,大大简化整机系统。 目前,正在发展第三代红外光电探测器。探测器具有大面阵、小型化、低成本、双色(two-color)与多色(multi-color)、智能型系统级灵巧芯片等特点,并集成有高性能数字信号处理功能,可实现单片多波段融合高分辨率探测与识别。因此,本文将重点综述三代红外光电探测器的材料体系及其研究现状,并分析未来红外光电探测器的材料选择及发展趋势。 2 三代探测器的材料体系与发展现状 红外光电探测器的材料很多,但真正适于发展三代红外光电探测器,即响应波段灵活可调的双色与多色红外焦平面列阵器件的材料则很少。目前,主要有传统的HgCdTe和QWIPs,以及新型的二类SLs和QDIPs,共四个材料体系。作为

红外光电探测器技术的发展(学术前沿专题)

量子点红外光电探测器技术的发展 (学术前沿专题) 专业:测试计量技术及仪器 班级:硕研22班 学生学号: S0908******* 学生姓名:李刚

量子点红外光电探测器 目前大多数红外焦平面阵列(FPA)都以量子阱红外光电探测器(QWIP)或碲镉汞(MCT)光电探测器为基础,而这两类探测器都存有重大的不足。 QWIP对垂直入射光的探测效率很低,因为垂直方向上光子的跃迁被禁止。尽管利用光栅可以弥补这一缺点,但光栅的制作无疑会增加系统的成本。另外,QWIP在高温工作时暗电流较高,所以通常采用冷却方式使其在低温下工作,这便大大增加了成像系统的成本、体积和功耗。 MCT光电探测器则因为MCT固有的不稳定性,很难实现高度均匀的探测器阵列,而且以MCT为基础的FPA还具有成本高和效率低的缺点。 近年来,量子点红外光电探测器(QDIP)在工作温度和量子效率方面取得的重大进步,将有望引领新一轮成像技术热潮,并将在医学与生物学成像、环境与化学监测、夜视与太空红外成像等领域开辟新的应用天地。目前,通过采用纳米技术形成量子点,研究人员已经在开发室温或接近室温工作的高性能成像器方面迈出了一大步。 量子点又称“人造原子”,目前量子点作为提高电子与光电子器件性能的一种手段,已经被广泛应用。量子点的尺寸很小,通常只有10nm,因此其具有独特的三维光学限制特性。将量子点应用在红外光电探测器上,可以使探测器在更高的温度下工作。 开发高温工作的红外光电探测器,可以降低红外成像系统的成本,减小重量,提高效率,这将极大地拓展红外光电探测器的应用范围。研究人员已经开发出了首个以QDIP为基础的焦平面阵列。

国际光学与光子学会SPIE简介

国际光学与光子学会SPIE简介 SPIE成立于1955年,致力于推动以光为基础的技术,服务了超过170个国家。SPIE 每年组织或赞助近25个大型技术论坛、展览以及培训项目,范围遍及北美、欧洲、亚洲及澳洲。 1957年,出版了第一期SPIE报刊,举办了第一届国家技术研讨会。 1960年,SPIE报刊刊登了第一组技术论文。 1963年,SPIE举办了第一届研讨班形式的会议并出版了第一批会议记录。 1973年,总部从Redondo Beach迁往加州的Palos V erdes。 1975年,协会收入达到50万美元,实现了财政自给。 1977年,成立了协会金牌奖。总部迁往华盛顿Bellingham。 1995年,举办了成立40周年庆典。合作赞助了在西安举办的国际传感器应用与电子器件展览会。 2000年,SPIE会员Zhores I. Alferov因在半导体异质结构和高速光电子学方面的贡献获得诺物理学奖。 2003年,SPIE数字图书馆启动,提供了期刊和会议纪要的七万篇文献。 现在的光学和光电子学大都围绕信息光学展开研究。在集成光信息处理方面,有光计算、光学互连、衍射光学等前沿领域;在成像方面,较热门的技术有光学计算机断层成像和三维共焦成像系统;在光学传感器方面,人们越来越关注三维传感技术;新一代的全息术和光学信息处理技术也亟待开发。同时,信息光学的材料和装置也成为了热门领域。更加偏向应用领域的还有人机接口与显示技术。当然还有很多基础理论问题,如非线性光学、超快光学现象、散射、位相共轭等。 Statement of Purpose SPIE is an international society advancing an interdisciplinary approach to the science and application of light. About the Society SPIE is the international society for optics and photonics founded in 1955 to advance light-based technologies. Serving approximately 180,000 constituents from more than 170 countries, the Society advances emerging technologies through interdisciplinary information exchange, continuing education, publications, patent precedent, and career and professional growth. SPIE annually organizes and sponsors approximately 25 major technical forums, exhibitions, and education programs in North America, Europe, Asia, and the South Pacific. In 2010, the Society provided more than $2.3 million in support of scholarships, grants, and other education programs around the world.

光电探测器 入门详细解析

光电探测器 摘要 本文研究了近期崛起的高科技新秀:光电探测器。本文从光电探测器的分类、原理、主要参数、典型产品与应用、前景市场等方面简单介绍了光电探测器,使大家对光电探测器有一个初步的理解。了解光电探测材料的原理不仅有利于选择正确适宜的光电探测材料,而且对研发新的光电探测器有所帮助 一、简单介绍引入 光电探测器是指一类当有辐射照射在表面时,性质会发生各种变化的材料。光电探测器能把辐射信号转换为电信号。辐射信号所携带的信息有:光强分布、温度分布、光谱能量分布、辐射通量等,其进过电子线路处理后可供分析、记录、储存和显示,从而进行探测。 光电探测器的发展历史: 1826年,热电偶探测器→1880,金属薄膜测辐射计→1946,热敏电阻→20世纪50年代,热释电探测器→20世纪60年代,三元合金光探测器→20世纪70年代,光子牵引探测器→20世纪80年代,量子阱探测器→近年来,阵列光电探测器、电荷耦合器件(CCD) 这个被誉为“现代火眼金睛”的光电探测材料无论在经济、生活还是军事方面,都有着不可或缺的作用。 二、光电探测材料的分类。 由于器件对辐射响应的方式不一样,以此可将光电探测器分为两大类,分别是光 1

子探测器和热探测器。 ○1光子探测器:光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。 ○2利用光热效应制作的元件叫做热探测器,同时也叫热电探测器。(光热效应指的是当材料受光照射后,光子能量会同晶格相互作用,振动变得剧烈,温度逐渐升高,由于温度的变化,而逐渐造成物质的电学特性变化)。 若将光电探测器按其他种类分类,则 按应用分类:金属探测器,非成像探测器(多为四成像探测器),成像探测器(摄像管等)。 按波段分类:红外光探测器(硫化铅光电探测器),可见光探测器(硫化镉、硒化镉光敏电阻),紫外光探测器。 2

光子学基础

摘要:本文介绍了光纤传感器与传统传感器的优点及传光、传感型光纤传感器的原理。之后 讲述了光纤传感器的分类及其特点,最后重点讲述了光纤传感器的应用,主要有在结构工程 检测方面、在桥梁检测方面、在岩土力学与工程方面、在食品工业中、军事技术。 关键字:光纤传感器原理军工应用工程检测 Abstract: This paper mainly introduces the advantages of the optical fiber sensor and the traditional sensor as well as the principles of the optical fiber sensor, including the type of light and the type of sensor. Besides, it describes the classification and features of the optical fiber sensor. At last, the paper focuses on the application of the optical fiber sensor, mainly in the aspects of structural engineering detection, bridge detection, rock-soil mechanics and engineering, food industry and military technology. Keywords: the optical fiber sensor; principle; military application; engineering detection 1.引言 光纤传感技术的发展始于20世纪70年代,是光电技术发展最活跃的分支之一[1]。近年来传感器产品收益日益增大,传感技术已成为衡量一个国家科学技术的重要标志。光纤传感器与传统的各类传感器相比,可用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,电绝缘性能好,抗电磁干扰能力强,非侵入性,高灵敏度,容易实现对被测信号的远距离监控,耐腐蚀,防爆,光路有可挠曲性,便于与计算机联接。因此光纤传感技术发展迅速,种类多样,被测物里量达70多种。基于相位调制的高精度、大动态光纤传感器也越来越受到重视,光纤光栅、多路复用技术、阵列复用技术使光纤传感器的应用范围和规模大幅度提高,分布式光纤传感器和智能结构更是当今的研究热点[2]。 2.原理 光纤传感器主要由光源、光纤、敏感元件、光电探测器和信号处理系统等部分组成,如图 1 所示[3]。由光源发出的光经光纤引导至敏感元件,光的某一性质在这里受到被测量调制,已调光经接收光纤耦合到光电探测器,使光信号变为电信号,最后经信号处理系统处理得到被测量。

量子线红外光子探测器的研究进展

收稿日期:2008-09-24 作者简介:王忆锋(1963-),男,湖南零陵人,高级工程师.曾在美国内布拉斯加大学林肯分校计算机系做国家公派访问学者.目前主要从事器件仿真研究. 文章编号:1673-1255(2008)06-0031-05 量子线红外光子探测器的研究进展 王忆锋 (昆明物理研究所,云南 昆明 650223) 摘 要:基于半导体量子线子能带间跃迁的量子线红外光子探测器(Q RI P )由于其独特的电子性质,具有工作温度较高、信噪比较高、暗电流较低、光谱范围较宽以及垂直入射光响应等特点.对于新型红外探测器的研发而言,Q RI P 是颇具潜力的候选者之一.通过对近年来部分相关文献的分析介绍,总结和评述了Q RI P 制备工艺、物理性质、仿真方法等方面的研究进展.关键词:量子线;量子线红外光子探测器;光子探测器;红外探测器中图分类号:O471.1 文献标识码:A R ecent Developments of Q uantum Wire Infrared Photodetectors WAN G Y i 2feng (Kunming Institute of Physics ,Kunming 650223,China ) Abstract :The quantum wire infrared photodetectors (QRIP )are based on intersubband transitions in semicon 2ductor quantum wires and have the potential for higher operational temperature ,increased signal 2to 2noise ratio ,reduced dark current ,wider spectral range and sensitivity to normal incident radiation due to their unique elec 2tronic properties.It is one of the potential candidates for the developments of new infrared detectors.The devel 2opments of QRIP in the fabrication process ,physical features and simulation methods are summarized and re 2viewed according to the published information in recent years. K ey w ords :quantum wire ;quantum wire infrared photodetector ;photodetector ;infrared detector 在半导体理论中,将电子在各个方向均可以自由运动的结构称为三维结构,例如体材料.当电子在一个或几个方向的运动被限制在小于100nm 的范围内时,将出现量子尺寸效应,即形成一系列离散量子能级.电子在一个方向受限的结构称为量子阱;在2个方向受限的结构称为量子线;在3个方向受限则称为量子点,如图1所示.这些结构通常称为低维量子结构.由于其中至少有一个方向的尺寸小到纳米尺度(0.5~100nm ),故也称为低维纳米结构. 能量状态密度D (E )定义为单位能量变化区域内的能量状态数.D (E )随维数的变化如图1所示,随着维数的降低,连续能带消失,直至量子点中出现完全分立的能级.低维量子结构与体材料在D (E )上的差异,导致了它们电子性质上的不同.例如,与 体材料和量子阱相比,量子线在能带边上具有更加尖锐的电子态密度,这一点有望使量子线获得较高的量子效率,激发了人们对于量子线红外光子探测器(quantum wire infrared photodetector ,QRIP )的研究兴趣.QRIP 的发展潜力包括较高的工作温度、信噪比增加、暗电流降低、光谱波段较宽、以及垂直入射光响应等[1-3].以下介绍了近年来有关QRIP 的研究进展. 1 QRIP 的制备工艺 QRIP 可以利用Ⅲ-Ⅴ族、Ⅳ族或Ⅱ-Ⅵ族半 导体制成[1].图2为一种QRIP 的结构示意图,器件包含由一段量子线有源区和一段量子线势垒区构成 第23卷第6期2008年12月 光电技术应用 EL ECTRO -OPTIC TECHNOLO GY APPL ICA TION Vol.23,No.6December.2008

高中物理光学知识点总结

二、学习要求 1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。 2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。 3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。 4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X 射线及γ射线的特征及其主要应用。 5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用 6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。 光的直线传播.光的反射 二、光的直线传播 1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v