Microsemi器件太阳能电池板中的应用

Microsemi器件太阳能电池板中的应用
Microsemi器件太阳能电池板中的应用

Microsemi Photovoltaic Bypass Diodes

Simon P. Wainwright MBA,Ph.D.

swainwright@https://www.360docs.net/doc/17762264.html,

+353 867 813 376

What is the function of a bypass diode?

A solar panel is normally formed by an array of photovoltaic cel ls

In a perfect world every cell

would be identical and

generate the same current at

the same time…

What is the function of a bypass diode? Unfortunately in the real world each cell is slightly different or

mismatched.

This mismatching can be

exaggerated if part of a

panel is in the shade or

covered by leaves etc.

This mismatching can be

exaggerated if part of a

panel is in the shade or

covered by leaves etc.

What is the function of a bypass diode?

A single photovoltaic cell can be represented as an equivalent circuit as shown below.

=

The current source represents the generated current when exposed to light and the diode is the intrinsic diode of the structure

What is the function of a bypass diode?

No mismatching Current generated (I1)is the same through each cell and through the array.Mismatching

The top cell still

generates the same

current as before (I1)

BUT the total array

current is limited by the

lower cell that now

generates less current

(I2). The difference in

current on the top cell

goes back through the

intrinsic diode.

I1

I3

I2Current I3then forward biases the intrinsic diode in the top cell thus reverse biasing the bottom cell. The bottom cell then starts to dissipate power rather than generating power leading to hot spots and eventually total destruction.

What is the function of a bypass diode?

Considering a string of 10 cells :

If the last cell was in the shade and reverse biased then fatal consequences can occur due to hot spots

Reverse biased cell

Effect of a hot spot in a real array

What is the function of a bypass diode?

To eliminate the effects of mismatching and prevention of hot spots shaded cells need to be protected.

=

Bypass diode Bypass diode

This is done with the addition of a external bypass diode.

What is the function of a bypass diode?

No mismatching Current generated is the same through each cell and through the array. The bypass diodes are reverse biased and have no effect.Mismatching

The top cell still

generates the same

current as before but

the bottom cell

generates less due to

shading. Therefore the

intrinsic diode on the

top cell is forward

biased. The potential

that this generates

reverse biases the

intrinsic diode in the

bottom cell BUT

forward biases the

bottom bypass diode.

The bypass diode now

actually allows more of

the current generated

from the good cell (or

cells in a large array) to

flow through the bypass

diode ‘bypassing’the

shaded cell thus

avoiding hot spots and

increasing efficiency

What are bypass diodes and where do they go? Normally bypass diodes are Schottky diodes due to the low VF dissipating less power when they are actually activated. Traditionally they are axial diodes that snap into a connector i n a junction box on the back of the panel

What are bypass diodes and where do they go? There are also surface mount versions of bypass diodes that can be incorporated onto printed circuit boards in the junction box.

ASM package Powermite3 package

Microsemi devices designed for use as standard solar bypass diodes

Powermite 3 surface mount

I F =10A, V R =40V, V F =0.49V, I Rmax =300μA,T Jmax = 150°C

UPS1040e3

I F =10A, V R =45V, V F =0.49V, I Rmax =50μA,T Jmax = 175°C SASMS1045LHe3

ASM surface mount

I F =10A, V R =45V, V F =0.41V, I Rmax =150μA,T Jmax = 150°C SASMS1045Le3I F =10A, V R =45V, V F =0.49V, I Rmax =50μA,T Jmax = 175°C SAS1045LHe3P6 axial

I F =10A, V R =45V, V F =0.41V, I Rmax =150μA,T Jmax = 150°C SAS1045Le3Package type

Important characteristics

Microsemi part #

Limitations and cost issues of standard systems There are many “extra costs”in considering standard bypass diodes:

1) Hard wiring the junction box to assure that the bypass diodes are connected in the right place in the solar panel. This needs labour and materials

2) The junction box itself has to be designed

and fit for use in solar panels. This is a significant cost.

3) Assembly of and mounting the junction box takes time and costs money.

4) The cost of the bypass diodes themselves.

The cost of “bypassing”photovoltaic cells is

not just that of buying diodes

Limitations and cost issues of standard systems Reliability Issues

Many manufacturers of bypass diodes are not accustomed to dealing with applications that require high reliability and have cut corners in providing panel manufacturers with substandard bypass diodes.

An independent study by Arizona State University (see next slide) shows that the highest failure rate of solar panels was d ue to the bypass diodes.

The cost of repairing a panel (labour costs and materials plus down time) is far higher than purchasing a high quality bypass diode.

The cost of “bypassing”photovoltaic cells is

not just that of buying diodes

Reliability issues

Microsemi Flex Photovoltaic Bypass Diodes

Microsemi has

developed hi-rel

products for

space programs

for many years…

It is now bringing this space

technology back down to earth…

From Space level to terrestrial quality

The space level bypass diode has been re-engineered to provide an ultrathin bypass diode for terrestrial applications

Terrestrial quality device Space level device

Solar flex bypass diode

The ultra-thin packaging technology has electrodes which are 5mil (0.127mm) thick and a body which

is 29mil (0.74mm) thick.

A

B C D E

F G

0.004

0.10

G

0.029

0.74

F

0.360

9.76

E

0.300

7.62

D

0.360

9.14

C

0.200

5.08

B

1.000

25.4

A

inches

mm

Dimensions

Solar flex bypass diode

There are many advantages of the solar flex bypass diode over the more standard axial and surface mount devices.1)

Extremely thin structure allows on-panel integration removing the need for expensive external housing for bypass diodes.The bypass diode can now be integrated on the front side of the panels without any planarity issues.

Top glass layer

Photovoltaic cells

Panel back

Solar flex bypass diode

Solar flex bypass diode

There are many advantages of the solar flex

bypass diode over the more standard axial and

surface mount devices.

2)The thermal characteristics of the package are very favorable.

The die has an almost direct route to the leads internally to

enable fast heat extraction. This is very important in terms of

reliability over time.

3)The mechanical properties of the diode are excellent. There is

a lot of expansion and contraction due to varying

temperatures of day and night. The flexible nature of the

packaging accommodates these changes reinforcing the

reliability of the device.

Solar flex bypass diode

There are many advantages of the solar flex

bypass diode over the more standard axial and

surface mount devices.

4)The bypass diode needs no extra wiring because it can form

part of the bus bar structure of the panel. The leads can be

welded or soldered to integrate it perfectly into a solar panel.

The extra wires shown here were for

test purposes only to monitor currents,

voltages and temperature

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

太阳能电池板原理(DOC)

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。 一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

太阳能电池历史、原理、分类

太阳能电池历史、原理、分类 引言 太阳能作为一种巨量可再生能源,是人类取之不尽、用之不竭的可再生能源,是地球上最直接最普遍也是最清洁的能源。将太阳能转换为电能是大规模利用太阳能的重要技术基础,其转换途径很多,有光电直接转换,有光热电间接转换等。但利用太阳能电池进行光电直接转换是运用最为广泛的方式。 历史: 太阳能电池发展历史可以追溯到1 8 3 9 年,当时的法国物理学家Alexander-Edmond Becquerel发现了光伏特效应(P h o t o v o l t a i ceffect )。直到1883 年,第一个硒制太阳能电池才由美国科学家Charles Fritts 所制造出来。在1930年代,硒制电池及氧化铜电池已经被应用在一些对光线敏感的仪器上,例如光度计及照相机的曝光针上。 而现代化的硅制太阳能电池则直到1946 年由一个半导体研究学者Russell Ohl 开发出来。接着在1954年,科学家将硅制太阳能电池的转化效率提高到6% 左右。随后,太阳能电池应用于人造卫星。1973年能源危机之后,人类开始将太阳能电池转向民用。最早应用于计算器和手表等。1974 年,Haynos 等人,利用硅的非等方性(a n i s o t r o p i c)的蚀刻(etching)特性,慢慢的将太阳能电池表面的硅结晶面,蚀刻出许多类似金字塔的特殊几何形状。有效降低太阳光从电池表面反射损失,这使得当时的太阳能电池能源转换效率达到17%。 1976年以后,如何降低太阳能电池成本成为业内关心的重点。1990年以后,电池成本降低使得太阳能电池进入民间发电领域,太阳能电池开始应用于并网发电。 世界太阳能电池发展的主要节点: 1839年法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。 1876年亚当斯等在金属和硒片上发现固态光伏效应。 1883年制成第一个“硒光电池”,用作敏感器件。 1930年肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。 1931年布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。 1941年奥尔在硅上发现光伏效应。 1954年恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。 1955年吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。 1957年硅太阳电池效率达8%。 1958年太阳电池首次在空间应用,装备美国先锋1号卫星电源。 1959年第一个多晶硅太阳电池问世,效率达5%。 1960年硅太阳电池首次实现并网运行。 1962年砷化镓太阳电池光电转换效率达13%。 1969年薄膜硫化镉太阳电池效率达8%。 1972年罗非斯基研制出紫光电池,效率达16%。 1972年美国宇航公司背场电池问世。 1973年砷化镓太阳电池效率达15%。

太阳能电池的工作原理

太阳电池吸收太阳光就能产生一般电池的功能。但是和传统的电池不一样,传统电池的输出电压和最大输出功率是固定的,而太阳电池的输出电压、电流,功率则是和光照条件及负载的工作点关。正因如此,要应用太阳电池来产生电力,必须了解太阳电池的电流-电压关系,及工作原理。 太阳光的频谱照度: 太阳电池的能量来源是太阳光,因此入射太阳光的强度(intensity)与频谱 (spectrum)就决定了太阳电池输出的电流与电压。我们知道,物体置放于于阳光下,其接受太阳光有二种形式,一为直接(direct)接受阳光,另一为经过地表其它物体散射后的散射(diffuse)阳光。一般情况下,直接入射光约占太阳电池接受光的80%。因此,我们下面的讨论也以直接着实阳光为主。 太阳光的强度与频谱,可以用频谱照度(spectrum irradiance)来表达,也就是单位面积单位波长的光照功率(W/㎡um)。而太阳光的强度(W/㎡),则是频谱照度的所有波长之总和。太阳光的频谱照度则和测量的位置与太阳相对于地表的角度有关,这是因为太阳光到达地表前,会经过大气层的吸收与散射。位置与角度这二项因素,一般就用所谓的空气质量(air mass, AM)来表示。对太阳光照度而言,AMO是指在外太空中,太阳正射的情况,其光强度约为1353 W/㎡,约等同于温度5800K的黑体辐射产生的光源。AMI是指在地表上,太阳正射的情况,光强度约为925 W/m2〇 AMI.5足指在地表上,太阳以45度角入射的情况,光强度约为844 W/㎡。一般也使用AM 1.5来代表地表上太阳光的平均照度。 太阳电池的电路模型: 一个太阳电池没有光照时,它的特性就是一个p-n结二极管。而一个理想的二极管其电流-电压关系可表为 其中I代表电流,V代表电压,Is是饱和电流,和VT=KBT/q0, 其中KB代表BoItzmann常数,q0是单位电量,T是温度。在室温下,VT=0.026v。需注意的是,P-n二极管电流的方向是定义在器件内从P型流向n型,而电压的正负值,则是定义为P 型端电势减去n型端电势。因此若遵循此定义,太阳电池工作时,其电压值为正,电流值为负,I-V曲线在第四象限。这里必须提醒读者的是,所谓的理想二极管是建立在许多物理条件上,而'实际的二极管自然会有一些非理想(nonideal)的因素影响器件的电流-电压关系,例如产生-复合电流,这里我们不多做讨论。 当太阳电池受到光照时,p-n二极管内就会有光电流。因为p-n结的内建电场方向是从n型指向p型,光子被吸收产生的电子-空穴对,电子会往n型端跑,而空穴会往p型端跑,则电子和空穴二者形成的光电流会由n型流到p 型。一般二极管的正电流方向是定义为由p型流到n型。这样,相对于理想二极管,太阳电池光照时产生的光电流乃一负向电流。而太阳电池的电流-电压关系就是理想二极管加上一个负向的光电流IL,其大小为: 也就是说,没有光照的情况,IL=0,太阳电池就是一个普通的二极管。当太阳电池短路时,也就是V=0,其短路电流则为Isc=-IL.也就是说当太阳电池短路,短路电流就是入射光产生光电流。若太阳电池开路,也就是你I=0,其开路电压则为:

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

太阳能电池工作原理与应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成 本很困难,为了节省硅材料,发展了多晶硅薄膜和 非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10% (截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受 制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理研究

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理 研究 目前,电压损失成为进一步提高光伏性能的明显阻碍之一,因此本文利用变光强、变温以及电致发光等方法系统研究了电荷转移、能量无序度和电荷转移态(ECT)对于光电转换效率超过11%的高性能非富勒烯本体异质结太阳能电池的影响。并且通过系统的优化路线对另一种代表性的非富勒烯受体太阳能电池进行优化和性能提升,主要通过变光强和其表面形貌的变化来考察不同给受体比例和不同添加剂对器件的影响,并进行了系统研究。 (1)利用Voc随温度变化来探究太阳能电池器件的电压上限,通过实验证实了器件的Voc与能量无序有关。我们发现最优太阳能电池基于PBDB-T:IT-M与ITIC,PC71BM作为受体的器件相比,具有最低能量无序度。 确定的能量无序度可以调节不同能带器件的Voc,基于EQE和EL 光谱对能量的计算,我们发现PBDB-T:IT-M器件ΔVnonrad随ECT增加而减小,Voc辐射限制结合非辐射损失获得的数值和实验Voc数值相符。结论表明,传输和CTS的能量无序度最小化与是减少Voc损失改善器件性能的关键,通过精确调节BHJs的能量和传输性能,可以减少非辐射电压损失。 (2)基于聚合物给体PBDB-T和一种非富勒烯受体m-ITIC组合,制备本体异质结有机太阳能电池器件,并基于添加剂来调控电池的光伏性能和电荷复合,我们发现PBDB-T:m-ITIC体系和不同添加剂(DIO,CN,DPE和NMP)均表现出优异性能。通过进一步调节优化可获得光电转换效率超过11%的出色性能。

太阳能电池基础知识

一,基础知识 (1)太阳能电池的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ?半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. 光激励 核核 电子 空穴电子 电子对?PN 结合型太阳能电池 太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯 片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.. (2)太阳能电池种类 - ++- - +P 型

铸 造 2 工 PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成 通过电极,汇集电 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上). (3)多晶硅太阳能电池的制造方法 空间用 民用 转换效率:24% 转换效率:10% 转换效率:8% (1400 度以上) 破锭(150mm *155mm ) N 极烧结 电极 印刷 ( 正 反

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; 2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I 曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF ; 3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与光照度L 的关系,求出它们的近似函数关系。 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp 与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%) 功率(W) 单晶125*125 15 单晶156*156 15 多晶125*125 15 多晶156*156 15 注1:测试条件符合太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2: AM是air mass的简称,意思是大气质量。 是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL :rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为小时(h); 最少放宽对电池板需求20%的预留额。 WP÷=(5A× 7h× 120%)÷ WP÷= WP = 162(W) ★:每天光照时间为长江中下游附近地区日照系数。

太阳能电池工作原理及应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,就是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photov oltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于就是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池就是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池与非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24、7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用与工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其 成本很困难,为了节省硅材料,发展了多晶硅薄膜 与非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为1 0%(截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受制 于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑就是太阳能电池的主要发展产品之一。 2)多晶体薄膜电池

太阳能电池特性测量实验

本科学生实验报告 学号姓名 学院物电学院专业、班级12级光电子班实验课程名称太阳能电池特性测量实验 教师及职称 开课学期2014 至2015 学年下学期 填报时间2015 年 3 月25 日云南师范大学教务处编印

一、实验设计方案 实验序号 实验室 同析3栋318 实验时间 3月30日 小组成员 实验名称 太阳能电池特性测量实验 1. 实验目的 1、了解太阳能电池的工作原理和使用方法; 2、掌握开路电压和短路电流及与相对光强的函数关系的测试方法; 3、掌握太阳能电池特性及其测试方法。 2. 实验原理、实验流程或装置示意图 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时,可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为: ? ?? ? ??-=10nKT qU e I I 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。 由半导体理论知,二极管主要是由如图1-1所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称 为光伏效应。 电子 空穴 能隙 光子 导带 价带 图1-1 光电流示意图 太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外,还有最大输出功率 max P 和填充因子FF 。最大输出功率max P 也就是IU 的最大值。填充因子FF 定义为: OC SC U I P FF max = FF 是代表太阳能电池性能优劣的一个重要参数。FF 值越大,说明太阳能电池对光的 利用率越高。

太阳能电池概念及术语

太阳能电池详细 总论 1)太阳能电池分类 1)硅(单晶硅,多晶硅,非晶硅)太阳电池 2)薄膜太阳电池 3)化合物太阳电池 4)有机半导体太阳电池 太阳能电池发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。 从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为; [1] 可供应太阳电池的头尾料愈来愈少; [2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅 可直接获得方形材料; [3] 多晶硅的生产工艺不断取得进展,全自动浇铸(cast)炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级; [4] 由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产。 2)硅太阳电池片构造 3)硅太阳电池片工艺 1)硅片清洗制绒(texturing-织纹状态) 2 )扩散制PN结(diffusion)

3) 蚀刻(plasma etching) 4) 除去磷硅玻璃(PSG-phosphor silicate glass- remove) 5) 减反射膜SiN沉积(PECVD) 6) Screen print(形成金属接触) 7) 烧结(dryer/sintering) 8) 检测分类(testing/sorting) 太阳电池术语 1)太阳电池行业术语 2)薄膜电池材料术语 3)常用符号 4)太阳能电池组件术语 5)光伏发电术语 太阳电池行业英语术语 A A, Ampere的缩写, 安培 a-Si: H, amorphous silicon的缩写, 含氢的, 非结晶性硅. Absorption, 吸收. Absorption of the photons:光吸收;当能量大于禁带宽度的光子入射时,太阳电池内的电子能量从价带迁到导带,产生电子——空穴对的作用,称为光吸收。 Absorptions coefficient, 吸收系数, 吸收强度. AC, 交流电. Ah, 安培小时. Acceptor, 接收者, 在半导体中可以接收一个电子.

太阳能电池原理与应用

南昌航空毕业(论文)设计 继续教育学院自考 毕业设计(论文) 专业名称 学生姓名 指导教师 二○一二年四月

继续教育学院自考 毕业设计(论文)任务书 一、毕业设计(论文)题目: 太阳能电池原理与应用 二、毕业设计(论文)内容: 太阳能电池 太阳能电池的工作原理 太阳能电池材料与工艺 太阳能的应用 太阳能与建筑一体化 太阳电池发电系统 三、主要参考资料: [1] 施玉川.太阳能基础与技术.西安交通大学.1999年 [2] 李锦堂.20世纪太阳能科技发展的回顾与展望.太阳能学报1999特刊 [3] 刘恩科等.半导体物理学.国防工业出版.2006年 [4] 赵富鑫等.太阳电池及其应用.国防工业出版社.1985年

[5] 杨新年.武汉太阳能开发与应用.武汉出版社.2007年 光伏材料应用技术专业学生姓名 指导教师

太阳能电池原理与应用 学生姓名: 班级: 指导老师: 摘要:太阳辐射能实际上是地球上最主要的能量源泉。自然界中的燃料能、风能、水能等皆来源于太阳能。太阳辐射能与常规能源及核能相比有广泛性、清洁性、分散性、间歇性、地区性、永久性的特点。因此,太阳能是未来新能源体系中极其重要的战略能源,也得到了世界各国的强烈重视。太阳能既是一次能源,又是可再生能源,可发直接转化利用。通过转换装置把太阳辐射能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术。 光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器构成。光伏发电系统可分为独立太阳能光伏发电系统和并网太阳能光伏发电系统:独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要蓄电池来存储能量,在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统等。并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充。 [关键词]:太阳能 光伏发电 太阳能电池 六三策略 指导老师签名:

相关文档
最新文档