2006年高考数列部分

2006年高考数列部分
2006年高考数列部分

数列部分

选择题

1. (广东卷)已知数列{}n x 满足122x x =,()121

2

n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,

则(B) (A)

3

2

(B)3(C)4(D)5 2. (福建卷)3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是

( A )

A .15

B .30

C .31

D .64

3. (湖南卷)已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-=

=+,则20a =

(B )

A .0

B .3-

C .3

D .

2

3 4. (湖南卷)已知数列{log 2(a n -1)}(n∈N *)为等差数列,且a 1=3,a 2=5,则

n

n n a a a a a a -+

+-+-+∞

→12312l i m 1

11(

= (C )

A .2

B .

2

3

C .1

D .

2

1 5. (湖南卷)设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=(C ) A .sinx

B .-sinx

C .cos x

D .-cosx

6. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=(C )

( A ) 33 ( B ) 72 ( C ) 84 ( D )189 7. (全国卷II ) 如果数列{}n a 是等差数列,则(B )

(A)1845a a a a +<+

(B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a =

8. (全国卷II ) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则(B)

(A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 9. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于(C ) (A )667 (B )668 (C )669 (D )670 10. (上海)16.用n 个不同的实数a 1,a 2,┄a n 可得n!个不同的排列,每个排列为一行写成 1 2 3

一个n!行的数阵.对第i 行a i1,a i2,┄a in ,记b i =- a i1+2a i2-3 a i3+┄+(-1)n na in , 1 3 2 i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3 是12,所以,b 1+b 2+┄+b 6=-12+2?12-3?12=-24.那么,在用1,2,3,4,5形成 2 3 1

的数阵中, b 1+b 2+┄+b 120等于 3 1 2

3 2

1

[答]( C ) (A)-3600 (B) 1800 (C)-1080 (D)-720

11. (浙江卷)lim n →∞2

123n

n ++++ =( C )

(A) 2 (B) 4 (C) 2

1

(D)0

12. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)

(A) 4; (B) 5; (C) 6; (D) 7。 13. (江西卷)

填空题

1. (广东卷)

设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f _____5________;当n>4时,()f n =__

)1)(2(2

1

+-n n ___________. 2. (北京卷)已知n 次多项式1

011()n n n n n P x a x a x

a x a --=++++ , 如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值共需要 2

1

n (n +3) 次运算.

下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+(k =0, 1,2,…,n -1).利用该算法,计算30()P x 的值共需要6次运算,计算0()n P x 的 值共需要 2n 次运算.

3. (湖北卷)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,

则q 的值为 -2 .

4. (全国卷II ) 在83和27

2

之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积

为_______216 __.

5. (山东卷)22

223

lim __________(1)2

n n n n C C n -→∞+=+ 6. (上海)12、用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。对第i 行in i i a a a ,,,21 ,记in n i i i i na a a a b )1(32321-++-+-=,

!,,3,2,1n i =。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,

所以,2412312212621-=?-?+-=+++b b b ,那么,在用1,2,3,4,5形成的数阵中,12021b b b +++ =_-1080_________。

7、计算:1

12323lim -+∞→+-n n n n n =_3 _________。

8. (天津卷)设*

∈N n ,则=

++++-1

2321666n n n n n n C C C C 1(71)6

n

- 9. (天津卷)在数列{a n }中, a 1=1, a 2=2,且)( )1(12*+∈-+=-N n a a n n n ,

则100S =_2600_ ___.

10. (重庆卷)321

3223lim 23n n n n

n +→∞-+= -3 .

解答题 1.(北京卷)

设数列{a n }的首项a 1=a ≠41,且11

为偶数

2

1

为奇数

4

n n n a n a a n +???=?

?+??,

记211

4

n n b a -=-

,n ==l ,2,3,…·. (I )求a 2,a 3;

(II )判断数列{b n }是否为等比数列,并证明你的结论;

(III )求123lim()n n b b b b →∞

++++ .

解:(I )a 2=a 1+

41=a +41,a 3=21a 2=21a +8

1

; (II )∵ a 4=a 3+41=21a +83, 所以a 5=21

a 4=41a +316,

所以b 1=a 1-41=a -41, b 2=a 3-41=21(a -41), b 3=a 5-41=41(a -4

1

),

猜想:{b n }是公比为2

1

的等比数列·

证明如下:

因为b n +1=a 2n +1-

41=21a 2n -41=21(a 2n -1-41)=2

1

b n , (n ∈N *) 所以{b n }是首项为a -41, 公比为2

1

的等比数列·

(III )11121(1)

12lim()lim

2()1141122

n n n n b b b b b a →∞→∞-+++===---

. 2.(北京卷)数列{a n }的前n 项和为S n ,且a 1=1,11

3

n n a S +=,n =1,2,3,……,求

(I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++ 的值.

解:(I )由a 1=1,11

3

n n a S +=

,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327

a S a a a ==++=,

由1111()33n n n n n a a S S a +--=-=(n ≥2),得14

3

n n a a +=(n ≥2),

又a 2=31

,所以a n =214()33

n -(n ≥2),

∴ 数列{a n }的通项公式为2

1

114()2

33

n n n a n -=??

=???≥;

(II )由(I )可知242,,,n a a a 是首项为

31

,公比为24()3

项数为n 的等比数列,∴ 2462n a a a a ++++ =2224

1()1343[()1]4373

1()3

n n -?

=-- 3.(福建卷)

已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列.

(Ⅰ)求q 的值;

(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比

较S n 与b n 的大小,并说明理由.

解:(Ⅰ)由题设,2,21121213q a a q a a a a +=+=即 .012,021=--∴≠q q a

.2

11-=∴或q

(Ⅱ)若.2

312)1(2,12n

n n n n S q n +=?-+

==则 当.02

)

2)(1(,21>+-=

=-≥-n n S b S n n n n 时 故.n n b S >

若.4

9)21(2)1(2,212n

n n n n S q n +-=--+

=-=则 当,4

)

10)(1(,21---

==-≥-n n S b S n n n n 时

故对于.,11;,10;,92,n n n n n n b S n b S n b S n N n <≥==>≤≤∈+时当时当时当 4. (福建卷)已知数列{a n }满足a 1=a , a n+1=1+

n

a 1

我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:.0,1,2

1

:,21;,35,23,

2,1---=得到有穷数列时当a (Ⅰ)求当a 为何值时a 4=0; (Ⅱ)设数列{b n }满足b 1=-1, b n+1=

)(1

1

+∈-N n b n ,

求证a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }; (Ⅲ)若

)4(22

3

≥<

n a a a a +

==+

.

0.11

111.1111.1111,.}{.11

,1,1:)(.03

2

.32,11.21,11.1,01

1,0:.03

2.1223111

1211,11111112

1

21231121

114222333

44342312=∴-==+

=+=∴=+=+=∴=+=+=∴==+=∴-=

-==-=-=∴+==∴+

=-=∴=+∴==-=++=+

=++=+=+=+=+=∴+----++n n n n n n n

n n n n n n n a b b a a b b a a b b a a b a b a b a b b b b b b II a a a a a a a a a a a a a a a a a a a a a a a a a a

中的任一个数不妨设取数列解法一时故当解法二时故当

故a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }

5. (湖北卷)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且

.)(,112211b a a b b a =-=

(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n

n

n b a c =

,求数列}{n c 的前n 项和T n . 解:(1):当;2,1

11===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当

故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.4

1,4,,11=

∴==q d b qd b q 则 故.42}{,4

121

1

1

1---=?

-=n n n n n n b b q b b 的通项公式为即

(II ),4)12(422411

---=-==n n n

n n n n b a c

]

4)12(4

)32(454341[4],4)12(45431[1

3

2

12121n

n n n n n n n T n c c c T -+-++?+?+?=-++?+?+=+++=∴--

两式相减得

].

54)56[(9

1

]

54)56[(31

4)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T

6. (湖北卷)已知不等式

n n n 其中],[log 2

1

131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足

,4,3,2,),0(1

1

1=+≤

>=--n a n na a b b a n n n

(Ⅰ)证明 ,5,4,3,]

[log 222=+<

n n b b

a n

(Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明); (Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b >0,都有.5

1

11,0,211111n

a na a n a a n na a n n n n n n n n +=+≥∴+≤

<≥-----时

,1

111n

a a n n ≥-- 于是有

.111,,3111,211112312n

a a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得

.1

3121111n

a a n +++≥- 由已知不等式知,当n ≥3时有,

].[log 2

1

1121n a a n >- ∵.]

[log 22.2][log 2][log 21

11,2221n b b

a b

n b n b a b a n n +<

+=+>∴

=

证法2:设n

n f 1

3121)(+++=

,首先利用数学归纳法证不等式 .,5,4,3,)(1 =+≤

n b

n f b

a n

(i )当n=3时, 由 .)3(112233133331

1

2223b f b

a a a a a a +=++?≤+=+≤

知不等式成立.

(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1b

k f b

a k +≤

则1)(1)1(1

1)

1(1)1()1(1++?++≤

+++=+++≤

+b

b k f k k a k k a k a k a k k k k ,)1(1)1

1

)((1)()1()1()1(b

k f b

b k k f b

b

b k f k k b

k ++=

++

+=

+++++=

即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤

n b

n f b

a n

又由已知不等式得 .,5,4,3,]

[l o g 22][l o g 2

1

122 =+=

+<

n n b b

b n b a n

(Ⅱ)有极限,且.0lim =∞

→n n a

(Ⅲ)∵

,5

1

][log 2,][log 2][log 22222<<+n n n b b 令

则有,10242

,10][log log 10

22=>?>≥n n n

故取N=1024,可使当n>N 时,都有.5

1

<

n a 7. (湖南卷)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明

.11

1112312<-++-+-+n

n a a a a a a

(I )解:设等差数列)}1({log 2-n a 的公差为d .

由,8log 2log )2(log 29,322231+=+==d a a 得即d =1.

所以,)1(1)1(log 2n n a n =?-+=-即.12+=n n a

(II )证明因为

n

n n n n a a a 2

1

21111=-=-++, 所以

n n n a a a a a a 2

121212111132112312++++=-++-+-+

.12112

1121212

1<-=-?

-=n n 8. (湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考

察其再生能力及捕捞强度对鱼群总量的影响. 用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c. (Ⅰ)求x n+1与x n 的关系式;

(Ⅱ)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不

要求证明)

(Ⅱ)设a =2,b =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的 最大允许值是多少?证明你的结论.

解(I )从第n 年初到第n+1年初,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为

.(**)

*),1(.(*)

*,,1212N n cx b a x x N n cx bx ax x x cx n n n n n n n n n ∈-+-=∈--=-++即因此

(II )若每年年初鱼群总量保持不变,则x n 恒等于x 1, n ∈N*,从而由(*)式得 ..0*,,0)(11c

b

a x cx

b a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0,所以a >b. 猜测:当且仅当a >b ,且c

b

a x -=

1时,每年年初鱼群的总量保持不变. (Ⅲ)若b 的值使得x n >0,n ∈N* 由x n +1=x n (3-b -x n ), n ∈N*, 知

0

由此猜测b 的最大允许值是1.

下证 当x 1∈(0, 2) ,b=1时,都有x n ∈(0, 2), n ∈N* ①当n=1时,结论显然成立.

②假设当n=k 时结论成立,即x k ∈(0, 2), 则当n=k+1时,x k+1=x k (2-x k )>0.

又因为x k+1=x k (2-x k )=-(x k -1)2+1≤1<2, 所以x k+1∈(0, 2),故当n=k+1时结论也成立.

由①、②可知,对于任意的n ∈N*,都有x n ∈(0,2).

综上所述,为保证对任意x 1∈(0, 2), 都有x n >0, n ∈N*,则捕捞强度b 的最大允

许值是1.

9. (江苏卷)设数列{a n }的前项和为n S ,已知a 1=1, a 2=6, a 3=11,且

1(58)(52)n n n S n S An B +--+=+, ,,3,2,1 =n 其中A,B 为常数.

(Ⅰ)求A 与B 的值;

(Ⅱ)证明数列{a n }为等差数列;

(Ⅲ)1m n >对任何正整数、都成立. 解:(Ⅰ)由11a =,26a =,311a =,得11S =,22S =,318S =. 把1,2n =分别代入1(58)(52)n n n S n S +--+An B =+,得28,

248A B A B +=-??+=-?

解得,20A =-,8B =-.

(Ⅱ)由(Ⅰ)知,115()82208n n n n n S S S S n ++---=--,即

11582208n n n na S S n ++--=--,

① 又2215(1)8220(1)8n n n n a S S n ++++--=-+-. ② ②-①得,21215(1)58220n n n n n a na a a +++++---=-, 即21(53)(52)20n n n a n a ++--+=-. ③ 又32(52)(57)20n n n a n a +++-+=-. ④ ④-③得,321(52)(2)0n n n n a a a ++++-+=, ∴32120n n n a a a +++-+=,

∴3221325n n n n a a a a a a ++++-=-==-= ,又215a a -=,

因此,数列{}n a 是首项为1,公差为5的等差数列. (Ⅲ)由(Ⅱ)知,54,()n a n n *=-∈N .考虑

55(54)2520mn a mn mn =-=-.

21)11m n m n m n a a a a a a =++++…2515()9mn m n =-++.

∴251)15()291522910mn a m n -+-?-=>厖.

即251)mn a >1.

1>. 10. (辽宁卷)已知函数).1(1

3

)(-≠++=

x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*

21N n b b b S a b n n n n ∈+++=-=

(Ⅰ)用数学归纳法证明1

2)13(--≤n n

n b ;

(Ⅱ)证明.3

3

2<

n S 解:(Ⅰ)证明:当.11

2

1)(,0≥++

=≥x x f x 时 因为a 1=1, 所以*).(1N n a n ∈≥ ………………2分

下面用数学归纳法证明不等式.2

)13(1

--≤n n

n b (1)当n=1时,b 1=13-,不等式成立,

(2)假设当n=k 时,不等式成立,即.2

)13(1

--≤k k

k b 那么 k

k k k a a a b +--=

-=+-1|

3|)13(|3|11 ………………6分

.2

)13(2131

k

k k b +-≤-≤ 所以,当n=k+1时,不等也成立。

根据(1)和(2),可知不等式对任意n ∈N*都成立。 …………8分

(Ⅱ)证明:由(Ⅰ)知, .2)13(1

--≤n n n b

所以 1

2212

)13(2)13()13(--++-+-≤+++=n n

n n b b b S 2131)

213(

1)13(----?-=n

…………10分 .3322

1

311)13(=--

?-<

故对任意.33

2

,<

∈*

n S N n ………………(12分) 11. (全国卷Ⅰ) 设正项等比数列{}n a 的首项2

1

1=a ,前n 项和为n S ,且

0)12(21020103010=++-S S S 。

(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。

解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=- 即,)(220121*********a a a a a a +++=+++ 可得.)(22012112012111010a a a a a a q +++=+++?

因为0>n a ,所以 ,1210

10

=q

解得21=

q ,因而 .,2,1,2

11

1 ===-n q

a a n n n (Ⅱ)因为}{n a 是首项211=a 、公比2

1

=q 的等比数列,故

.2,2112

11)

211(21n n n n n n n nS S -=-=--= 则数列}{n nS 的前n 项和 ),2

2221()21(2n

n n

n T +++-+++= ).2

212221()21(212132++-+++-+++=n n n n n n T 前两式相减,得

122)212121()21(212+++++-+++=n n n n n T 122

11)

211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n n

n n n T 12. (全国卷Ⅰ)

设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n 。 (Ⅰ)求q 的取值范围;

(Ⅱ)设122

3

++-

=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。 解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得

当;0,11>==na S q n 时

1(1)11,0,0,(1,2,)11n n

n a q q q S n q q

--≠=>>=-- 当时即

上式等价于不等式组:),2,1(,01,

01 =?

??<-<-n q q n

① 或),2,1(,01,

01 =?

??>->-n q q n

② 解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1

(Ⅱ)由2132n a n b a a ++=-

得.)23

(),23(22n n n n S q q T q q a b -=-= 于是)123(2--=-q q S S T n n n ).2)(2

1

(-+=q q S n

又∵n S >0且-10

当1

12

q -<<-或2q >时0n n T S ->即n n T S >

当1

22

q -<<且q ≠0时,0n n T S -<即n n T S <

当1

2

q =-或q =2时,0n n T S -=即n n T S =

13. (全国卷II ) 已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又

21

n

n b a =

,1,2,3,n = . (Ⅰ) 证明{}n b 为等比数列; (Ⅱ) 如果数列{}n b 前3项的和等于

7

24

,求数列{}n a 的首项1a 和公差d .

(I)证明:∵1lg a 、2lg a 、4lg a 成等差数列

∴22lg a =1lg a +4lg a ,即2214a a a =

又设等差数列{}n a 的公差为d ,则(1a -d )2

=1a (1a -3d )

这样21d a d =,从而d (d -1a )=0

∵d ≠0 ∴d =1a ≠0

∴122111(21)22

n n n n n n a a d db a d =+-===? ∴{}n b 是首项为1b =

12d ,公比为1

2的等比数列。 (II)解。∵1231117(1)22424

b b b d ++=++= ∴d =3 ∴1a =d =3

14.(全国卷II )

已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21

n

n b a =,1,2,3,n = .

(Ⅰ) 证明{}n b 为等比数列;

(Ⅱ) 如果无穷等比数列{}n b 各项的和1

3

S =,求数列{}n a 的首项1a 和公差d .

(注:无穷数列各项的和即当n →∞时数列前n 项和的极限)

解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得2214a a a =

即)3()(112

1d a a d a +=+,得 10a d d ==或 因

1

221

+=+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有

11

221

==++n n a a b b n n 当d =1a 时,11

12112)12(,)12(1a a a a a a n n

n n -+=-+=++,就有1221+=

+n n a a b b n n 2

1

= 于是数列{n b }是公比为1或

2

1

的等比数列 (Ⅱ)如果无穷等比数列{}n b 的公比q =1,则当n →∞时其前n 项和的极限不存在。

A

B

C

D

E

F

P

因而d =1a ≠0,这时公比q =21,112b d = 这样{}n b 的前n 项和为11[1()]

22112

n n d

S -=- 则S=11[1()]

122lim lim 112

n n n n d

S d →+∞→+∞-==-

由1

3

S =,得公差d =3,首项1a =d =3

15. (全国卷III)

在等差数列}{n a 中,公差412,0a a a d 与是≠的等差中项.

已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k

解:由题意得:412

2a a a =……………1分

即)3()(1121d a a d a +=+…………3分 又0,d ≠d a =∴1…………4分 又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===d

d

a a q ,………6分 所以1

13

+?=n k a a n ………8分

又11)1(a k d k a a n n k n =-+=……………………………………10分

13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分

16. (山东卷)

已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;

(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较

2(1)f '与22313n n -的大小.

解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得

()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当

1n =时

21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+

故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而11

21

n n a a ++=+即数列{}1n a +是等比数列;

(II )由(I )知321n n a =?-

因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++

从而12(1)2n f a a na '=+++ =()()

23212321(321)n

n ?-+?-++?-

=()

232222n

n +?++? -()12n +++ =()1(1)

31262

n n n n ++-?-

+ 由上()

()22(1)23131212n f n n n '--=-?-()

2

1221n n --= ()()1212121(21)n n n n -?--+=12(1)2(21)n

n n ??--+??①

当1n =时,①式=0所以22(1)2313f n n '=-; 当2n =时,①式=-120<所以22(1)2313f n n '<-

当3n ≥时,10n ->又()011211n

n n n

n n n n C C C C -=+=++++ ≥2221n n +>+ 所以()()12210n n n ??--+>??即①0>从而2(1)f '>2

2313n n -

17.(上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.

假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,

(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?

(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? [解](1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列, 其中a 1=250,d=50,则S n =250n+

502

)

1(?-n n =25n 2+225n, 令25n 2+225n ≥4750,即n 2+9n-190≥0,而n 是正整数, ∴n ≥10.

到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列, 其中b 1=400,q=1.08,则b n =400·(1.08)n-1·0.85. 由题意可知a n >0.85 b n ,有250+(n-1)·50>400·(1.08)n-1·0.85. 由计箅器解得满足上述不等式的最小正整数n=6.

到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 18. (天津卷)

已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n . (Ⅰ)当b a =时,求数列{}n u 的前n 项和n S ; (Ⅱ)求1

lim

-∞→n n

n u u .

(18)解:(Ⅰ)当b a =时,n n a n u )1(+=.这时数列}{n u 的前n 项和

n n n a n na a a a S )1(432132++++++=- . ①

①式两边同乘以a ,得 1432)1(432+++++++=n n n a n na a a a aS ② ①式减去②式,得 132)1(2)1(++-++++=-n n n a n a a a a S a 若1≠a ,

a a n a

a a S a n n n ++---=-+1)1(1)

1()1(,

2

21212)1(2)2()1(1)1()1()1(a a a a n a n a a n a a a a S n n n n n -+-+-+=

-+-+--=+++ 若1=a ,2

)

3()1(32+=

+++++=n n n n S n (Ⅱ)由(Ⅰ),当b a =时,n

n a n u )1(+=,则a n n a na a n u u n n n

n n n n =+=+=∞→-∞→-∞→)1(lim )1(lim lim 11

. 当b a ≠时,112[1()()n n n n n

n n b b b u a a b ab b a a a a

--=++++=+

+++ 1

111()1()1n n n n b

a a a

b b a b a

+++-==---

此时,n

n

n n n n b a b a u u --=++-1

11. 若0>>b a ,a a

b

a b b a b a b

a u u n

n

n n

n

n n n n n n =--=--=∞→++∞→-∞→)(1)(lim

lim lim

1

11

. 若0>>a b ,b b

a b b a

a u u n

n n n n

n =--==∞→-∞→1)()(lim lim

1

19. (天津卷)若公比为c 的等比数列{n a }的首项1a =1且满足:12

2

n n n a a a --+=(n =3,4,…)。

(I )求c 的值。

(II )求数列{n na }的前n 项和n S 。

20. (浙江卷)已知实数a ,b ,c 成等差数列,a +1,了+1,c +4成等比数列,

求a ,b ,c .

解:由题意,得215 (1)2(2)(1)(4)(1)(3)a b c a c b a c b ?++=?

+=??++=+?

………………

由(1)(2)两式,解得5b =

将10c a =-代入(3),整理得213220a a -+= 解得 2a =或11a =

故2a =,5,8b c ==或11,5,1a b c ===- 经验算,上述两组数符合题意。

21(浙江卷)设点n A (n x ,0),1

(,2

)n n n P x -和抛物线n C :y =x 2

+a n x +b n (n ∈N *),其中a n =-2-4n -

1

12

n -,n x 由以下方法得到:

x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2

+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1

上点的最短距离,…,点11(,2)n n n P x ++在抛物线n C :

y =x 2

+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.

解:(I )由题意,得2

11

1(1,0),:7A C y x x b =-+。 设点(,)P x y 是1C

上任意一点,则1||A P =

=令 2221()(1)(7),f x x x x b =-+-+则'21()2(1)2(7)(27).f x x x x b x =-+-+- 由题意,得'2()0,f x =即2222122(1)2(7)(27)0.x x x b x -+-+-= 又22(,2)P x 在1C 上,

222127,x x b ∴=-+ 解得213,14.x b ==

故1C 方程为2

714.y x x =-+

(II)设点(,)P x y 是n C

上任意一点,则||n A P = 令

222

()()()n n n g x x x x a x b =-+++,则

'2()2()2()(2)n n n n g x x x x a x b x a =-++++.

由题意得g 1'()0n x +=,即211112()2()(2)0n n n n n n n n x x x a x b x a ++++-++++= 又2112,n n n n n x a x b ++=++

11()2(2)0(1).n n n n n x x x a n ++∴-++=≥即11(12)20n n n n n x x a +++-+= (*) 下面用数学归纳法证明21n x n =-

①当n=1时,11,x = 等式成立。

②假设当n=k 时,等式成立,即21,k x k =-

则当1n k =+时,由(*)知 110(12)2k k k k k x x a ++=+-+ 又11

242

,k k a k -=---

11

22 1.12

k k k

k k x a x k ++-∴==++ 即当1n k =+时,等式成立。 由①②知,等式对n N ∈成立。 {}n x ∴是等差数列。

22. (重庆卷)数列{a n }满足a 1=1且8a n +1-16a n +1+2a n +5=0 (n ≥1)。记2

1

1-

=

n n a b (n ≥1)。

(1) 求b 1、b 2、b 3、b 4的值;

(2) 求数列{b n }的通项公式及数列{a n b n }的前n 项和S n 。

解法一:

(I )111

1,2;112a b ==

=-故22718

,718382

a b ===-故 3344311320,4;,.31420342a b a b =====-故故

(II )因2

1344284()()()33333

b b --=?=,

222213244444()(),()()()33333

b b b b -=--=-

故猜想42

{},2.33

n b q -=是首项为公比的等比数列

因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾)。152(1).168n n

a

a n a ++=

≥-故

∵11

16820164144133633632

n n

n n n n a a b a a a ++---

=-=-=

--- 112016428442(),0336333

2

n n n n n

a b b b a a +--=-==--≠--

故2|3

4

|=-q b n 确是公比为的等比数列.

n n b b 23

1

34,32341?=-=-故因, )1(34231≥+?=n b n n ,121

2

11

+=-

=

n n n n n b b a a b 得由 n

n n b a b a b a S +++= 2211故121

()2

n b b b n =

++++

1

(12)

51

3(251)1233

n n n n -=+=+--

解法二: (Ⅰ)由11111

,816250,1

2

2

n

n n n n n n n b a a a a a b a ++==

+-++=-

得代入递推关系 整理得

1114634

0,2,3

n n n n n n b b b b b b +++-+==-即 .3

20,4,38,2,143211=====b b b b a 所以有由

(Ⅱ)由11144442

2,2(),0,33333

n n n n b b b b b ++=--=--=≠

所以42

{},233n b q -=是首项为公比的等比数列

故4114

2,2(1).3333

n n n n b b n -=?=?+≥即

由1

12

n n b a =-

得112n n n a b b =+

故1122n n n S a b a b a b =+++ 121

(12)

15

3()2123

n n b b b n n -=++++=+-

1

(251)3

n n =+- 解法三:

(Ⅰ)同解法一 (Ⅱ)2213243248284,,,()333333

b b b b b b -=

-=-=?= 11121

{},2,233

522,(1).168n

n n n n n

n n n

b b q b b a a a n a +++-=-=?+≠=≥-猜想是首项为公比的等比数列又因故因此

111112

1152121221682

n n n n n n n b b a a a a a ++-=-=-

+----

- 1681086;636363n n n n n

a a a a a --=

-=---

121121168168111

16363

2

2

n n

n n n n n n a a b b a a a a ++++++---=

-

=

----

-

1362416820162().636363

n n n

n n n n n a a a b b a a a +---=

-==----

211121

0,{}2,2,33

n n n n n b b b b q b b ++-=

≠-=-=?因是公比的等比数列 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---

1211

(222)23114

(22)22(1).333

11

1,

122

n n n n n n n n n n b a b b a --=++++=-+=?+≥==+- 由得 故1122n n n S a b a b a b =+++ n b b b n ++++=

)(2

1

21 1

(12)

51

3(251).1233

n n n n -=+=+--

23. (重庆卷)数列{a n }满足)1(21

)11(1211≥+++

==+n a n n a a n

n

n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;

(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数

e=2.71828….

(Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k

那么22

1

))1(11(1≥+++

=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.

根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:

由递推公式及(Ⅰ)的结论有 )1.()21

11(21)11(221≥+++≤+++=+n a n n a n n a n n

n n

n 两边取对数并利用已知不等式得 n n n a n n a ln )2

1

11ln(ln 21

++++≤+

.21

1ln 2n n n n a +++

≤ 故n

n n n n a a 2

1)1(1ln ln 1++≤-+ ).1(≥n

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

海南历年高考理科数学试题及答案汇编十一数列

海南历年高考理科数学试题及答案汇编十一数列 试题 1、4.(5分)(2008海南)设等比数列{a n}的公比q=2,前n项和为S n ,则=( ) A.2B.4C .D . 2、7.(5分)(2009宁夏)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=( ) A.15B.7C.8D.16 3、16.(5分)(2009宁夏)等差数列{a n}的前n项和为S n,已知2a m﹣a m2=0,s2m﹣1=38,则m= . 解答题 1、17.(12分)(2008海南)已知{a n}是一个等差数列,且a2=1,a5=﹣5. (Ⅰ)求{a n}的通项a n; (Ⅱ)求{a n}前n项和S n的最大值. 2、17.(12分)(2010宁夏)设数列满足a1=2,a n+1﹣a n=3?22n﹣1 (1)求数列{a n}的通项公式; (2)令b n=na n,求数列{b n}的前n项和S n. 1

答案 1、解:由于q=2, ∴ ∴; 故选:C. 2、解:∵4a1,2a2,a3成等差数列.a1=1, ∴4a1+a3=2×2a2, 即4+q2﹣4q=0, 即q2﹣4q+4=0, (q﹣2)2=0, 解得q=2, ∴a1=1,a2=2,a3=4,a4=8, ∴S4=1+2+4+8=15. 故选:A 3、解:∵2a m﹣a m2=0, 解得a m=2或a m=0, ∵S2m﹣1=38≠0, ∴a m=2; ∵S2m﹣1=×(2m﹣1)=a m×(2m﹣1)=2×(2m﹣1)=38, 解得m=10. 故答案为10. 解答题 1、解:(Ⅰ)设{a n}的公差为d ,由已知条件,, 解出a1=3,d=﹣2,所以a n=a1+(n﹣1)d=﹣2n+5. (Ⅱ)=4﹣(n﹣2)2. 所以n=2时,S n取到最大值4. 2、解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1 =3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1. 而a1=2, 所以数列{a n}的通项公式为a n=22n﹣1. (Ⅱ)由b n=na n=n?22n﹣1知S n=1?2+2?23+3?25+…+n?22n﹣1① 从而22S n=1?23+2?25+…+n?22n+1② 2

历年数列高考题汇编精选

历年数列高考题汇编 1、(全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ?? ??的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由 2 3 26 9a a a =得 3234 9a a =所以 21 9q = .有条件可知a>0,故 13q = . 由 12231 a a +=得 12231 a a q +=,所以 113a = .故数列{a n }的通项式为a n =13n . (Ⅱ ) 111111 log log ...log n b a a a =+++ (12...)(1)2 n n n =-++++=- 故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n - + 2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g (1) 求数列{}n a 的通项公式;

(2) 令n n b na =,求数列的前n 项和n S 解(Ⅰ)由已知,当n ≥1时, 111211 [()()()]n n n n n a a a a a a a a ++-=-+-++-+L 21233(222)2n n --=++++L 2(1)12n +-=. 而 12, a =所以数列{ n a }的通项公式为 21 2n n a -=. (Ⅱ)由 21 2n n n b na n -==?知 3521 1222322n n S n -=?+?+?++?L ① 从而 235721 21222322n n S n +?=?+?+?++?L ② ①-②得 2352121 (12)22222n n n S n -+-?=++++-?L . 即 211 [(31)22] 9n n S n +=-+ 3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且 a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . . 4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

全国各地高考数学试题数列分类大全

全国各地高考数学试题数 列分类大全 This manuscript was revised by the office on December 10, 2020.

2018年全国各地高考数学试题及解答分类汇编大全 1.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则 =5a ( ) A .12- B .10- C .10 D .12 答案:B 解答: 1111113243 3(3)249967320 22 a d a d a d a d a d a d ??+?=+++??+=+?+=6203d d ?+=?=-,∴51424(3)10a a d =+=+?-=-. 2.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 【答案】63n a n =- 【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-. 3.(2017全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=, 61165 6615482S a d a d ?=+=+=,联立11 2724,61548a d a d +=?? +=?解得4d =,故选C. 秒杀解析:因为166346() 3()482 a a S a a +==+=,即3416a a +=,则 4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 4.(2017全国新课标Ⅱ理)我国古代数学名着《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 【答案】B 5.(2017全国新课标Ⅲ理)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{} n a

(word完整版)历年数列高考题及答案

1. (福建卷)已知等差数列 }{n a 中,12497,1,16a a a a 则==+的值是( ) A .15 B .30 C .31 D .64 2. (湖南卷)已知数列 }{n a 满足 ) (1 33,0*11N n a a a a n n n ∈+-= =+,则 20a = ( ) A .0 B .3- C .3 D .23 3. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{}n a 是等差数列,则( ) (A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 6. (山东卷) {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( ) (A )667 (B )668 (C )669 (D )670 7. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个 顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。 8. (湖北卷)设等比数列 }{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 9. (全国卷II ) 在83和27 2之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______ 10. (上海)12、用n 个不同的实数 n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。 对第i 行in i i a a a ,,,21Λ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i Λ=。例如:用1,2,3可得数阵 如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=?-?+-=+++b b b Λ,那么,在 用1,2,3,4,5形成的数阵中, 12021b b b +++Λ=_______。 11. (天津卷)在数列{a n }中, a 1=1, a 2=2,且 )( )1(12* +∈-+=-N n a a n n n ,

-数列全国卷高考真题教师版

2015-2017年全国卷数列真题 1、(2015全国1卷17题)n S 为数列{n a }的前n 项和.已知n a >0,2 n n a a +=43n S +. (Ⅰ)求{n a }的通项公式; (Ⅱ)设1 1 n n n b a a += 错误!未定义书签。 ,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11 646 n - + 【解析】 试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和. 试题解析:(Ⅰ)当1n =时,2 11112434+3a a S a +=+=,因为0n a >,所以1a =3, 当 2 n ≥时, 2211 n n n n a a a a --+--= 14343 n n S S -+--= 4n a ,即 111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2, 所以数列{n a }是首项为3,公差为2的等差数列, 所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b = 1111 ()(21)(23)22123 n n n n =-++++, 所以数列{n b }前n 项和为12n b b b +++=1111111 [()()( )]23557 2123 n n -+-+ +-++ = 11 646 n - +. 2、(2015全国2卷4题)已知等比数列{}n a 满足a1=3,135a a a ++ =21,则357a a a ++= ( ) A .21 B.42 C .63 D .84 【解析】设等比数列公比为q ,则24 11121a a q a q ++=,又因为13a =,所以42 60q q +-=,解得2 2q =,所以2 357135()42a a a a a a q ++=++=,故选B. 考点:等比数列通项公式和性质.

数列大题部分-高考数学解题方法归纳总结专题训练

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得 112n n a ?? = ??? ,所以,

由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。 (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列{}n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b =

年高考数学试题知识分类大全数列

年高考数学试题知识分类 大全数列 This manuscript was revised by the office on December 10, 2020.

2007年高考数学试题汇编 数列 重庆文1 在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( A ) A .2 B .3 C .4 D .8 重庆理1 若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A ) A .3 B .4 C .5 D .6 安徽文3 等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B ) A .12 B .10 C .8 D .6 辽宁文5 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B ) A .63 B .45 C .36 D .27 福建文2 等比数列{}n a 中,44a =,则26a a ?等于( C ) A.4 B.8 C.16 D.32 福建理2 数列{}n a 的前n 项和为n S ,若1 (1) n a n n = +,则5S 等于( B ) A .1 B .56 C .16 D .1 30

广东理5 已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B ) A .9 B .8 C. 7 D .6 湖北理5 已知p 和q 是两个不相等的正整数,且2q ≥,则111 lim 111p q n n n ∞ ??+- ??? =??+- ??? →( C ) A .0 B .1 C . p q D .11p q -- 湖南文4 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( B ) A .4122- B .2122- C .10122- D .11122 - 湖北理8 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且 7453 n n A n B n +=+,则使得 n n a b 为整数的正整数n 的个数是( D ) A .2 B .3 C .4 D .5 湖南理10 设集合{123456}M =, ,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、, ,,,),都有

等比数列最新高考试题精选百度文库

一、等比数列选择题 1.各项为正数的等比数列{}n a ,478a a ?=,则2122210log log log a a a +++=( ) A .15 B .10 C .5 D .3 2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8 B .8± C .8- D .1 3.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A . 503 B . 507 C . 100 7 D . 200 7 4.若1,a ,4成等比数列,则a =( ) A .1 B .2± C .2 D .2- 5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n D .1+(n -1)×2n 6.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0 D .若S 2020>0,则a 2+a 4>0 7.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2± B .2 C .3± D .3 8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个 单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1 122f - B .第三个单音的频率为1 42f - C .第五个单音的频率为162f D .第八个单音的频率为1 122f 9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020 2021 ln ln a a = ( ) A .1:3 B .3:1 C .3:5 D .5:3 10 . 12 的等比中项是( )

2008年高考数学试题分类汇编(数列)

2008年高考数学试题分类汇编 数列 一. 选择题: 1.(全国一5)已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( C ) A .138 B .135 C .95 D .23 2.(上海卷14) 若数列{a n }是首项为1,公比为a -3 2的无穷等比数列,且{a n }各项的 和为a ,则a 的值是(B ) A .1 B .2 C .12 D .5 4 3.(北京卷6)已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么 10a 等于( C ) A .165- B .33- C .30- D .21- 4.(四川卷7)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞ 5.(天津卷4)若等差数列{}n a 的前5项和525S =,且23a =,则7a =B (A )12 (B )13 (C )14 (D )15 6.(江西卷5)在数列{}n a 中,12a =, 11 ln(1)n n a a n +=++,则n a = A A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 7.(陕西卷4)已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64 B .100 C .110 D .120 8.(福建卷3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为C A.63 B.64 C.127 D.128

历年数列高考题(汇编)答案

历年高考《数列》真题汇编 1、(2011年新课标卷文) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n n b a a a =+++L ,求数列{}n b 的通项公式. 解:(Ⅰ)因为.31)31(311n n n a =?=-,23113 11)311(3 1n n n S -=--= 所以,2 1n n a S -- (Ⅱ)n n a a a b 32313log log log +++=Λ ).......21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2 )1(+-=n n b n 2、(2011全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?????? 的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113a = 。故数列{a n }的通项式为a n =13n 。 (Ⅱ )111111log log ...log n b a a a =+++ 故12112()(1)1 n b n n n n =-=--++ 所以数列1{ }n b 的前n 项和为21n n -+ 3、(2010新课标卷理)

2019年高考数学数列部分知识点分析

第 1 页 共 4 页 2019年全国高考数学数列部分知识点考查分析 一、等差数列及其性质 1.(2019年全国Ⅰ理)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A .25n a n =- B .310n a n =- C .228n S n n =- D .21 22n S n n =- 2.(2019年全国Ⅲ理)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 3.(2019年全国Ⅲ文)记n S 为等差数列{}n a 的前n 项和.若35a =,713a =,则10S = . 4.(2019年北京理)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 . 5.(2019年江苏)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 . 二、等比数列及其性质 1.(2019年全国Ⅲ文理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16 B .8 C .4 D .2 2.(2019年全国Ⅰ文)记n S 为等比数列{}n a 的前n 项和,若11a =,33 4 S =,则4S = . 3.(2019年上海秋)已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______. 三、数列综合 1.(2019年全国Ⅰ文)记n S 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式; (2)若10a >,求使得n n S a …的n 的取值范围. 2.(2019年全国Ⅱ理)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--. (1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式. 3.(2019年全国Ⅱ文)已知{}n a 的各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式; (2)设2log n n b a =,求数列{}n b 的前n 项和. 4.(2019年北京文)设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求n S 的最小值. 5.(2019年天津文)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;

2015-2019全国卷高考数学分类汇编-数列

2014年1卷 17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=; (Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由. 2014年2卷 17.(本小题满分12分) 已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{} 12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112 n a a a ++<…+. 2015年1卷 (17)(本小题满分12分) S n 为数列{a n }的前n 项和.已知a n >0, (Ⅰ)求{a n }的通项公式: (Ⅱ)设 ,求数列}的前n 项和 2015年2卷 (4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 = (A )21 (B )42 (C )63 (D )84 (16)设S n 是数列{a n }的前项和,且111 1,n n n a a s s ++=-=,则S n =___________________. 2016年1卷 (3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( ) (A )100(B )99(C )98(D )97 (15)设等比数列 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 。 2016-2 17.(本小题满分12分)

n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (I )求111101b b b ,,; (II )求数列{}n b 的前1 000项和. 2016-3 (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,, ,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个 (17)(本小题满分12分) 已知数列 的前n 项和1n n S a λ=+,其中λ0. (I )证明 是等比数列,并求其通项公式 (II )若53132 S = ,求λ 2017-1 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣, 他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22 ,依此类推.求满足如下条件的学最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330 C .220 D .110 2017-2 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑ .

山东历年高考数列精彩试题

山东历年高考试题 --------数列 20.(本小题满分12分)2013 设等差数列{a n }的前n 项和为S n ,且S n =2S 2,a 2n =2 a n +1. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列{b n }的前n 项和为T n ,且T n +n n a 2 1 +=λ(λ为常数),令c n =b 2n n ∈N ﹡,求数列{c n }的前n 项和R n 。 2014年 19.(本小题满分12分) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 2015年 18.(12分)(2015?山东)设数列{a n }的前n 项和为S n ,已知2S n =3n +3. (Ⅰ)求{a n }的通项公式; (Ⅱ)若数列{b n },满足a n b n =log 3a n ,求{b n }的前n 项和T n .

(2016年山东高考)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且 1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)令1 (1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n . 5(2014课标2理)17.已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{} 12 n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+. 6(2014四川文)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(n N *∈). (Ⅰ)证明:数列{}n b 为等比数列; (Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2 -,求数列 2{}n n a b 的前n 项和n S . 8(2014四川理)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(* n N ∈). (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2 -,求数列 {}n n a b 的前n 项和n T .

等比数列最新高考试题精选doc

一、等比数列选择题 1.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2- B .2-或1 C .1 D .2 2.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A . 503 B . 507 C . 100 7 D . 200 7 3.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 4.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{} 2 n a 的前n 项和为n T ,若2 (1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( ) A .()3,+∞ B .()1,3- C .93,5?? ??? D .91,5? ?- ?? ? 5.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2± B .2 C .3± D .3 6.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45 B .54 C .99 D .81 7.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40 B .81 C .121 D .242 8.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->, 102 103 1 01 a a -<-,则使得1n T >成立的最大自然数n 的值为( ) A .102 B .203 C .204 D .205 9.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9= ( ) A .4 B .5 C .8 D .15 10.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件 11a >,66771 1, 01 a a a a -><-,则下列结论正确的是( )

相关文档
最新文档