方钢管再生混凝土柱抗震性能试验研究

方钢管再生混凝土柱抗震性能试验研究
方钢管再生混凝土柱抗震性能试验研究

钢管再生混凝土综述

钢管再生混凝土的现状研究 摘要:再生混凝土是指利用废弃混凝土破碎加工而成的再生集料,部分或全部代替天然骨料配制而成的新混凝土,再生混凝土技术的研究与应用为建筑垃圾资源化提供了一条有效的途径。钢管混凝土结构将钢管和混凝土有机结合起来,因承载力高、抗震性能好等优点而被广泛应用与单层和多层工业厂房等承重结构中。而将再生混凝土浇筑在钢管内形成的钢管再生混凝土,既能提高钢管的承载能力,又能弥补再生混凝土的不足。近年来,许多专家和学着对这种新型的组合结构展开了研究。 关键词:钢管再生混凝土;力学性能;抗震性能;黏结滑移;研究展望 0引言 随着我国经济的不断发展和城市化的进程不断加快,大量的建筑垃圾不断排出,其中废弃混凝土占了很大一部分,而废弃混凝土的处理需要大量的费用而且还严重污染环境,再生混凝土技术的应用为这些废弃混凝土的处理提供了有效的途径,减少了环境污染,并能带来经济效益[1]。 钢管混凝土是指在钢管中填充混凝土而形成的构件,将钢管和混凝土有机的结合起来,充分发挥钢管和混凝土各自的优越性。钢管混凝土结构凭借其承载力高、抗震性能好等优势,在高层和超高层建筑中得到迅速发展和广泛应用,并且较好地解决了施工速度与混凝土硬化时间较长的矛盾。 伴随着钢管混凝土技术的发展,科研工作者提出了将再生混凝土灌入钢管中从而形成钢管再生混凝土这一种新型的组合结构,对再生混凝土的利用提供了一种新的方式[2]。这种组合结构日益引起许多专家和学者的关注与研究,并取得了一定成果。 1钢管再生混凝土的力学性能分析 国内外的研究者和学者对钢管再生混凝土的力学性能进行了大量的研究工作。 许多学者集中在钢管再生混凝土柱的受压性能方面的研究[3-5]。王玉银[6]等采用分级单调加载,对12个钢管再生混凝土和12个配置螺旋箍筋的钢筋再生混凝

再生混凝土的研究发展现状综述_王亨

工程科技再生混凝土的研究发展现状综述 王亨单玉坤 (天津大学建筑设计研究院,天津300072) 1概述混凝土材料自产生以来,就在人类文明建设中扮演了最重要的角色,随着人类文明的不断进步,混凝土的使用量逐渐增多,已成为全球使用最广泛的建筑材料,与此同时产生的环境问题也越来越显著。 混凝土的制备需要耗费大量的砂石、水及能源等自然资源,长期以来,对这些自然资源无节制的索取已经导致森林覆灭、山体滑坡、河床改道,造成了严重的资源枯竭和环境污染。另外, 随着我国经济发展,城市化建设不断深入,新建筑的建立以及旧建筑的拆除都会产生大量的建筑垃圾。目前,我国建筑垃圾数量占到城市垃圾总量的30%~40%,其中主要是废弃混凝土,这些垃圾严重影响了城市生活环境,造成了环境污染。把它们运送到郊外进行堆放掩埋,碱性废渣会令大量的土壤“失活”。此举不仅会花费大量的运费,侵占无数农田,还会造成严重的二次污染。[1]因此废弃混凝土的处理和再利用是节约能源,保护环境的必然选择,也是当今社会研究的重要课题。将废弃混凝土块经清洗、破碎、分级和按一定比例相互配合后得到的“再生骨料”作为部分或全部骨料代替天然骨料配制的混凝土即为再生混凝土(也称再生骨料混凝土,Recy-cled Aggregate Concrete ,RAC )[2]。再生混凝土既能解决天然骨料资源紧缺的问题,保护骨料产地的生态环境,又能解决城市废弃物的堆放、 占地和环境污染等问题,具有显著的社会效益、经济效益和环保效益,对城市的可持续发展具有非常深远的意义。2国内外再生混凝土的研究发展现状 20世纪中期,日本、美国、欧洲等国家就开始了再生混凝土的研究和开发利用工作,主要集中在对再生骨料和再生混凝土基本性能的研究,包括物理性能、力学性能、耐久性以及再生混凝土构件性能及其抗震性能的研究。研究成果表明再生混凝土基本能满足普通混凝土性能的要求,其应用于工程结构是可行的。当前,美国共使用了约27亿吨废弃混凝土骨料,其中10%~15%用于人行道, 20%~30%用于公路建设及维修,另外的60%~70%用于混凝土结构,主要是地基和基础结构。日本政府于1991年颁布《资源重新利用促进法》,促进了废弃混凝土的回收利用,1994年建设部又颁布了 《废弃混凝土材料重新用于建筑工程暂定质量标准》,使废弃混凝土的利用率从1990年的48%提高到2000的96%,其中大多数的废弃混凝土用于道路建设的基础垫层。据估算,在20世纪90年代早期,欧盟的建筑废弃物回收利用率平均为28%,在随后几年大多数欧盟国家都制定了将建筑废弃物利用率提高到50%~90%的相关计划。其中德国在它的每一个地区都建有大型的建筑垃圾再生加工综合工厂,仅在柏林就有20多个,有望将80%的再生骨料用于10%~15%的混凝土工程中。[3]香港和台湾也有促进建筑废弃物再生利用的相关计划。香港每年约产生1400万吨的建筑垃圾,以前主要用于填海造陆,后来该做法因招到反对而废止。2002年,香港特区政府建立了用于处理建筑垃圾的试点,每天能够处理2400吨的建筑垃圾,生产出的再生骨料用于相关市政工程。截止2003年10月,该试点工厂共生产优质再生骨料24万吨。超过10个工程项目用到由这些再生骨料生产出的22700m 3混凝土,包括桩承台、地砖、梁、板墙、外部建筑、挡土墙以及超大块混凝土等。[4]1999年,台湾中部地区发生大地震,产生大量的建筑垃圾需要处理,从而建立了相关建筑垃圾处理和研究的试点计划。实施这些计划后,台湾回收利用了80%的废弃建筑材料,其中30%用于道路基础垫层。[5]我国内地对再生混凝土的研究相对较晚,但已经开展研究工作的高校和科研院所做了大量的工作,涉及范围广泛,取得了一定的研究成 果。其中, 同济大学肖建庄教授及其团队在再生混凝土基本性能、结构方面做了大量的研究工作,包括再生混凝土的强度和工作性能、废弃混凝土破碎及再生工艺研究、高温后再生混凝土强度研究、再生混凝土耐久性研究、再生混凝土梁柱试验研究、再生混凝土框架节点试验研究、 再生混凝土框架结构抗震性能的研究以及组合结构的试验研究等等,目前已处于国际前列。福州大学杨有福教授课题组通过试验和数值理论分析对钢管再生混凝土轴压短柱、纯弯构件和压弯构件做了初步研究,对钢管再生混凝土力学性能和设计方法的若干问题进行了探讨;另外华南理工大学吴波等人对钢管再生混合短柱相关性能作了一定研究。国内其他专家学者也通过试验和多种措施对改善再生混凝土的性 能(物理性能、力学性能、结构性能)做了很多积极的工作。其他科研院所如东南大学、华中科技大学、北京建工学院、沈阳建工学院等开展利用城市垃圾制取烧结砖和再生混凝土技术的研发取得了可喜的成果; 将解体混凝土和废弃砖瓦进行再生资源化处理后,作为混凝土骨料、 轻骨料生产普通混凝土或高性能混凝土砌块,这种再生混凝土强度达到 C30。[6]2007年同济大学编写了地方标准DG/TJ 08-2018-2007《再生混凝土应用技术规程》,为再生混凝土技术的应用提供了明确的指导。众多学者专家的研究成果为再生混凝土技术体系的建立和完善以及在实 际工程中的应用奠定了良好的基础。3结论 再生混凝土技术的开发应用,不仅能够从根本上解决废弃混凝土的出路问题,而且减轻了废弃混凝土对环境的污染,还能节省天然骨料资源,减少对大自然的索取。随着再生混凝土实践研究的不断深入,再生混凝土有望成为一种常用的建筑材料,应用到更多的结构中去,具有 显著的社会、经济和环境效益,符合可持续发展的要求,是发展绿色混凝土的重要途径之一。 参考文献 [1]钟汉华,罗岚,刘能胜,等.废弃混凝土回收利用现状和前景展望[J].广东水利水电职业技术学院学报,2008,6(1):66-68. [2]刘树华,冷发光.再生混凝土技术[M ].北京:中国建材工业出版社,2007.[3]Rao A ,Jha KN ,M isra https://www.360docs.net/doc/1a1356715.html,e of aggregates from recycled con-struction and demolition waste in concrete [J].Resources Conservation and Recycling , M AR 2007,50(1):71-81.[4]Fong Winston F.K.,Jaime Y.S.K.,Poon C.S..HongKong experience of using recycled aggregates from construction and demolition materials in ready mix concrete[C]//International Workshop on Sustainable Develop-ment and Concrete Technology ,2002,p.267-275. [5]Huang Wen-Ling ,Lin Dung-Hung ,Chang Ni-Bin ,et al.Recycling of construction and demolition waste via a mechanical sorting process[J]. Resour Conserv Recycl ,2002,(37):23-37. [6]陈永刚,曹贝贝.再生混凝土国内外发展动态[J].国外建材科技, 2004,25(3):4-6. 作者简介:王亨(1975~),男,天津人,工程师,从事建筑结构设 计工作。摘要:在不断深入的城市化建设中,新建筑的建立和旧建筑的拆除都会产生大量的建筑垃圾,造成严重的环境污染和资源浪费。因此,对这些建筑垃圾特别是废弃混凝土的再生利用将具有显著的环境和经济效益,是实现建筑、资源、环境可持续发展的重要措施。本文结合国内外再生混凝土研究发展现状,为再生混凝土的工程实际应用提供了一些方向。 关键词:再生混凝土;发展现状;研究发析 Abstract :Establishment of new buildings and demolition of old buildings will have a lot of construction debris in the deepening of the urbanization construction , which causes serious environmental pollution and waste of resources.Recycling of these construction wastes ,especially waste concrete will have significant environmental and economic benefits ,which is an important measure to maintain the sustain-able development of construction ,resources and environment.According to the current research achievements on recycled concrete from home and abroad , this paper points some directions for the use of recycled concrete.Key words :recycled concrete ;derelopment present situation ;research analysis 265··

钢管混凝土柱

摘要:介绍了钢管混凝土结构的特点、研究现状及其工程应用,探讨了钢管混凝土结构研究方向。 关键词:钢管混凝土 近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

混凝土结构能再生利用吗

混凝土能再生利用吗 土木091 周骞 200911003113 摘要:通过大量国内外文献分析与研究,对再生混凝土结构性能研究和应用现状进行了综 述,并结合可持续发展战略,分析了再生混凝土结构性能研究及应用发展前景。 关键词:废旧混凝土; 再生利用; 环境保护; 可持续发展 引言 随着建筑业的蓬勃发展,我国建筑材料的需求量急剧增加。目前,全世界混凝土的需求量约为28 亿立方米,而我国的混凝土年需求量达到13 亿~14 亿立方米,占世界总量的45 %。在混凝土原材料中,骨料占混凝土总量的75 % 左右,而骨料的来源主要是开山取石并将其加工成砂石料,或者挖取河道中的砂、卵石及砾石。这样,使自然环境遭到破坏,也严重影响了建筑业的可持续发展。生产混凝土需要消耗水泥和砂石,而生产水泥要排放大量的二氧化碳、硫化物、氮化物及其他有害气体和粉尘。据不完全统计,我国目前每年产生的建筑垃圾达到1 亿吨左右,长期积累的建筑废弃物高达数亿吨。废弃混凝土的来源广泛,数量也非常惊人。绝大部分废弃混凝土未经任何处理,有的露天堆放,有的填埋于地势低洼之处,造成严重的环境污染和资源浪费。将其运送到郊外掩埋,不仅要花费大量的运费,还会造成二次污染。如果将这些废弃混凝土收集加工后再生利用,不但可以节约天然资源,而且减少了环境污染,促进了社会经济的发展。 一再生混凝土的发展现状 1.1 国外情况 废弃混凝土的再利用最早开始于欧洲。第二次世界大战后,前苏联、德国、日本等国家对废弃混凝土进行了开发研究和再生利用。早在1976 年,以当时的西德、比利时和荷兰为主,成立了“混凝土解体与再利用委员会”,开始研究废弃混凝土的再利用。至2000 年,荷兰的建筑废弃物回收率高达90%;德国将再生混凝土应用于公路路面。美国从1982年起,在ASTMC 33—82《混凝土骨料标准》中,将破碎的水硬性水泥混凝土包含进了粗骨料中。同时美国军队工程师协会也在有关规范和指南中,鼓励使用再生混凝土骨料。在美国的道路建设中,50%采用沥青混凝土再生料,直接建设成本下降20%以上,既节约了能源,也保护了环境,产生了巨大的社会效益。日本在1977 年就制定了《再生骨料和再生混凝土规范》,随后在各地建设了建筑垃圾物再生利用工厂,生产再生水泥和再生骨料。于1996年制定了 旨在推动建筑副产品再利用的“再生资源法”,规定建筑施工中的渣土、混凝土块等建筑垃圾,必须要经过专门的再生资源化设施处理,为建筑垃圾的资源化利用提供了法律和制度的保障。目前,日本对建筑垃圾的再生利用率高达70%,废弃混凝土的利用率则更高。 1.2 国内情况 我国幅员辽阔、地大物博,在短期内不会出现混凝土骨料的缺乏。但是,建筑垃圾带来的环境污染越来越严重。 我国对再生混凝土的研究起步比较晚,还处在实验室研究阶段,数十所大学和研究机构开展了对再生混凝土的研究和技术开发。目前,已经开始利用城市垃圾生产烧结砖,将废弃混凝土用于道路工程的基层、面层、土基及防护工程。我国政府高度重视对建筑垃圾的循环再利用,在中长期发展战略中,对废弃物再生利用的相关技术与示范工程项目给予政策与资

钢管混凝土抗震

四、组合框架一剪力墙体系 4.1钢管混凝土框架结构抗震性能分析 钢管混凝土柱是在钢管中填充混凝土后形成的一种受力构件,这种构件是在劲性钢筋混凝土、螺旋配筋混凝土以及钢结构的基础上演变和发展起来的框架的承载能力、变形特征、耗能能力进行了分析,并与钢筋混凝土框架结构进行对比,以期使钢管混凝土框架结构在工程实践中得到较为广泛的应用一种新型结构构件。钢管混凝土利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对其核心混凝土的约束作用和核心混凝土增强管壁的稳定作用,使混凝土的强度得以提高,塑性和韧性性能大为改善。同时,避免或延缓了钢管发生局部屈曲,从而可以保证两种材料性能的充分发挥。另外,在钢管混凝土的施工过程中,钢管还可以作为浇筑其核心混凝土的模板,与钢筋混凝土相比,可节省模板费用,加快施工速度。到目前为止,对钢管混凝土的研究大都局限于对构件的受力性能研究,而对钢管混框架的承载能力、变形特征、耗能能力进行了分析,并与钢筋混凝土框架结构进行对比,以期使钢管混凝土框架结构在工程实践中得到较为广泛的应用。 闫洋、王震霞从结构整体工作性能的角度出发,在试验的基础上对单层钢管混凝土框架模型进行了低周往复加载试验,通过对试验结果和破坏形态的分析得出钢管混凝土框架的骨架曲线,并对变形和耗能进行了理论分析,理论和试验结果基本上是吻合的。

图一 其试验的两榀框架( 图 1) 均为弯曲型破坏。试件的破坏过程为:加载一侧的框架柱脚外边缘纤维首先达到屈服,然后在柱根内外侧及梁端的上下边缘几乎同时出现屈服点,此时框架已达到整体屈服,但整个框架并未出现普通钢筋混凝土框架易产生的刚度退化现象,试件承载力随着变形的增加而继续增加。 从加载开始至试件破坏有明显的特点:钢管混凝土框架达到整体屈服后,承载能力还可以进一步提高,表明在结构屈服后截面应力及结构内力发生重新分布,结构仍有承载能力。结构的破坏以梁的破坏为标志,虽然柱脚个别点的材料屈服早于梁的屈框架结构的钢管柱。但在这些点出现之后,结构的变形仍为小变形。 通过分析计算得出当钢管混凝土框架结构与钢筋混凝土框架结构当柱的直径相等、长细比相同时,钢管混凝土框架结构的各控制位移值大于钢筋混凝土框架结构的对应位移; 钢管混凝土结构的位移延性系数和弹性抗侧刚度均比钢筋 混凝土结构的大。由此可得出,钢管混凝土框架结构的抗震能力与抗震性能明显优于钢筋混凝土框架结构。 ( 1) 试验得出的钢管混凝土 p- s 滞回曲线均较饱满,这充分说明钢管混凝土框架结构有很好的耗能能力。在破坏阶段,虽然钢梁出现屈服甚至屈曲,但由于钢管混凝土柱有较强的抗侧刚度和良好变形。 ( 2)整个结构的 p- $曲线无下降段,具有较强构的屈服荷载大于钢筋混凝土结构的屈荷载。说明钢管混凝土框架结构较钢筋混凝土框架结构的抗震性能好、抗震能力强。

方钢管混凝土综述

方钢管混凝土综述 【摘要】:介绍了方钢管混凝土的定义和结构特点,以及其理论在国内外的发展。并举出实际工程例子来阐明其在建筑中广阔的应用前景,同时也提出了方钢管混凝土结构存在的问题。【关键词】:方钢管混凝土;承载力;稳定性;应用 【Abstract】It Introduces the definition and the features of square steel tube concrete structure,and its theory in the development of both at home and abroad. And gives some practical engineering examples to clarify its broad application prospects in building,and has also put forward the existing problems in square steel tube concrete structure. 0引言 伴随着人类的进步,科技的进步。人类建筑史上出现了一种新型的结构形式:钢管混凝土结构。钢管混凝土是在劲性钢筋混凝土及螺旋配筋混凝土基础上演变发展起来的.指在钢管中填充混凝土而成的一种新型组合结构。钢管混凝土按截面形式分为圆钢管混凝土、矩 形钢管混凝土、方钢管混凝土、多边形钢管混凝土等;按材料组成分为普通钢管混凝土(核心混凝土强度等级为C50以下的素混凝土,外包普通钢管,简称钢管混凝土)、薄壁钢管混凝土(普通素混凝土外包薄壁钢管)、高强钢管混凝土(高性能混凝土外包钢管)、钢管膨胀混凝土(钢管内填膨胀混凝土)、钢管自应力混凝土、增强钢管混凝土(钢管内填配筋混凝土或含有型钢的混凝土)、离心钢管混凝土(钢管内用离心法填充一层厚度为20 mm~50 mm的C40等级以上的混凝土而成型的空心钢管混凝土)等[1][2]。 1方钢管混凝土结构的特点 所谓方钢管混凝土,是指用钢板或角钢拼焊而成的方形空钢管,其内充填混凝土而形成的一类组台构件。它一方面通过钢管内混凝土的支撑作用防止钢管壁发生向内屈曲,提高了钢管壁的屈曲承载力;另一方面通过四壁的钢板对内填混凝土提供侧向约束,能提高混凝土的抗压强度。因此两者的组合承载力大于两者独立承载力之和。方钢管混凝土具有其独特的优势。 [3] 1.1和传统的钢筋混凝土相比 承载力高,在保持截面形式相同的情况下,方钢管混凝土柱的承载力明显高于普通钢筋混凝土柱。质量轻,在保持钢材用量相近和承载力相同的情况下,构件的截面面积可以减小约一半,从而使得建筑物的使用面积得以增大,混凝土构件的自重相应减小约50%。抗震性能好,方钢管混凝土在反复荷载作用下,吸能性强,刚度基本不退化,延性性能好。施工方便,可以简化施工工艺,节省脚手架用量、缩短工期,减少施工用地。 1.2和刚结构相比 经济效益好,在保持自重相近和承载力相同的条件下,可节约钢材50%,焊接工作量可以大幅减少。耐火性能好,方钢管混凝柱由于管内有混凝土存在,可以吸收热量.因而耐火时间比钢柱长。动力性能优越,在高层建筑中,方钢管混凝土结构具有比钢结构优越的动力性能,能减轻风致摆动,增加居住人员的舒适感。 1.3和圆形钢管混凝土结构相比 节点形式简单,方形截面钢管混凝土结构构件之间的交贯线在一个平面内,节点形式简单便于加工,可节约人工费用.降低工程造价。截面惯性矩大,稳定性能好,建筑布局灵活,方钢管混凝土柱承载力高,可以采用大柱网,提供较大的建筑空间,且自由分隔满足各种功能要求;另外,采用方钢管混凝土结构更符合人们传统的审美观。施工更方便,方形钢管混凝土结构由于外形规则,有利于梁柱连接,克服了圆钢管混凝土结构由于截面形式特殊所带来的施工上的不便。

钢管混凝土结构

钢管混凝土结构 1、前言 钢管混凝土即在薄壁钢管内填充普通混凝土,将两种不同性质的材料组合而形成的复合结构,它是将钢管结构和钢筋混凝土结构的优点结合在一起而发展起来的新型结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。钢管混凝土作为一种结构构件形式最早在十九世纪八十年代被设计应用做桥墩,然后随着科学技术的提高使它的应用范围得到了很大的扩展。从八十年代末开始,钢管混凝土在我国的土建工程中的应用发展很快。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广泛。 2、钢管混凝土结构的特点 ,混凝土的抗压强度高,但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高。同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。 钢管混凝土柱在荷载作用下的应力状态和应力路径是十分复杂的,仅以常用的一种加载方式为例,对其受力、变形特点进行简单剖析。据有关大量实验表明,如图l的一根钢管混凝土短试件在轴向力N作用下钢管和核心混凝土随着纵向压

力的增加两者均产生较大的纵向应力和纵向应变,同时将产生横向变形。横向应变与纵向应变的关系为S S IS 3εμε=,C C C 31εμε=(式中的13,εε分别为纵向、环向应变,μ为材料的泊松比,下标s ,c 分别代表钢管和核心混凝土)。在轴向力N 作用下钢管和核心砼的变形是协调的,即C S 33εε=。钢材的泊松S μ在弹性阶段为一常数(O.283),进入塑性阶段(应力达屈服点y f 时)增大至0.5而保持不变。而混凝土的横向变形系数C μ则为变数,可以从低应力时的0.17增加到0.5至1.0甚至大于1.0。由上式可见,钢管混凝土在轴心压力N 作用下,开始时C S μμ>, 钢管 1σ 混凝土2 1 N 图1 试件轴压时的内力状态 故C S 11εε>,但C μ在很快赶上S μ,则S μ=C μ,而C S 11εε=,随后C μ>S μ,S C 11εε>。这说明钢管混凝土在压力N 作用下混凝土向外的横向变形大于钢管向外的横向变形。钢管约束了砼,在钢管与混凝土之间产生了相互作用力P ,称为紧箍力。从而使钢管纵向和径向受压而环向受拉,混凝土则处于三向受压状态。这样一来就大大提高了混凝土的抗压强度,同时塑性性能得到了很大的改善。在工作性质

钢管混凝土结构抗震性能

南昌大学研究生2015~2016学年第二学期期末 读书报告 课程名称:混凝结构理论与应用专业:建筑与土木工程 学生姓名:李海学号:4160146150 学院:建筑工程学院得分: 任课教师:熊进刚时间:2016年6月

钢管混凝土结构抗震性能研究 摘要: 介绍了钢管混凝土组合结构的特点,综述了国内外钢管混凝土结构的抗震性能的研究现状; 分析了其存在的问题和实用价值,展望了钢管混凝土结构发展趋势和应用前景; 指出了进一步研究的方向。 关键词: 组合结构; 钢管混凝土结构; 抗震性能; 工程应用 Abstract:This paper presents the characteristics of steel concrete composite structures, review the status of research on seismic behavior of domestic and foreign steel concrete structure; analyzes the problems and practical value, the prospect of the development trend of steel and concrete structures prospects; points out further research direction. Keywords:composite structure; steel concrete structure; seismic performance; engineering applications 钢管混凝土是指在钢管中填充混凝土而形成、且钢管及其核心混凝土能共同承受外荷载作用的结构构件,按截面形式不同,可分为圆钢管混凝土,方、矩形钢管混凝土和多边形钢管混凝土等。钢管混凝土是在劲性钢筋混凝土、螺旋配筋混凝土和钢管结构的基础上演变和发展起来的,利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改

钢管混凝土结构技术规范

.. . word. GB50936-2014钢管混凝土结构技术规 应知条文 必会条文 4.1.8 钢管混凝土柱的钢管在浇筑混凝土前,其轴心应力不宜大于钢管抗压强度设计值的60%,并应满足稳定性要求。 4.1.11 直径大于2m 的圆形钢管混凝土构件及边长大于1.5m 的矩形钢管混凝土构件,应采取有效措施减小钢管混凝土收缩对构件受力性能的影响。 5.4.1 对轴压构件和偏心率不大于0.3的偏心钢管混凝土实心受压构件,当由永久荷载引起的轴心压力占全部轴心压力的50%及以上时,由于混凝土变的影响,钢管混凝土柱的轴心受压稳定承载力设计值 Nu 应乘以折减系数0.9。 7.2.1 等直径钢管对接时宜设置环形隔板和衬钢管段,衬钢管段也可兼作为抗剪连接件,并应符合下列规定: 1 上下钢管之间应采用全熔透坡口焊缝,坡口可取35°,直焊缝钢管对接处应错开钢管焊缝; 2 衬钢管仅作为衬管使用时(图7.2.1a ),衬管管壁厚度宜为4mm ~6mm ,衬管高度宜为50mm ,其外径宜比钢管径小2mm ; 图7.2.1 等直径钢管对接构造 1-环形隔板;2-衬钢管 3 衬钢管兼作为抗剪连接件时(图7.2.1b ),衬管管壁厚度不宜小于16mm ,衬管高度宜为100mm ,其外径宜比钢管径小2mm 。 7.2.2 不同直径钢管对接时,宜采用一段变径钢管连接。变径钢管的上下两端均宜设置环形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径3.1.4 抗震设计时,钢管混凝土结构的钢材应符合下列规定: 1 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3 钢材应有良好的可焊性和合格的冲击韧性。 9.4.1 钢管混凝土结构中,混凝土禁使用含氯化物类的外加剂。

钢管混凝土剪力墙抗震性能研究综述

龙源期刊网 https://www.360docs.net/doc/1a1356715.html, 钢管混凝土剪力墙抗震性能研究综述 作者:齐红甲 来源:《中国科技纵横》2013年第03期 【摘要】本文对钢管混凝土边框剪力墙的抗震性能进行了研究,阐述了国内外对该类型剪力墙的研究方法和研究成果,并提出当前钢管混凝土剪力墙研究中存在的一些问题。 【关键词】钢管混凝土剪力墙抗震刚度延性 随着国民经济的高速增长,我国高层建筑和超高层建筑也越来越多,其结构形式也越来越复杂。研制抗震性能好的剪力墙是高层建筑抗震设计的关键技术。 1 综述背景 为克服钢筋混凝土剪力墙在工作中的缺点,提高其抗震能力,国内外学者针对钢筋混凝土剪力墙进行了许多研究。其中,开缝剪力墙主要包括:同济大学吕西林提出的填充氯丁橡胶带的带缝剪力墙[1];东南大学李爱群提出的采用摩阻式控制装置的带缝剪力墙[2];清华大学叶列平提出的双功能带缝剪力墙[3]。研究资料表明带缝剪力墙在一定程度上影响了墙的整体性 和受力性能。 1905年日本建造了第一个采用型钢混凝土柱的结构,1950年后,日本主要研究了型钢混凝土(SRC)梁的抗弯性能、SRC柱的偏压性能、SRC梁和柱的剪切性能、SRC梁柱节点抗 剪性能及钢管与混凝土的黏结性能等[4]。我国从20世纪50年代开始应用SRC结构,近年来日渐增多[5][6]。90年代初清华大学对SRC剪力墙进行了抗弯性能试验研究[7],随后国内外进行了许多研究[8],研究表明:采用钢-混凝土组合剪力墙能够控制剪力墙中裂缝的发展,形成较完备的耗能机制,起到了良好的二道设防作用,使结构的抗震能力明显提高。 2 国内外研究现状 文献[9]对不同混凝土强度等级,不同轴压比,不同剪跨比,不同强弱抗剪连接键等设计 参数的矩形钢管混凝土边框组合剪力墙的抗震性能进行了研究。研究表明:组合剪力墙及筒体可有效地将混凝土剪力墙侧向刚度和承载力大的优势与钢管混凝土柱抗震延性好的优势组合,钢管混凝土边框柱与混凝土剪力墙之间的抗剪连接键能可靠工作,工程应用效果良好。 文献[10]研究了钢管混凝土边框剪力墙抗震性能,对不同轴压比、不同强弱抗剪连接键的矩形钢管混凝土边框剪力墙进行了低周反复荷载下的抗震性能试验研究。研究表明这种剪力墙可有效地组合混凝土剪力墙与钢管混凝土边框柱的优势,抗震效果良好。 文献[11]对矩形钢管混凝土柱带框剪力墙用SAP2000软件做了有限元的弹性分析。该研究认为《矩形钢管混凝土结构技术规程》(CECS159)[12]中将作用于带框混凝土剪力墙的整体

钢管混凝土结构技术规范

专业资料 GB50936-2014钢管混凝土结构技术规 应知条文 必会条文 4.1.8 钢管混凝土柱的钢管在浇筑混凝土前,其轴心应力不宜大于钢管抗压强度设计值的60%,并应满足稳定性要求。 4.1.11 直径大于2m 的圆形钢管混凝土构件及边长大于1.5m 的矩形钢管混凝土构件,应采取有效措施减小钢管混凝土收缩对构件受力性能的影响。 5.4.1 对轴压构件和偏心率不大于0.3的偏心钢管混凝土实心受压构件,当由永久荷载引起的轴心压力占全部轴心压力的50%及以上时,由于混凝土变的影响,钢管混凝土柱的轴心受压稳定承载力设计值 Nu 应乘以折减系数0.9。 7.2.1 等直径钢管对接时宜设置环形隔板和衬钢管段,衬钢管段也可兼作为抗剪连接件,并应符合下列规定: 1 上下钢管之间应采用全熔透坡口焊缝,坡口可取35°,直焊缝钢管对接处应错开钢管焊缝; 2 衬钢管仅作为衬管使用时(图7.2.1a ),衬管管壁厚度宜为4mm ~6mm ,衬管高度宜为50mm ,其外径宜比钢管径小2mm ; 图7.2.1 等直径钢管对接构造 1-环形隔板;2-衬钢管 3 衬钢管兼作为抗剪连接件时(图7.2.1b ),衬管管壁厚度不宜小于16mm ,衬管高度宜为100mm ,其外径宜比钢管径小2mm 。 7.2.2 不同直径钢管对接时,宜采用一段变径钢管连接。变径钢管的上下两端均宜设置环形隔板,变径钢管的壁厚不应小于所连接的钢管壁厚,变径段的斜度不宜大于1:6,变径3.1.4 抗震设计时,钢管混凝土结构的钢材应符合下列规定: 1 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3 钢材应有良好的可焊性和合格的冲击韧性。 9.4.1 钢管混凝土结构中,混凝土禁使用含氯化物类的外加剂。

钢管混凝土结构浇筑

钢管混凝土结构浇筑 钢管混凝土的浇筑常规方法有从管顶向下浇筑及混凝土从管底顶升浇筑。不论釆取何种方法,对底层管柱,在浇筑混凝土前,应先灌入约100mm厚的同强度等级水泥砂浆,以便和基础混凝土更好地连接,也避免了浇筑混凝土时发生粗骨料的弹跳现象。采用分段浇筑管内混凝土且间隔时间超过混凝土终凝时间时,每段浇筑混凝土前,都应釆取灌水泥砂浆的措施。 通过试验,管内混凝土的强度可按混凝土标准试块自然养护28d的抗压强度采用,也可按标准试块标准养护28d强度的0.9采用。 钢管混凝土结构浇筑应符合下列规定: (1)宜采用自密实混凝土浇筑。 (2)混凝土应采取减少收缩的措施,减少管壁与混凝土间的间隙。 (3)在钢管适当位置应留有足够的排气孔,排气孔孔径应不小于20mm;浇筑混凝土应加强排气孔观察,确认浆体流出和浇筑密实后方可封堵排气孔。 (4)当采用粗骨料粒径不大于25mm的高流态混凝土或粗骨料粒径不太于20mm的自密实混凝土时,混凝土最大倾落高度不宜大于9m;倾落高度大于9m 时应采用串筒、溜槽、溜管等辅助装置进行浇筑。 (5)混凝土从管顶向下浇筑时应符合下列规定: 1)浇筑应有充分的下料位置,浇筑应能使混凝土充盈整个钢管; 2)输送管端内径或斗容器下料口内径应比钢管内径小,且每边应留有不小于100mm 的间隙; 3)应控制浇筑速度和单次下料量,并分层浇筑至设计标高; 4)混凝土浇筑完毕后应对管口进行临时封闭。 (6)混凝土从管底顶升浇筑时应符合下列规定: 1)应在钢管底部设置进料输送管,进料输送管应设止流阀门,止流阀门可在顶升浇筑的混凝土达到终凝后拆除; 2)合理选择混凝土顶升浇筑设备,配备上下通信联络工具,有效控制混凝土的顶升或停止过程; 3)应控制混凝土顶升速度,并均衡浇筑至设计标高。

钢管混凝土性能研究

钢管混凝土性能研究 发表时间:2019-05-09T10:20:17.083Z 来源:《新材料.新装饰》2018年9月下作者:潘荣燊贾慧敏 [导读] 本文对钢管混凝土做了详细的介绍,尤其介绍了现阶段钢管混凝土的应用情况及发展前景。据了解,钢管混凝土自提出以来在桥梁、隧道、工民建等各大领域得到了广泛的应用,其作为一种新型构件得到了社会广泛认可。 (绵阳市涪城区西南科技大学,四川绵阳 621000) 摘要:本文对钢管混凝土做了详细的介绍,尤其介绍了现阶段钢管混凝土的应用情况及发展前景。据了解,钢管混凝土自提出以来在桥梁、隧道、工民建等各大领域得到了广泛的应用,其作为一种新型构件得到了社会广泛认可。 关键词:钢管混凝土;现状;应用 1 钢管混凝土研究背景及意义 从19世纪20年代发明混凝土开始,其发展已有近两百年的历史了。普通混凝土主要由水泥、砂、石子及水四种基本材料所组成。众所周知,混凝土的抗压强度高,但抗弯能力很弱,而钢材,尤其是低碳钢,具有良好的弹塑性。由于钢材轻质高强的特性,其在受压时容易丧失整体稳定。因此,有人提出将钢材和混凝土结合进行使用的想法。最初实现的是现在应用最广泛的钢筋混凝土结构。其充分利用了钢筋的受拉能力强和混凝土抗压能力强的特点。 随着钢结构在建筑结构的发展,有学者提出钢管混凝土的想法,其结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高。同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。 2 国内外研究现状 同济大学刘源[1]等通过调研得到:国内外钢管混凝土注规范及文献未考虑设置加劲肋或添加不严谨,但直接将加劲肋面积并入公式会导致计算承载力偏小。所以建议通过考虑加劲肋形式、约束系数和组合抗弯刚度等参数对现行规范承载力公式进行修正从而得到更准确的计算结果。 湖南大学王潇宇[2]等认为目前对钢管混凝土的研究还未涉及悬臂钢管混凝土构件的抗冲击性能研究,而悬臂构件的抗侧向刚度较小,在受冲击荷载作用下的变形会更大,因此有必要对悬臂钢管混凝土构件进行抗冲击性能研究。 福州大学陈宝春[3]对收集到的413座钢管混凝土拱桥进行了分析,可以看出钢管混凝土拱桥在我国的应用,数量持续增加,跨径增长明显,技术创新不断,已形成了成套的建设技术,并颁布了国家与行业技术标准,预计在今后的基础设施建设中还将发挥积极的作用。本文基于统计资料,对行业、区域分布,桥型与施工方法以及拱肋材料、矢跨比、拱轴线型等结构参数的分析,预测了今后的发展趋势,可供实际工程应用参考。 华南理工大学梁敬敏[4]等人认为我国是较早研究钢管混凝土结构的国家之一,但由于经济和技术条件,大部分钢管混凝土结构用于费用较高的超高层,而对于普通住宅或普通高层,我国常用钢筋混凝土结构,很少用到有支撑的钢管混凝土结构。 3 钢管混凝土的优点 钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 3.1承载力高、延性好,抗震性能优越 钢管混凝土中,由于钢管的密闭性,对混凝土产生约束作用,使混凝土处于三向受力状态,提高了混凝土的抗压能力。由于钢管属于柔性结构,受压会发生侧向失稳,但其内部的混凝土又能够限制钢管发生屈曲。因此,二者的相互作用使构件的塑性大大提高,承载力得到了明显的提高。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。 塑性是指在静载作用下的塑性变形能力。钢管混凝土短柱轴心受压试验表明,试件压缩到原长的2/3,纵向应变达30%以上时,试件仍有承载力。剥去钢管后,内部混凝土虽已有很大的鼓凸褶皱,但仍保持完整,并未松散,且仍有约5%的承载力,用锤敲击后才粉碎脱落。抗震性能是指在动荷载或地震作用下,具有良好的延性和吸能性。在这方面,钢管混凝土构件要比钢筋混凝土构件强得多。在压弯反复荷载作用下,弯矩曲率滞回曲线表明,结构的吸能性能特别好,无刚度退化,且无下降段,和不丧失局部稳定性的钢柱相同,但在一些建筑中,钢柱常常要采用很厚的钢板以确保局部稳定性。但还常发生塑性弯曲后丧失局部稳定。因此,钢管混凝土柱的抗震性能也优于钢柱。 3.2施工方便,工期大大缩短 钢管混凝土结构施工时,钢管可以作为劲性骨架承担施工阶段的施工荷载和结构重量,施工不受混凝土养护时间的影响;由于钢管混凝土内部没有钢筋,便于混凝土的浇注和捣实;钢管混凝土结构施工时,不需要模板,既节省了支模、拆模的材料和人工费用,也节省了时间。 同时,钢管混凝土柱的零件较少,焊缝少,构造简单,柱脚常采用在混凝土基础上预留杯口的插入式柱脚,因而工厂制造比较简单,同时构件自重较小,运输和吊装也较易,施工很简便,而且钢管混凝土柱采用板材卷制,板材厚度都不大,一般在40mm以内,无论工厂焊接和现场进行对接,都没有什么困难。同时,与钢筋混凝土柱相比,钢管混凝土柱的外皮钢管具有钢筋的功能,兼有纵向钢筋和横向箍筋的作用,所以管内没钢筋,省了钢筋下料和绑扎钢筋等一系列工艺,又由于柱外皮钢管本身就是耐侧压的模板,同时也省了支模和拆模等工序。近年来,泵送砼相当普遍,现场浇灌并无困难,我国创造并广泛使用的高位抛落不振捣混凝土的施工方法,更简化了现场灌混凝土的工序,简便了施工。在浇筑后,钢管内处于相当稳定的湿度条件,水分不易蒸发,省去浇水养护工序,简化了混凝土养护工艺。 3.3有利于钢管的耐火性和耐腐蚀性 由于钢管内填有混凝土,能吸收大量热能,因此遭受火灾时管柱截面温度场的分布很不均匀,增加了柱子的耐火时间,减慢钢柱的升温速度,并且一旦钢柱屈服,混凝土可以承受大部分的轴向荷载,防止结构倒塌。组合梁的耐火能力也会提高,因为钢梁的温度会从顶部翼缘把热量传递给混凝土而降低。经实验统计数据表明:达到一级耐火3小时要求和钢柱相比可节约防火涂料1/3-2/3甚至更多,随着钢管直径增大,节约涂料也越多。 此外,钢管中浇注混凝土使钢管的外露面积减少,受外界气体腐蚀面积比钢结构少得多,抗腐和防腐所需费用也比钢结构节省。

钢管混凝土结构施工技术

钢管混凝土结构施工技术 钢管混凝土是将普通混凝土填人薄壁圆形钢管内形成的一种钢一混凝土组合结构。其工作原理是:借助内填混凝土增强钢管壁的稳定性;借助钢管对核心混凝土的套箍(约束)作用,使核心混凝土处于三向受压状态,从而使核心混凝土具有更高的抗压强度和抗变形能力。钢管混凝土适合于高层、大跨、重载和抗震抗爆结构的受压杆件。 钢管混凝土在本质上属于套箍混凝土。它除具有一般套箍混凝土的强度高、重量轻、塑性好、耐疲劳、耐冲击等优点外,在施工工艺方面还具有以下一些独特优点: 1)钢管本身即为耐侧压的模板,浇筑混凝土时可省去支模和拆模工作。 2)钢管兼有纵向钢筋(受拉和受压)和箍筋的作用,制作钢管比制作钢筋骨架省工,且便于浇筑混凝土。 3)钢管本身又是劲性承载骨架,其焊接工作量比一般型钢骨架少,可以简化施工安装工艺、节省脚手架、缩短工期、减少施工场地。在寒冷地区,可以冬季安装钢管骨架,春季浇筑混凝土,施工不受季节限制。 钢管混凝土与钢结构相比,在自重相近和承载能力相同的条件下,可节省钢材约50%,且焊接工作量大幅度减少;与普通混凝土结构相比,在保持钢材用量相近和承载能力相

同的条件下,构件的截面面积可减少约一半,混凝土用量和构件自重相应减少约50%。 20世纪90年代以来,我国高层建筑开始采用钢管混凝土柱。如23层的厦门金源大厦,地下1层至地上19层的全部28根柱以及20~23层的4根角柱,均采用钢管混凝土;北京四川大厦(地上32层,高100m),地下3层柱全部采用直径为70cm钢管混凝土。1999年建成的深圳赛格广场大厦(地上72层,高291.6m),是我国自行投资、设计、全部采用国产钢材、自行加工和施工的最高的钢管混凝土结构高层建筑。赛格广场大厦塔楼部分采用框筒结构体系,框架采用钢管混凝土柱、钢梁和压型钢板组合楼盖,内筒由28根钢管混凝土密排柱组成,受力最大的钢管混凝土柱,截面为φ1600mm×28mm,Q345钢材,内填C60混凝土。 一、钢管混凝土的节点构造 钢管混凝土结构各部件之间的相互连接,以及钢管混凝土结构与其他结构(钢结构、混凝土结构等)构件之间的相互连接,应满足构造简单、传力明确、安全可靠、整体性好、节约材料和施工方便等要求。其核心问题是如何保证可靠地传递内力。 1、一般规定 1)焊接管必须采用坡口焊,并满足Ⅱ级质量检验标准,达到焊缝与母材等强度的要求。

相关文档
最新文档