反射激光探测器-反射激光探测器功能介绍

反射激光探测器-反射激光探测器功能介绍
反射激光探测器-反射激光探测器功能介绍

反射激光探测器-反射激光探测器功能介绍

反射激光探测器用什么品牌好?维安达斯系列反射式激光探测器(发明专利号:ZL.201520316071.2)采用650nm可见激光作为探测光源,利用激光源高度集中的特性,通过与反射镜配合,将激光发射器和激光接收器设计在同一个探测器上,达到对射式激光探测器一样的应用效果;可广泛应用于不方便两边布线或不方便取电的通道、厂区入口、铁路、公路、河边等场所的入侵防范,或者交通检测、计量检测等场所;以下是反射激光探测器功能的介绍。

反射式激光探测器内部采用本公司专利技术的自动光能量记忆技术(ALM)和AGC自动增益控制电路,使得维安达斯系列激光探测器可广泛应用于各种复杂环境,彻底杜绝由于小动物或者其他环境因素(风霜雨雪雾等)引起的误报。

激光作为一种能量高度集中的光源,早期应用于航空航天及军工设施中;维安达斯系列激光入侵探测器采用军工级的激光发射和接收器件作为探测器的主要部件,使产品在探测距离,抗干扰,稳定性各方面都优于传统的主动红外红外对射、红外光栅等探测器,因此一经面世即受到各界用户的广泛应用和肯定,目前已经成功应用于机场、地铁、国界线、大型项目重点设备保护现场、各种训练场、工厂周界、养殖场等,是现代安防领域重要的入侵探测器。

技术参数

以上就是反射激光探测器功能介绍,广州市艾礼富电子自成立以来,坚持自主研发、生产、销售本公司系列品牌之:主动式红外对射、激光对射、红外光栅、红外光墙、脉冲电子围栏,双鉴电子围栏、张力电子围栏、各种环境探测器以及分线、总线、IP、大型及超大型防盗报警控制系统等;产品广泛应用于工厂、机关、学校、文博、经融、军警单位、边境线及国家重点大型项目等,公司坚持以“百年品牌”为经营目标,以“高科技,平民化”为产品市场导向,立志于和广大的合作伙伴一起,将质优价平的安防产品带进千家万户。反射激光探测器登录广州艾礼富官网咨询了解。

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

金属探测器的原理

可视金属探测器 文章简介 2014年已经过去一大半了,金属探测器走过它不寻常的一年。一个产品的出现带动了一个行业的发展,于是考古寻宝这个既陌生又熟悉的行业开始进入市场。40多年过去了,金属探测器经历了几代探测技术的变革,从最初的信号模拟技术到连续波技术直到今天所使用的数字脉冲技术,金属探测器简单的磁场切割原理被引入多种科学技术成果。无论是灵敏度、分辨率、探测精确度还是工作性能上都有了质的飞跃。应用领域也随着产品质量的提高延伸到了多个行业。但是在选择可视金属探测器上面,还是有些误区。下面我 将介详细的介绍一下 文章详细内容 可视金属探测器 2014年已经过去一大半了,金属探测器走过它不寻常的一年。一个产品的出现带动了一个行业的发展,于是考古寻宝这个既陌生又熟悉的行业开始进入市场。40多年过去了,金属探测器经历了几代探测技术的变革,从最初的信号模拟技术到连续波技术直到今天所使用的数字脉冲技术,金属探测器简单的磁场切割原理被引入多种科学技术成果。无论是灵敏度、分辨率、探测精确度还是工作性能上都有了质的飞跃。应用领域也随着产品质量的提高延伸到了多个行业。但是在选择可视金属探测器上面,还是有些误区。下面我 将介详细的介绍一下 一、可视金属探测器选购的误区 可视金属探测器,是一个需要特别注意其探测深度和探测目标的设备,同时在购买时,很难从产品资料得 到准确信息,所以一定要注意一下几个误区: 1、可视金属探测器作为非大众日常消费设备,所以可视金属探测器在外观上基本差别不大,千万不要认为 外观差不多的产品,效果就差多,因为可视金属探测器基本是在地下操作,以手拿着为主, 很多品牌以国内与国外的产品,外观都一样,指标都一样,能说能同一时间探测到目标吗?外观与指标不 决定识别目标的因素。 2、买可视金属探测器、千万不要贪便宜 可视金属探测器探测深度很重要,所以买可视金属探测器千万不要能买另外产品一样,觉得凑合就行价格便宜凑合的产品,可以说是在探宝中无法满足您的工作。因为矿化反应的影响都会干扰您的探测。灵敏度会降低,探测警报声不停在响动,所以购买时一定要注意。 因为几百到二千元的可视金属探测器,即使是像国产的探宝王、TB1000等,这些价格确实便宜,国产的,在做工方便都是比较粗造的,把指标做大,来满足消费者的心理。国产的产品唯有一点就是功能多,不成

探测器原理大全

探测器原理大全 (2) 激光入侵探测器 激光与一般光源相比有如下特点: a.方向性好,亮度高。一束激光的发散角可做到小于10-3~10-5弧度,即使在几公里以外激光光束的直径也仅扩展到几毫米或几厘米。由于激光光束发散角小,几乎是一束平行光束,光束能聚集在一个很小的平面上,产生很大的光功率密度,其亮度很高。 激光光源和其它光源的亮度比较: 光源亮度(w/Sr?cm2) 蜡烛0.5 电灯470 太阳表面0.165M 氦-氖激光15M 红宝石激光10亿兆~37亿兆 b.激光的单色性和相干性好。 激光是单一频率的单色光,如氦氖激光器的波长为6328?,在其频率范围内谱线宽度ΔU=10-1Hz,而其他一般光的ΔU = 107-109 Hz。光的相干性取决于其单色性。 光的相干长度δm与谱线宽度的关系是: δm=c/ΔU,其中c为光速。 一般光源的相干长度为几个毫米。单色光源氦-86灯,λ=6057?,相干长度 δm=38.6cm;而氦氖激光器λ= 6328?,δm=40km。

按激光器的工作物质来分,激光器可分为如下几种: 固体激光器:它的工作物质为固体,如钕玻璃、红宝石等。 液体染料激光器:它的工作物质为液体染料,如若丹明香豆素等。 气体激光器:它的工作物质是二氧化碳、氦-氖、氮分子等。 半导体激光器:它的工作物质是半导体材料,如砷化镓。 激光探测器与主动红外式探测器有些相似,也是由发射器与接收器两部分构成。发射器发射激光束照射在接收器上,当有入侵目标出现在警戒线上,激光束被遮挡,接收机接收状态发生变化,从而产生报警信号。 激光探测器的作用距离: 式中 P1——激光功率; QT——光束发散角; M——调制光速调制度; SR——接收面积; PR——接收到的功率。 由上式可以看出,要提高探测器的作用距离,应增大激光源的发射光率,增加光学系统的透过率,减少发射装置的发散角,也可采用高灵敏的光电传感器。 激光具有高亮度,高方向性,所以激光探测器十分适用于远距离的线控报警装置。由于能量集中,可以在光路上加装反射镜,围绕成光墙,从而可以用一套激光器来封锁场地的四周,或封锁几个主要通道路口。

金属探测器原理图

金属探测器原理图 一、工作原理 地下金属探测仪产生周期性变化的磁场,周期性变化的磁场在空间产生涡旋电场。而涡旋电场如果遇到金属的话,会形成涡电流,可以被检测到。 涡电流产生后反作用于磁场使线圈的电压和阻抗发生变化。 发射线圈的电流会产生一个电磁场,就如同电动机也会产生电磁场一样。磁场的极性垂直于线圈所在平面。每当电流改变方向,磁场的极性都会随之改变。这意味着,如果线圈平行于地面,那么磁场的方向会不断地交替变化,一会儿垂直于地面向下,一会儿又垂直于地面向上。

随着磁场方向在地下反复变化,它会与所遇的任何导体目标物发生作用,导致目标物自身也会产生微弱的磁场。目标物磁场的极性同发射线圈磁场的极性恰好相反。如果发射线圈产生的磁场方向垂直地面向下,则目标物磁场就垂直于地面向上。 接收线圈能完全屏蔽发射线圈产生的磁场。但它不会屏蔽从地下目标物传来的磁场。这样一来,当接收线圈位于正在发射磁场的目标物上方时,线圈上就会产生一个微弱的电流。 这一电流振荡的频率与目标物磁场的频率相同。接收线圈会放大这一频率并将其传送到金属地下金属探测仪的控制台,控制台上的元件继而对这一信号加以分析。 二、金属探测器的知名产品 一个品牌的认知,要看一个品牌的历史背景。好的产品,一般都有久远的历史背景,浓厚的企业氛围,很高的知名的。那么,有哪些好产品,更受到大家的喜爱呢? 金属探测器在国际市场中应用很广,美国、德国、澳大利亚和日本为主要生产国。 1、Pro-Arc考古专家

美国Fisher金属探测器最知名的一款型号是Pro-arc考古专家,原产于美国,导电弧型显示屏,硬币大小探测深度在16英寸左右 (40cm-50cm),目标越大、导电性越好、埋藏时间越长,可探测的深度就会越深。具有静态全金属和动态全金属模式、目标识别模式、超深探测模式和超载报警系统。它不但灵敏度高,而且能指示金属材质、目标信心度、土壤矿化程度、相对探测深度等。其最大优点是具有自动地表抓斗功能,能很好的排除矿化反应,并且能排除一切外界干扰,名列全球十大地下探测器之首,在全球累计销量8000万台,力压一切其他竞争对手。美国海豹突击队(海陆空三栖)指定特种装备,承担起反恐的重要使命,同时被考古学家、探宝爱好者强烈推荐。 它代表了金属探测器行业历史最悠久的公司Fisher公司所拥有的最好技术。重量轻、平衡性很好,是本行业最符合人体工程学设计的金属探测器。它有着按指令驱动的直观界面,超大屏幕LCD显示。而且有相应的视觉指示器,例如:目标识别、目标可信度指示、目标深度指示器、地表矿化度。并且有多种勘探模式:识别模式、静态全金属、动态全金属模式。触发器驱动的FASTGRAB地表平衡,带手动制动。触发器控制的驱动目标精确定位功能,可变音频音高。显示屏背光可用于夜晚或微光环境。档位和识别控制。 Pro-arc考古专家同时是是一款多功能的高性能电脑化金属探测器。它的高灵敏度和地表平衡控制能力可以适应所有环境,它的识别响应能力是专为复杂环境设计的。而对于特殊种类的人工制品,它的

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

激光入侵探测器

周界报警系统方案 选型手册 1.报警主机系列

2.周界报警系统方案 2.1 概述 DS7400Xi-CHI总线式报警主机是一款性能优异、功能强大、操作简便、稳定可靠的大型总线式系统主机,该产品被广泛应用在保安监控、周界防范、小区家庭联网报警等项目中,受到广大用户和工程商的好评。 总线式报警主机的技术特点是稳定可靠、报警快捷、设计简单、施工便利。本方案根据周界总平面设计图纸,结合周界地型走势,以DS7400总线式报警主机为核心,采用双总线系统,55对单光束激光对射探测器和一套报警管理软件,为用户组建一套功能先进、价格合理、质量稳定的周界报警安防系统。系统可实现: 2周界全面设防,无盲区和死角; 2探测设备抗不良天气环境干扰能力强; 2防区划分适于报警时准确定位; 2报警中心具备语音/警笛/警灯提示; 2翻越区域现场报警,可实现同时发出警笛/警灯、警告; 2报警中心可控制前端设备状态的恢复; 2报警联动; 2进行报警中心报警状态、报警时间记录; 2电子地图显示; 2事件记录打印。 2.2 系统方案 系统主要由以下几个主要部分组成:

2前端山东飞天激光XD系列激光对射探测器 2德国BOSCH DS7400Xi-CHI大型总线制报警主机(支持双总线,支持248个防区) 2CMS7000报警管理软件(电子地图管理软件,可选) 前端对射探测器安装在周界围墙上,通过合理排布,将周界划分为若干功能相同的独立防区,系统布线采用两芯总线方式,使用DS7457I单防区模块,将所有的周界主动红外探测器并接在一条总线上,报警信号传送到总的系统平台,在中心计算机显示报警的准确位置,还可以通过联动模块实现视频联动。 根据该周界的特点及围墙的长度,系统设计采用双总线结构,每路总线长度均可达到 1600米。 第一路总线连接东南面围墙上25对对射,组成25个防区;第二路总线连接西北面围墙上30对对射,组成30个防区。两路总线分别汇总在报警管理中心的双总线驱动模块的A、B总线接口,DS7400Xi-CHI 通过串口模块与PC机相连,主机实时监测总线上各个防区的状态,当某个防区的探测器发现有人非法攀登和跨越时,探测器发出报警信号,通过数据总线传送给报警主机,实时的将本防范区域的报警信号、警情类型显示到报警主机键盘上,并触发声光报警,同时报警管理软件弹出电子地图并进行报警显示,使操作人员能及时、准确地掌握警情,及时调动保安人员进行处理。 2.3 主要设备介绍 11.3.1前端单光束激光对射探测器 飞天激光XD系列单光束主动激光对射探测器

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

自制简易金属探测器

自制简易金属探测器 自制简易金属探测器 与其它类型的金属探测器相比,本电路的工作原理是这样的:当探测用电感线圈的电感量变化时,L振荡器的振荡频率也产生变化。任何金属体一靠近这个探测电感器其电感量就变。 频率如何变化这取决于金属特性和电路所使用的工作 频率。如果工作频率很高,则金属物就可视为一个短路环,它将降低探测电感的电感量,从而使振荡器工作频率上升;如果振荡器的工作频率足够低以至可忽略涡流损失,这个探测器就有可能区分出黑色金属或无色金属。 要制作一个频率不高于200Hz振荡器的振荡线圈是很困难的,故本振荡电路振荡工作频率选用约300KHz,这样电感器就很容易制作,只需用一根同轴电缆线按图中尺寸绕一匝就制成。 电路包括振荡器T1、频率-电压转换器IC1和MOS双运放器IC2。探测头线圈直径为440mm,C1和C2的值可保证振荡器的频率约为300KHz,若采用较小直径探测圈,

则线圈需绕较多匝数。 振荡器信号电平必须至少达到500mVpp,以便能够很好地驱动4046集成块,在这个电平,相位比较器可保证集成块内部的锁相环总是锁定同步的。在10脚上的源极跟随器输出再被送到IC2 CA3130作较大幅度放大。 锁相环的中心频率,也就是中心处零的微安表的零点由电位器P1所调节。如果运放器的灵敏度极高,则要仔细反复地用P2作精调。本机灵敏度由P3调整,该电位器被连接于负反馈环与IC2的反相输入端;同时还有一正反馈经微安表和R10加到IC2的非反相输入。当然,也可用不同阻抗的表头,但要改变R9、R10和R11的值。注意:在探测金属时,探测物的大小与探测线圈间是有一定关系的。要用440mm(17.5寸)直径的探测线圈去探测硬币大小的金属将是徒劳的。

医学中常用激光器(详细)

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用方便,是目前最常用的激光器之一,在医学上,CO2激光器作为手术刀使用日益引起人们的重视。CO2激光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

1.5μm单光子探测器在激光遥感中的应用

1.5μm单光子探测器在激光遥感中的应用 单光子探测器作为最精密的测量仪器,可探测到光的最小单元,单个光子。单光子检测技术己广泛应用在激光雷达、分布式光纤探测器、生物荧光检测、量子信息、光学成像等领域。目前,1.5 μm波段单光子探测器主要包括超导纳米线单光子探测器、频率上转换单光子探测器、InGaAs/InP单光子雪崩二极管。1.5 μm波段气溶胶激光雷达具有人眼安全,大气透过率高,受瑞利散射干扰小,太阳背景辐射弱的优点。 本论文针对这三个探测器的特点,分别研制了不同类型的激光遥感设备。本论文的主要工作如下:1.研制了基于上转换单光子探测器的人眼安全1.5μm微脉冲气溶胶激光雷达。采用高探测效率和超低噪声的上转换单光子探测器,实现了大气回波信号的高信噪比探测。在脉冲能量为110μJ,望远镜口径100mm,时间分辨率5分钟,激光雷达实现了水平距离7km的大气气溶胶探测。 在验证实验中,上转换气溶胶激光雷达实现了对大气能见度的昼夜连续24 小时的观测。2.研制了 1.5μm波段的全光纤、微脉冲、人眼安全的高光谱分辨测风激光雷达。通过采用基于扫描Fabry-Perot干涉仪的高光谱分辨率技术,以及单光子检测技术,同时获得了大气气溶胶谱的频移和谱宽信息。在验证实验中,当时间分辨率1分钟时,水平探测距离达到4km。 在距离为1.8km的位置,距离分辨率由30m变换到60m。对比实验中,高光谱分辨测风激光雷达的径向风速测量结果与超声风场传感器Vaisala所得测量结果吻合。根据经验公式,风速的标准偏差在1.8km处为0.76m/s,光谱展宽的标准偏差在1.8km处为2.07MHz。3.研制了基于1.5 μm波段的结构紧凑、人眼安全、双边缘直接探测多普勒测风激光雷达。 通过采用全光纤保偏结构,保证了光学耦合效率,提高了系统稳定性。通过采用时分复用技术,仅采用单通道Fabry-Peort干涉仪和单通道上转换单光子探测器,实现了双边缘探测技术。校准实验中,系统的相对误差低于0.1%。验证实验中,双边缘测风激光雷达实现了连续48小时的大气的风场和能见度探测。 该激光雷达的测量结果与超声测风传感器具有很好的一致性,速度的标准偏差为1.04 m/s,方向的标准偏差为12.3°。4.研制了基于自由运行InGaAs/InP 单光子探测器的1.5气溶胶激光雷达。针对激光雷达应用,对自由运转单光子探

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

金属探测器是如何工作的

金属探测器是如何工作的 没有必要了解金属检测的科学原理使用探测器。你可以找到硬币、戒指、珠宝、金块、缓存或任何你寻找不知道你探测器是如何工作的。对于你的探测器做的更好的理解,但是…意识到为什么只是这奇怪的声音…理解为什么它反应的方式对金属和矿物质…很有必要学习如何金属探测器的工作原理。两个例子说明这一需要。首先,让我们说你是扫描,得到一个探测器信号。你挖下一只脚,什么也没找到。你扩大洞,挖另一脚,仍然没有找到任何东西。你可以继续挖五到六英尺,最后放弃。然而, 你的信号持续在这个挖! 到底是哪里出了错? 是你的错,还是你的探测器? 是一个目标吗? 嗯,是的,有一个目标尽管它不一定一个金属。的反应可能是由于一些矿物的变化内容。对于第二个示例,假设您正在研究一个小水壶里的铁金币。 你知道这铁水壶是在某个领域大型扁平的岩石下,放在上面。然而,不幸的是,至少有一个千大型、重型扁平的石头躺在这一领域。地面本身就是高度矿化和一些大的岩石本身也含有大量的铁成矿在这些情况下,知道你的探测器工作原理,再加上有一个理解的各种检测矿物质,会节省你大量的精力。在第一个实例,您将不挖, 或许没有比一只脚,在你意识到之前没有金属目标在地面。除非你知道一些关于铁矿产和金属探测他们的影响,你可能会从未发现铁水壶,除非你决定每个岩石下挖掘的领域。提出了“答案”这两种情况在这本书。 现代金属探测器,旨在提供理论解释,很简单,只有非常基本的检测器操作特征描述。这本书意在不是一个理论工作,但一个家、字段和课堂教材,帮助金属探测器用户了解设备的基本原则。这些原则并不难以理解。当你开始研究矿化、目标识别、应用程序和其他学科领域,你将得到你的学习背景材料。你就会明白你的探测器告诉你…为什么你听到某些信号。你会变得更能确定你已检测到的对象是一个你想挖。一个金属的高效运行检测器并不困难。然而,它确实需要一定的学习,思想和现场应用。 无线电发射和接受 你有一半的金属探测器操作在你的一生中,也许不知道它…共同的收音机。金属检测是实现,基本上,的传输和接收的无线电波信号。面对页面上的框图说明了一个典型的金属探测器的基本组件。电池供电。的发射机电子振荡器的极端离开图生成一个信号。发射机信号电流从发射机振荡器通过导线(搜索线圈电缆), 搜索线圈发射器的绕组(天线)和发射机天线是几把电线,一般伤口以循环的方式。 无线电发射和接受 当前循环的发射机天线,一个看不见的电磁场产生流动的空气(或其他周围的介质,即。:空气、木材、岩石、土材料,水,等等)。在所有的方向。如果这个电磁场是可见的,它似乎是一个巨大的形状,三维甜甜圈,发射机天线嵌在它的中心。电磁场理论指出,磁力线不能交叉。因此,他们挤在一起通过环形天线,但他们在外面不拥挤。幸运这种拥挤发生,因为磁力线的密度(密度)的现象,使金属检测邻近地区搜索线圈。下一个页面的底部画注意区域表示为二维检测模式。这是该网站的最大字段拥挤;它是在这里,金属检测发生的两个主要…涡流生成和电磁场畸变现象。(注意theMirror-image检测模式搜索线圈上面。)

激光器的分类介绍

激光器的分类介绍 实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。 (一)固体激光器 实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。 在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。 固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。 (二)气体激光器 工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。 气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子

中红外光纤激光器

中红外光纤激光器 摘要 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的 重要应用。利用固体激光器泵浦稀土离子掺杂的玻璃光纤产生荧光发射是 直接获得2~5 μm 波段中红外激光的有效途径,具有光束质量好、体积 小、转换效率高、散热效果好等优点。本文介绍了中红外光纤激光器的原 理、研究现状和发展前景。对中红外光纤激光器的发展和研究方向进行了 阐述。 关键词:中红外;光纤激光器;稀土离子;硫化物光纤;氟化物光纤 一、中红外光纤激光器简介 1.1 中红外激光 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的重 要应用。它位于大气“透明窗口”,处于大多数军用探测器的工作波段, 可 以进行战术导弹尾焰红外辐射模拟、人眼安全的激光雷达、激光定向红外 干扰等军事用途。在民用领域可用于遥感化学传感、空气污染控制,它还 可以用于新一代激光手术,使血液迅速凝结,手术创面小、止血性好(水分 子在3μm附近有很强的吸收峰)此外,采用2~5 μm 替代目前广泛使用 的1.55 μm 作为光纤通信工作波长也是一项极具研究价值的课题,由于 材料的Rayleigh 散射与光波长的四次方成反比,采用2~5 μm 作为工 作波长可以有效降低光纤损耗,增加无中继通信的距离。因此,研发中 红外波段的激光器对于国家安全和国民经济建设具有十分重要的意义。 获得中红外激光的方法有间接方法和直接方法。其中间接方法包括: (1) CO2激光器的倍频及差频输出 (2) 利用非线性红外晶体采用非线性频率变换或光学参量振荡技术 将其它波段激光调谐到中红外波段 直接方法包括: (1)以氟化氘等为介质的化学激光器 (2) 以AlGaAsSb,InGaAsSb,InAs/(In)GaSb 等锑化物窄禁带半导 体、过渡金属离子掺杂的Ⅱ–Ⅵ族半导体制作的中红外激光器 (3)近红外半导体激光泵浦的稀土离子或过渡金属离子掺杂的玻璃、

火灾探测器

火灾探测器 一、火灾探测器的分类 (一)根据检测的火灾特性不同,火灾探测器可分为感烟、感温、感光、复合和可燃气体等五种类型,每个类型又根据其工作原理的不同而分为若干种。火灾探测器具体可分为感烟火灾探测器、感温火灾探测器、感光火灾探测器、复合火灾探测器、可燃气体探测器,而其中感烟火灾探测器分为点型和线型,点型分为离子型和光电型,离子型有单源型和双源型组成,光电型有减光型和放射型,线型主要有激光型和红外光束型;感温火灾探测器也有点型和线型组成,点型由差温、差定温和定温组成,而线型有定温、差温、差定温型组成;感光火灾探测器主要有紫外型和红外型组成;复合火灾探测器主要有感温感烟型、感温感光型、感烟感光型、红外光束感温型;可燃气体探测器主要有催化燃烧型和光电型固体电解质型。 (二)根据感应元件的结构不同,可分为: 1、点型火灾探测器。对警戒范围中某一点周围的火灾参数作出响应。 2、线型火灾探测器。对警戒范围中某一线路周围的火灾参数作出响应。 (三)根据操作后是否能复位,可分为:

1、可复位火灾探测器。在产生火灾报警信号的条件不再存在的情况下,不需要更换组件即能从报警状态恢复到监视状态。根据复位的方式不同,又可分为以下三种: (1)自动复位火灾探测器。能自动地恢复到监视状态。 (2)遥控复位火灾探测器。通过遥控操作能恢复到监视状态。 (3)手动复位火灾探测器。通过手动调节能恢复到监视状态。 2、不可复位火灾探测器。 (四)根据其维修保养时是否可拆,可分为: 1、可拆式火灾探测器。 2、不可拆火灾探测器。 二、感烟火灾探测器。 感烟火灾探测器分为点型感烟火灾探测器和线型感烟火灾探测器。 (一)点型感烟火灾探测器 1、离子感烟火灾探测器。 2、光电式感烟火灾探测器。 (二)线型感烟火灾探测器 1、红外光束火灾探测器。 2、激光感烟火灾探测器。 由于激光感烟探测器涉及到光学问题,所以使用中必须

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

金属探测器课程设计报告

《感测技术》课程设计 题目:金属探测器的制作 学号姓名:刘长军刘倩倩刘嘉威刘校 罗林李鑫林祥祥林晗 老师:袁新娣 时间:2013年11月

引言 认识金属探测器 金属探测器作为一种最重要的安全检查设备,己被广泛地应用于社会生活和工业生产的诸多领域。比如在机场、大型运动会(如奥运会)、展览会等都用金属探测器来对过往人员进行安全检测,以排查行李、包裹及人体夹带的刀具、枪支、弹药等伤害性违禁金属物品;工业部门(包括手表、眼镜、金银首饰、电子等生产含有金属产品的工厂)也使用金属探测器对出入人员进行检测,以防止贵重金属材料的丢失;目前,就连考试也开始启用金属探测器来防止考生利用手机等工具进行作弊。 由此可见,金属探测器对工业生产及人身安全起着重要的作用。而为了能够准确判定金属物品藏匿的位置,就需要金属探测器具有较高的灵敏度。目前。国外虽然已有较为完善的系列产品,但价格及其昂贵;国内传统的金+ .属探测器则是利用模拟电路进行检测和控制的,其电路复杂,探测灵敏度低,且整个系统易受外界干扰。 一、设计目的 1、进一步了解和运用涡流效应的原理。 2、了解电容三点式振荡电路原理。 二:任务和要求

1、任务:设计一种可准确探测小范围内是否存在金属物体的电子。 2、探测器性能要求: (1)工作温度范围:-40℃——+50℃。 (2)连续工作时间:一组5号干电池可连续工作40h(小时)。(3)要求当有金属靠近传感器时相应的电路会发出警报。(4)探测距离在20mm以内。 三、总方案设计 1、元器件的准备 电路中的NPN型三极管型号为9014,三极管VT1的放大倍数不要太大,这样可以提高电路的灵敏度。VD1-VD2为1N4148。电阻均为1/8W。 金属探测器的探头是一个关键元件,它是一个带磁心的电感线圈。磁心可选Φ10的收音机天线磁棒,截取15mm,再用绝缘板或厚纸板做两个直径为20mm的挡板,中间各挖一个Φ10mm 的孔,然后套在磁心两端,如图1所示。最后Φ0.31的漆包线在磁心上绕。如果不能自制,也可以买一只6.8mH的成品电感器,但必须是那种绕在“工”字形磁心上的立式电感器,而且电感器的电阻值越小越好。

相关文档
最新文档