CT实验平行束投影与反投影重建报告

CT实验平行束投影与反投影重建报告
CT实验平行束投影与反投影重建报告

《地图学》实验报告

《地图学》 实 验 报 告 院系: 班级: 姓名: 指导教师: 矿业工程学院·测绘工程教研室 实验一地图投影的认识及应用 一、实验目的 1.了解与掌握常用的地图投影; 2.掌握各类投影经纬线形状、变形规律及应用; 3.针对不同用途的地图投影进行比较分析; 4.熟悉GIS软件中地图投影的应用。 二、实验内容 1、地图投影的认识与判别; 2、熟悉GIS软件中地图投影功能,掌握地图投影定义及变换方法。 三、实验方法与步骤 1、定义投影:

2、地图投影转换:设置方格网;投影变换

四、实验成果 投影名称(中文) 投影名称(英 文) 标准 纬线 中央 经线 经纬网形状变形特点 双标准纬线等角圆锥投影(兰勃特投影) Lambert conformal conic projection 40oN 56oN 10oE 纬线就是以圆锥顶点 为圆心的同心圆弧,经 线为由圆锥顶点向外 放射直线束。 两条标准纬线 无变形,等变 形线与纬线平 行。 双标准纬线等角圆锥投影(兰勃特投影) Lambert conformal conic projection 24oN 46oN 110oE 纬线就是以圆锥顶点 为圆心的同心圆弧,经 线为由圆锥顶点向外 放射直线束。 两条标准纬线 无变形,等变 形线与纬线平 行。 伪圆柱投影(罗宾逊投影) Robinson projection 38oN 38oS 0o纬线为平行直线,中央 经线为直线,其余经线 均为对称于中央经线 的曲线。 赤道为无变形 线,离赤道越 远变形越大。 横轴等积方位投影Azimuthal Equai-Area Projection 0o20oE 中央经线与赤道为直 线,其她经纬线都就是 对称于中央经线与赤 道的曲线, 面积没有变 形,距投影中 心越远,变形 越大。 实验二墨卡托投影的绘制 一、实验目的 1.使学生掌握墨卡托投影的经纬网形状与变形性质。 2.使学生掌握墨卡托投影的绘制方法。 3.理解墨卡托投影上等角航线与大圆航线的绘制方法。 二、实验内容 1.按主比例尺为1:15000万,经纬线网密度为10°,绘制墨卡托投影经纬线网格。 2.转绘大洲轮廓。 3.绘制大圆航线与等角航线。

《中心投影和平行投影》教案

《中心投影和平行投影》教案三维目标: 一、知识与技能 1.了解中心投影、平行投影、斜投影、正投影的概念。 2.了解三视图的有关概念。 3.掌握三视图画法规则,能正确画出简单空间几何体的三视图,并能识别三视图所表示的立体模型。 二、过程与方法 1、通过欣赏、观察各种投影,进一步培养学生的空间想象能力。 2、通过学生作图、识图来培养运用图形进行数学交流的能力。 三、情感态度与价值观 通过引导学生欣赏生活中投影的例子,使学生不断感受 数学,走进数学,转变学生的数学学习态度,激发学生 学习数学的热情。 教学重点: 1、中心投影、平行投影的概念 2、三视图的画法规则及画空间几何体的三视图 教学难点: 画空间几何体的三视图及根据三视图判断空间几何体的形状和结构。 教具准备: 多媒体课件、几何模型 教学过程: 一、创设情景,引入新课 (多媒体播放手影表演、皮影戏的动画,组织学生欣赏) 1、提问:同学们在感受这些形象逼真的图形时,是否 思考一下,这些图形是怎样形成的呢?它们形成的原 理又是什么呢?这些原理还有哪些重要用途呢? 2、导入:这就是我们本节课所要研究的问题——中心 投影和平行投影。 二、知识生成、示例讲解: 1、投影的概念 (1)投影:光线通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。 (2)中心投影:投射线交于一点的投影称为中心投影。 (3)平行投影:投射线相互平行的投影称为平行投影。平行投影分为斜投影与正投影。 讲解原则:配以多媒体动画,让学生思考,抽象或概

括出相应定义,教师加以修正。 练习:判断下列命题是否正确 (1)直线的平行投影一定为直线 (2)一个圆在平面上的平行投影可以是圆或椭圆或线段 (3)矩形的平行投影一定是矩形 (4)两条相交直线的平行投影可以平行 2、中心投影和平行投影的区别和用途 中心投影形成的直观图能非常逼真地反映原来的物体,主要运用于绘画领域。同学们课后可阅读教科书第18页相关材料,平行投影形成的直观图则能比较精确地反映原来物体的形状和特征。因此更多应用于工程制图或技术图样。 3、空间图形的三视图 (1)三视图概念 视图是指将物体按正投影向投影面投射所得到的图形。光线自物体由前向后投射所得投影称为主视图或正视图。光线自物体由上向下投射所得投影称为俯视图。光线自物体由左向右投射所得投影称为左视图。 (2)三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等 讲解原则:借助多媒体,师生共同讨论,认识清楚三视图画法规则和画三视图过程中需注意的问题。 例1、画出下列几何体的三视图 分析:画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向。一般先画主视图,其次画俯视图,最后画左视图。画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线。物体上每一组成部分的三视图都应符合三条投射规律。 解:这二个几何体的三视图如下 练习:画出下列几何体的三视图 回顾与反思:通过师生共同画图,学生独立画图,让学生充分掌握画三视图的画法规则和一般步骤,认识到空间图形与其三视图间的对应关系,进而提高学生的空间想象能力。 例2、如图,设所给的方向为物体的正前方,试画出它的三视图(单位:cm) 分析:该几何体结构较复杂,可先出示其实物模型,引导学生从三个不同角度观察,找出其轮廓线,进而画出其三视图。在画三视图时,可按相应比例来画。

平行束反投影重建

一、 平行束反投影重建算法 平行束 重建采用的是平移加 旋转的扫描方式,如图1.1所示,射线源在某一角度下水平移动,将物体 全部照射后旋转一角度,如此重复,在这个过程中探测器相应地运动以接收X 射线。 1、反投影重建算法的物理概念: 断层平面中某一点的密度值可以看作是这一平面内所有经过该点的射线的投影值之和(的均值)。 整幅重建图像可以看作是所有方向下的投影累加而成。 射线标号示于图1.2中,像素值(代表密度)分别1x ,2x ,3x ,4x , 赋值如下: 15x =,20x =,32x =,418x = 根据投影的定义(某条射线投影值为该条射线穿过的所有的像素值之和),每条射线的投影i p (1,2i = )为: 1215p x x =+=, 23420p x x =+=,3137p x x =+= 42418p x x =+=, 532p x ==, 61423p x x =+= 720p x == 根据反投影重建算法的物理意义,重建图像中各像素,得到: 113635x p p p =++=,214723x p p p =++=, 323529x p p p =++=,424661x p p p =++= 52 18 3529 61 26 54.1 8.7 3.3 (a) 原图像像素值 (b)反投影重建后图像 (c)求平均后图像 图 1.3 反投影示例 重建后的图像如图1.3(b)所示,可以看出原图像中像素值不为零的点反投影重建后仍较突出,但原图中像素值为零的点,经反投影重建后不再为零,即有伪迹。有时为了使重建后图像的像素值更接近于原图的像素值,在求反投影时,把数据除以投影的数目(即射线数), 50 2 18 (1) (2) (3) (4) (5) (6) (7) X 射线管 平移 平移 探测器 图 1.1 平行束平移加旋转 图 1.2 断层像素值和射线

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

CT反投影滤波重建算法设计(汇编)

地理与生物信息学院 2011 / 2012 学年第二学期 实验报告 课程名称:医学图像处理和成像技术实验名称:CT反投影滤波重建算法设计 班级学号: B090903** 学生姓名: **** 指导教师: **** 日期:2012 年 4 月

一、实验题目:CT反投影滤波重建算法设计 二、实验内容: 1.显示图像; 2.获得仿真投影数据; 3.基于获得的仿真投影数据重建图像。 三、实验要求: 1.画出Shepp-Logan头模型,显示尺寸为128×128; 2.从头模型中获得投影数据,投影数据格式为180×185; 3.基于获得的仿真投影数据重建图像,使用R-L卷积函数,重建 尺寸为128×128。 四、实验过程: 1.显示图像: ①算法实现流程: I. S-L头模型由10个位置、大小、方向、密度各异的椭圆组成, 象征一个脑断层图像。将模型中的椭圆参数写入一个p矩阵中,方便使用其中的数据,并设定所需参数。 II. 使用循环语句给像素赋值: for i=1:10 for x…. for y….. 判断点(x, y)是否在第i个椭圆内;

如是,则将第i个椭圆折射指数赋给点(x, y); end end end III. 显示仿真头模型,使用imshow(f,[])函数显示出图像。 ②实验代码: clear all; p=[0 0 0.92 0.69 pi/2 1 0 -0.0184 0.874 0.6624 pi/2 2 0.22 0 0.31 0.11 72/180*pi 0 -0.22 0 0.41 0.16 108/180*pi 4 0 0.35 0.25 0.21 pi/2 5 0 0.1 0.046 0.046 0 6 0 -0.1 0.046 0.046 0 7 -0.08 -0.605 0.046 0.023 0 8 0 -0.605 0.023 0.023 0 8 0.06 -0.605 0.046 0.023 pi/2 8]; N=256; x=linspace(-1,1,N); y=linspace(-1,1,N); f=zeros(N,N); for i=1:N for j=1:N for k=1:10 A=p(k,3); B=p(k,4); x0=p(k,1); y0=p(k,2); x1=(x(i)-x0)*cos(p(k,5))+(y(j)-y0)*sin(p(k,5)); y1=-(x(i)-x0)*sin(p(k,5))+(y(j)-y0)*cos(p(k,5)); if((x1*x1)/(A*A)+(y1*y1)/(B*B)<=1) %判断条件 f(i,j)=p(k,6); end end end end f=rot90(f); imshow(f,[])

电子地图的制作实验报告

实验一:地理底图基础数据准备 一.实验目的及要求: 1.学习使用Google Earth选择目标地区图形进行矢量化; 3.进一步掌握在arcview、ARCMAP或mapinfo下进行地图配准,数字化,属性编辑等; 4.通过本次实习,使大家掌握用Google Earth进行矢量化,ARCMAP 进行属性编辑等为后期的电子地图设计提供图形数据。 二.实验材料及软件 Google Earth4.2 、getScreen、ArcMap 三.实验步骤: (一)数据准备 1、启动GoogleEarth,在GoogleEarth上定位到自己家乡所在地市州的影像图。 2、在区域内添加地标4-6个(不含四个角点),要求地标在所在区域内分布均匀。记录下地标的地理坐标。也可以导出为kml文件。 3、启动getSrceen,用GetScreen获取家乡的影像。具体方法参见《用GEtScreen与GoogleEarth获取影像的方法.docx》将得到jpg 影像和.map文件(记录四个角点的地理坐标) (二)影像校正 MapInfo配准步骤如下(也可以用mapgis、arcmap、arcview等软件实现配准)用于配准的控制点是影像的四个角点,和(一)2中添加的地

标点。坐标分别见.map文件和.kml文件。均可用记事本打开。1。mapinfo影像校正(配准)步骤 1)打开栅格地图。 文件->打开,选择栅格文件类型。 打开刚才下载的jpg图片。弹出对话框。 选择“配准(Projection)”。出现图像配准对话框。 2)、坐标配准。 点击“+”或“-”号可以缩放对话框中央的地图。

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

遥感实验报告

遥感原理与应用 实验报告 姓名:学号:学院:专业: 年月日 实验一: erdas视窗的认识实验 一、实验目的 初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握几个视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验步骤 打开imagine 视窗 启动数据预处理模块 启动图像解译模块 启动图像分类模块 imagine视窗 1.数据预处理(data dataprep) 2.图像解译(image interpreter) 主成份变换 色彩变换 3.图像分类(image classification) 非监督分类 4. 空间建模(spatial modeler) 模型制作工具 三、实验小结 通过本次试验初步了解遥感图象处理软件erdas的主要功能模块,在此基础上,基本掌握了几个视窗操作模块的功能和用途。为后续的实验奠定了基础。 实验二遥感图像的几何校正 掌握遥感图像的纠正过程 二、实验原理 校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 几何校正包括几何粗校正和几何精校正。地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了几何粗校正。利用地面控制点进行的几何校正称为几何精校正。一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要进行一种通用的精校正方法的实验。该方法包括两个步骤:第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关系,实现不同图像空间中像元位置的变换;第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完成标准图像空间中每一像元亮度值的计算。 三、实验内容 根据实验的数据,对两张图片进行几何纠正 四、实验流程

一种基于约束共轭梯度的闪光照相图像重建算法

第17卷第7期强激光与粒子束V o l.17,N o.7 2005年7月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S J u l.,2005 文章编号:1001-4322(2005)07-1083-05 一种基于约束共轭梯度的闪光照相图像重建算法* 景越峰,刘瑞根,董维申 (中国工程物理研究院流体物理研究所,四川绵阳621900) 摘要:针对闪光照相系统成像信噪比低的特点,提出了正则化预优约束共轭梯度算法(R P C C G)。 R P C C G算法在闪光照相重建方程中引入T i k h o n o v正则化准则,利用预优约束共轭梯度法迭代求图像重建的 最优解。数值试验表明,采用最小二乘+平滑准则的R P C C G算法是一种具有较高的抗噪能力的有效闪光照 相图像重建算法,具有良好的收敛性和稳定性以及较高的重建精度。 关键词:约束共轭梯度;图像重建;正则化;闪光照相 中图分类号:T P391文献标识码:A 闪光照相的重要目标是重建客体的空间密度分布。由于受到模糊、散射、噪声等的影响,闪光照相图像有很大的误差。如何从这种含有很大误差的图像中重建高精度的客体空间密度分布是一个很困难的问题,也是闪光照相图像重建算法研究的核心问题。近20年来很多人对这个问题进行了研究,探索了多种重建算法,其中研究比较多的是滤波反投影方法和代数法。 在数学上,闪光照相图像重建问题,可以看成是大型稀疏矩阵的线性方程组的求解问题。共轭梯度算法是求解这类大规模优化问题的有效算法。同时闪光照相图像重建问题是不适定的,人们往往会根据不同的需要来求在一定准则下的最优解。T i k h o n o v创立的正则化方法[1]是一种求解不适定问题颇为有效的方法,本文在重建算法中引入了基于T i k h o n o v正则化技术的重建准则,讨论了采用约束共轭梯度法的闪光照相图像重建模型,提出的R P C C G算法具有可充分利用先验知识对重建数据进行约束的优点。 1闪光照相图像重建模型 闪光照相系统在单能、无模糊、无散射的情况下,X射线穿过客体时沿射线i的衰减表示为 y i=X/X0=e x p(-Σ k μkαi kρk)(1) 式中:X和X 0分别是X射线的透射照射量和入射照射量;μ k 是客体体元k的质量吸收系数,可以认为是已知 的;α i k 是正向投影矩阵的第i k个元素,它与射线通过体元k的光程相关;ρ k 是体元k中的材料密度;k的求和范 围是射线i所经过的所有体元。令^μ k=μkρk 为体元k线吸收系数,由于质量吸收系数μ k 在不考虑能谱效应时 近似为常数,因此可以通过求线吸收系数的分布得到密度的分布,此时方程(1)进一步改写为 y'k=-l n(X/X0)=Σ k αi k^μk(2) 这样闪光照相图像重建算法要解决的问题就是在方程(2)中由已知的投影y'求得线吸收系数^μ k 的分布。 闪光照相系统为单轴照相,因而假定被照客体是轴对称的。根据上述闪光照相成像模型,闪光照相图像重建的代数方程为 z=A x(3)式中:x为所求的客体空间线吸收系数分布矢量;z为可测量得到的量化投影图像矢量;A为从x到z的正向投影矩阵。对于轴对称客体,在客体的每一个重建截面上,我们采用间距相等的同心圆环网格,每一个截面分为N层,每层的间距为2Δr,如图1所示。 在平行光束投影下,正向投影矩阵A为上三角阵。A的元素A i j 表示第i条光线穿过第j个圆环网格的长度,其大小为 *收稿日期:2005-03-03;修订日期:2005-06-10 基金项目:中国工程物理研究院双百人才基金资助课题 作者简介:景越峰(1980-),男,黑龙江肇州人,硕士研究生,从事图像处理研究工作;绵阳919-105信箱;E-m a i l:j y f@e y o u.c o m。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

GIS实验报告

华南师范大学实验报告 学生姓名学号 专业地理科学年级 2009级课程名称地理信息系统 实验项目地图投影及投影变换 实验类型验证实验时间2011年 4 月指导老师实验评分

华南师范大学实验报告 一、实验目的: 1、认识空间数据源学会各种比例尺地图的图式符号的识别。 2、比较矢量数据与栅格数据结构,了解两种数据结构表达的空间数据各 有何特点? 3、掌握地图投影变换的基本原理与方法。 4、熟悉ArcGIS 中投影的应用及投影变换的方法、技术。 5、了解地图投影及其变换在实际中的应用。 二、实验资料: 1、空间矢量数据、扫描栅格数据样本; 2、两张扫描几何纠正以后的标准地形图图像(1:1万和1:5万地形图)。 三、实验内容: 1、认识地形图,学会在地形图上读取有用信息 遥感图像、地形图、专题图(如旅游图、规划图、交通图等)图源都是地理信息系统的重要数据源,因此正确的识别各种图形、信息是空间数据建立的基础。本实验主要针对标准的地形图识别,认识地图分幅、图廓标注、公里格网、坐标标注、投影分带、坐标系及图内图式符号表示等。 2、较矢量数据与栅格数据两种数据结构表达的空间数据各有何特点 利用试验提供的数据资料,在GIS软件中打开浏览。比较两种数据结构的坐标系、地图的缩放、查询、查找等操作。 3、认识投影,学会使用GIS软件建立正确的地图投影及其空间坐标系 在ArcMap中打开1万、5万地形图扫描栅格数据文件,仔细观察图廓、图内的各种信息,识别出其坐标系、投影分带、中央子午线、投影代号等内容;利用GIS软件分别为两幅地图建立正确的地图投影,观察建立投影前后两幅地形图

的空间位置关系。 四.实验方法及实验结果: 1、用ArcMap软件打开1万、5万地形图扫描栅格数据文件,分别观察其图廓、图内的各种信息,区别两幅地形图在坐标系、投影分带、中央子午线、投影代号、比例尺等内容中的不同。1万地形图中央子午线是东经114度,3度分带投影,代号为38号,1比1万的比例尺。5万地形图中央子午线也是东经114度,6度分带投影,代号为20号,1比5万的比例尺。 2、在1万和5万的地形图上找到最外围的四个公里格网点,分别记录其平面坐标值(x,y)在地图上找到最外围的四个图廓点,分别记录其球面坐标值(B,L)。下表是其平面坐标 由上图可知,其平面坐标是很乱的,不准确的。 3、右键空白工具栏增加Georeferncing工具条,选定Add control points, 在5万地形图中找一个已知坐标点,按左键,出现一个十字,按右键选择Enter Coordinates输入坐标(我选择的是不输入投影代号),再找不同的两个点,完成如上操作。选点时,要注意选点的均匀分布,如果在选点时没有注意点位的分布或者点太多,这样不但不能保证精度,反而会使影像产生变形。步骤如下:

文档CT图像滤波反投影重建算法的研究[宝典]

文档CT图像滤波反投影重建算法的研究[宝典] 西北工业大学学位论文知识产权声明书本人完全了解学校有关保护知识产权的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属于西北工业大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文被查阅和借阅。学校可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。同时本人保证,毕业后结合学位论文研究课题再撰写的文章一律注明作者单位为西北工业大学。保密论文待解密后适用本声明。学位论文作者签名::《~~~塑, 指导教师签名。,况订年弓月多,日聊年岁月歹口日西北工业大学学位论文原创性声明秉承学校严谨的学风和优良的科学道德,本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容和致谢的地方外,本论文不包含任何其他个人或集体己经公开发表或撰写过的研究成果,不包含本人或其他已申请学位或其他用途使用过的成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式表明。本人学位论文与资料若有不实,愿意承担一切相关的法律责任。学位论文作者签名网年;月如日西北〕,业大学硕士学位论文第一章绪论第一章绪论本章首先概述了图像重建和,,技术的基本概念及图像重建方法的分类,然后介绍了,,的发展及国内外研究现状,最后阐明了本文的研究目的与意义、主要工作和内容安排。,(,图像重建与,,技术概述由物体的二维截面或断面向该平面内的各个方向作投影,可获得一系列一维投影函数。由这些一维投影函数来重建该二维截面则称为图像重建。该技术是随着计算机技术的进步而发展起来并获得广泛应用的图像处理技术,其最典型的应用是医学上的计算机断层成像术(;,,,,,,, ,,,,鲫,,或;;胁,,,,,,,,,(,,,,肿,,,),简称为;,技术。它用于获取人体头颅、心肺、腹部等内部器官的二维断层

地图学实验报告

测绘工程专业 地图学实习报告 实习内容:地图投影变换班级:测绘工程2班 学号:631201040205姓名:付博 指导老师:李华蓉 时间: 2014-10-7

地图投影变换 一、地图投影 地图投影是GIS知识体系中重要的组成部分,每个GIS软件都会涉及到这一部分知识,并不是只有MAPGIS软件中才有,MAPGIS 软件中的投影变换相比国外的软件更具有针对性,更符合我们国家的国情,比如标准框等。我这里只是给大家说说我对投影变换的一个理解,讲很多的知识点串起来,不正确的地方,还请大家给予批评指正。 那么什么是投影呢? 我们知道,地球是一个近似于梨型的不规则椭球体,而GIS 软件所处理的都是二维平面上的地物要素的信息。所以首先要考的一个问题,就是如果如何将地球表面上的地物展到平面去。 最简单的一个方法,或者说是最容易想到的一个方法就是将地球表面沿着某个经线剪开,然后展成平面,即采用这种物理的方法来实现。可采用物理的方法将地球表面展开成地图平面必然产生裂隙或褶皱,大家可以想象一下,如果把一个足球展成平面的,会是什么结果。所以这种方法存在着很大的误差和变形,是不行的。 那么我们就可以采用地图投影的方法,就是建立地球表面上的点与地图平面上点之间的一一对应关系,利用数学法则把地球表面上的经纬线网表示到平面上,这样就可以很好的控制变形和

误差。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。 所以一句话,投影:就是建立地球表面上点(Q,λ)和平面上的点(x,y)之间的函数关系式的过程。 在MAPGIS中的“投影变换”的定义如下:将当前地图投影坐标转换为另一种投影坐标,它包括坐标系的转换、不同投影系之间的变换以及同一投影系下不同坐标的变换等多种变换。 二、实验目的: 1、理解投影变换的原理及其应用。 2、熟悉使用ARCMAP做地图投影变换的方法。 3、增加对地图学的地图投影变换方便知识的理解。 三、实验内容: 将老师发的矢量化地图用ARCMAP软件进行投影变换,具体包括边界线的绘制、各省份直辖市的颜色填充等,最后将绘制的地图进行投影变换。 四、实验步骤 1、启动ARCMAP

地图投影,空间数据处理指导-实验4

实验四、空间数据处理 一、实验目的 1. 掌握空间数据处理(融合、拼接、剪切、交叉、合并)的基本方法,原理。领会其用途。 2. 掌握地图投影变换的基本原理与方法。 3. 熟悉ArcGIS 中投影的应用及投影变换的方法、技术 4. 了解地图投影及其变换在实际中的应用。 二、实验准备 预备知识: ArcToolbox 是ArcGIS Desktop 中的一个软件模块。内嵌在ArcCatalog 和ArcMap中,在ArcView、ArcEditor 和ArcInfo 中都可以使用。 ArcToolbox 具有许多复杂的空间处理功能,包括的工具有: ● 数据管理 ● 数据转换 ● Coverage 的处理 ● 矢量分析 ● 地理编码 ● 统计分析 空间间数据处理是基于已有数据派生新数据的一种方法。是通过空间分析方法来实现 的。是基于矢量数据进行的,包括如下几种常用的操作:融合,剪切,拼接,合并(并集), 相交(交集)。 地理坐标系(Geogrpahic Coordinate System) 地理坐标系使用基于经纬度坐标的坐标系统描述地球上某一点所处的位置。某一个地理 坐标系是基于一个基准面来定义的。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的 基准面。

在ArcGIS 中基于这三个椭球,建立了我国常用的三个基准面和地理坐标系: ● GCS_WGS1984 (基于WGS84 基准面) ● GCS_BEIJING1954 (基于北京1954 基准面) ● GCS_XIAN1980 (基于西安1980 基准面) 投影坐标系(Projected Coordinate Systems) 投影坐标系使用基于X,Y 值的坐标系统来描述地球上某个点所处的位置。这个坐标系是 从地球的近似椭球体投影得到的,它对应于某个地理坐标系。 投影坐标系由以下参数确定 ● 地理坐标系(由基准面确定,比如:北京54、西安80、WGS84) ● 投影方法(比如高斯-克吕格、Lambert 投影、Mercator 投影) 在ArcGIS 中提供了几十种常用的投影方法 北京1954 投影坐标系和西安1980 坐标系都是应用高斯-克吕格投影,只是基准面、椭球、大地原点不同。 地理变换 地理变换是一种在地理坐标系(基准面)间转换数据的方法,当将矢量数据从一个坐标 系统变换到另一个坐标系统下时,如果矢量数据的变换涉及基准面的改变时,需要通过地 理变换来实现地理变换或基准面平移。 主要的地理变换方法有:三参数和七参数法。 投影变换 当系统所使用的数据是来自不同地图投影的图幅时,需要将一种投影的地理数据转换成 另一种投影的地理数据,这就需要进行地图投影变换。 实验数据: 云南县界.shp; Clip.shp 西双版纳森林覆盖.shp 西双版纳县界.shp

平行投影和中心投影

中心投影与平行投影 知识点一中心投影与平行投影 1、投影:光线通过物体,向选定的面(投影面)投射,并在该面上得到图 形的方法。 2、中心投影:投射线交于一点的投影称为中心投影。其投影的大小随物 体与投影中心间距离的变化而变化,所以其投影不能反映 物体的实形. 3、平行投影:投射线相互平行的投影称为平行投影。平行投影的投影线 是平行的。在平行投影中,投影线正对着投影面时,叫做 正投影,否则叫做斜投影。在平行投影下,与投影面平行 的平面图形留下的影子与这个平面图形全等; 4、中心投影与平行投影的区别与联系 (1)中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来 与人的视觉效果一致,最像原来的物体,画实际效果图时,一般用中心投影法; (2)平行投影形成的直观图则能比较精确地反映原来物体的形状和特征。 画立体几何中的直观图形时一般用平行投影法。 例1、判断下列命题是否正确 (1)直线的平行投影一定为直线 (2)一个圆在平面上的平行投影可以是圆或椭圆或线段 (3)矩形的平行投影一定是矩形 (4)两条相交直线的平行投影可以平行 知识点二三视图 1、概念:视图是指将物体按正投影向投影面投射所得到的图形。线自物 体由前向后投射所得投影称为主视图或正视图。光线自物体由上向下投射所得投影称为俯视图。光线自物体由左向右投射所得投影称为左视图。 2、三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等 例2、画出下列几何体的三视图 分析:一般先画主视图,其次画俯视图,最后画左视 图。画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线。解:这二个几何体的三视图如下

实验二扇形束投影数据采集与滤波反投影重建实验

南昌大学实验报告 学生姓名:胡文松学号: 6103413007 专业班级:生医131班 实验类型:□验证□综合■设计□创新实验日期: 20160516 实验成绩: 实验二、扇形束投影数据采集与滤波反投影重建实验 一、实验目的及要求: 1、用MA TLAB中的fanbeam函数获取Shepp-Logan头模型的扇形束投影数据; 2、显示扇形束投影数据并和平行束投影数据进行比较; 3、用MA TLAB中的ifanbeam函数实现图像重建; 4、改变投影参数,观察对重建图像的影响。 二、实验基本原理: fanbeam 函数,计算扇形束投影。 句法 F = fanbeam(I,D) F = fanbeam(...,param1,val1,param1,val2,...) [F,sensor_positions,fan_rotation_angles] = fanbeam(...) F = fanbeam(I,D) 计算图像I的扇形束投影(正弦图) ,D 是扇形束顶点到旋转中心的距离。F的每一列表示一个角度下的扇形采样数据。探测器圆弧状排布,探测器间相隔一度,旋转360度[0:359] 。 F = fanbeam(...,param1,val1,param1,val2,...) 指定参数控制扇形投影 'FanRotationIncrement' 指定旋转角度增量,单位为度,默认值为1度。 'FanSensorGeometry' 指定探测器的排布方式 'arc'—探测器圆弧状排布(默认值) 'line' --探测器等距离线性排布 'FanSensorSpacing' 指定探测器间的间隔,探测器圆弧状排布的情况,单位为度,默认值为1。探测器等距离线性排布,单位为像素。 [F,sensor_positions,fan_rotation_angles] = fanbeam(...) 返回探测器位置和旋转角度信息 ifanbeam 函数,由扇形束投影数据重建图像 句法 I = ifanbeam(F,D) I = ifambeam(...,param1,val1,param2,val2,...) [I,H] = ifanbeam(...) I = ifanbeam(F,D) 由投影数据F重建图像I。 D是扇形束顶点到旋转中心的距离 I = ifanbeam(...,param1,val1,param2,val2,...) 指定参数控制图像重建。 'FanCoverage' 指定旋转角度范围 'cycle'}—旋转360度[0,360).

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

文档CT图像滤波反投影重建算法的研究

西北工业大学学位论文知识产权声明书本人完全了解学校有关保护知识产权的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属于西北工业大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文被查阅和借阅。学校可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。同时本人保证,毕业后结合学位论文研究课题再撰写的文章一律注明作者单位为西北工业大学。保密论文待解密后适用本声明。学位论文作者签名::《!!!塑L指导教师签名。>况订年弓月多D日聊年岁月歹口日西北工业大学学位论文原创性声明秉承学校严谨的学风和优良的科学道德,本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容和致谢的地方外,本论文不包含任何其他个人或集体己经公开发表或撰写过的研究成果,不包含本人或其他已申请学位或其他用途使用过的成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式表明。本人学位论文与资料若有不实,愿意承担一切相关的法律责任。学位论文作者签名网年;月如日西北〕=业大学硕士学位论文第一章绪论第一章绪论本章首先概述了图像重建和CT技术的基本概念及图像重建方法的分类,然后介绍了CT的发展及国内外研究现状,最后阐明了本文的研究目的与意义、主要工作和内容安排。1.1图像重建与CT技术概述由物体的二维截面或断面向该平面内的各个方向作投影,可获得一系列一维投影函数。由这些一维投影函数来重建该二维截面则称为图像重建。该技术是随着计算机技术的进步而发展起来并获得广泛应用的图像处理技术,其最典型的应用是医学上的计算机断层成像术(computedT0mo鲫hy或cc胁puterized.Ibmo肿pby),简称为cT技术。它用于获取人体头颅、心肺、腹部等内部器官的二维断层图像(故亦称断层摄影技术),对于x射线放射诊断是一个重大突破,具有深远的实际意义,因而受到普遍的重视。1.1.1图像重建图像重建是图像处理中一个重要研究分支,是指根据对物体的探测获取的数据来重新建立图像,其重要意义在于获取被检测物体内部结构的图像而不对物体造成任何物理上的损伤。由于具备无损检测技术的显著优点,它在各个不同的应用领域中都显示出独特的重要性。例如:在医疗放射学、核医学、电子显微、无线电雷达天文学、光显微和全息成像学及理论视觉等领域都多有应用。在上述的众多领域中,图像重建在医学方面的应用最为显著。它大大丰富了对于人体内部器官进行无损检测的方法和手段,为疾病的早期正确诊断提供了科学的、准确的依据。根据原始数据获取方法及重建原理的不同可分为如下几种:发射断层重建成像(Emj醛i∞computcdTomography,Ec砷,透射断层重建成像frfansmissioncc吼plItcdTomo掣aphy,1∞,反射断层重建成像(Reflecti∞Cc粕puted劢衄ography,RcI)及核磁共振重建成像(Ma印eticRes∞卸cclIIIaging,MRn。西北工业大学硕士学位论文第一章绪论1.1.2CT技术在各种图像重建算法中,计算机断层成像术即CT技术占有重要的地位。cT技术的功能是将人体中某一薄层中的组织分布情况,通过射线对该薄层的扫描、检测器对透射信息的采集、计算机对数据的处理,并利用可视化技术在显示器或其他介质上显示出来。1.1.3图像重建的方法图像重建是CT技术中的一个重要问题。它的实质是按照采集后的数据,求解图像矩阵中象素,然后重新构造图像的过程;而图像矩阵的求解由计算机完成。图像重建问题的求解方法根据其特点可分为2大类。第1类是变换重建方法f也叫解析法呐,其特点是先在连续域解析处理,最后离散化以利用计算机计算。其中又可分成傅里叶反变换重建法和滤波(或卷积)反投影重建法。第2类是级数展开重建法12j13l(也叫代数重建法、迭代算法、优化技术等),其特点是从开始就离散化进行分析,从而直接得到数值解。另外还有将变换法和级数展开法相结合的综合方法,如:迭代变换法、迭代重建重投影、角谐函数重建法和正交多项式展开重建。变换法的突出优点是实现简单,速度快,对足够精确的投影数据能获得很好的重建质量。因此目前实用CT系统中,尤其是医用cT系统中广泛采用变换法,特别是滤波反投影类型的算法来进行图像重建。变换法在技术上有两个主要的限制:(1)噪声特性不好。因为变换法是基于解析求反公式的闭合形式,要求投影数据是精确的。对于数据中的噪声,可以通过滤波步骤来适当解决。如果我们能在投影数据输入给变换法之前,将影响投影数据不精确性的诸多物理因素进行足够的校正,则便可以认为投影数据是相当准确的,从而得到满意的重建。(乃正因为变换法基于解析求反公式的闭合形式,所以变换法的简单与复杂强烈地依赖于数据采集扫描方

相关文档
最新文档