高三物理高考第二轮专题复习教案考点12 电磁场在科学技术中的应用

高三物理高考第二轮专题复习教案考点12  电磁场在科学技术中的应用
高三物理高考第二轮专题复习教案考点12  电磁场在科学技术中的应用

高三物理高考第二轮专题复习教案

考点12 电磁场在科学技术中的应用

命题趋势

电磁场的问题历来是高考的热点,随着高中新课程计划的实施,高考改革的深化,这方面的问题依然是热门关注的焦点,往往以在科学技术中的应用的形式出现在问题的情景中,这几年在理科综合能力测试中更是如此。2000年理科综合考霍尔效应,占16分;2001年理科综合考卷电磁流量计(6分)、质谱仪(14分),占20分;2002年、2003年也均有此类考题。每年都考,且分值均较高。

将其他信号转化成电信号的问题较多的会在选择题和填空题中出现;而用电磁场的作用力来控制运动的问题在各种题型中都可能出现,一般难度和分值也会大些,甚至作为压轴题。知识概要

电磁场在科学技术中的应用,主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用,来控制其运动,使其平衡、加速、偏转或转动,已达到预定的目的。例如:

讨论与电磁场有关的实际问题,首先应通过分析将其提炼成纯粹的物理问题,然后用解决物理问题的方法进行分析。这里较多的是用分析力学问题的方法;对于带电粒子在磁场中的运动,还特别应注意运用几何知识寻找关系。

点拨解疑

设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分子离子从狭缝s1以很小的速度进入电压为U的加

速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝s 3的细线。若测得细线到狭缝s 3的距离为d

(1)导出分子离子的质量m 的表达式。

(2)根据分子离子的质量数M 可用推测有机化合物的结构简式。若某种含C 、H 和卤素的化合物的M 为48,写出其结构简式。

(3)现有某种含C 、H 和卤素的化合物,测得两个M 值,分别为64和66。试说明原因,并写出它们的结构简式。

在推测有机化合物的结构时,可能用到的含量较多的同位素的质量数如下表:

【点拨解疑】(1)为测定分子离子的质量,该装置用已知的电场和磁场控制其运动,实际的运动现象应能反映分子离子的质量。这里先是电场的加速作用,后是磁场的偏转作用,分别讨论这两个运动应能得到答案。

以m 、q 表示离子的质量电量,以v 表示离子从狭缝s 2射出时的速度,由功能关系可得 qU mv =22

1 ① 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得

R

v m qvB 2

= ② 式中R 为圆的半径。感光片上的细黑线到s 3缝的距离

d =2R ③

解得

U

d qB m 82

2= ④ (2)CH 3CH 2F

(3)从M 的数值判断该化合物不可能含Br 而只可能含Cl ,又因为Cl 存在两个含量较

多的同位素,即35Cl 和37Cl ,所以测得题设含C 、H 和卤素的某有机化合物有两个M 值,

其对应的分子结构简式为CH 3CH 235Cl M =64;CH 3CH 237Cl M =66

【例题2】(2000年高考理综卷)如图2所示,厚度为h 、宽为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应。实验表明,当磁场不太强时电势差U ,电流I 和B 的关系为U =k

式中的比例系数k 称为霍尔系数。

霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。

设电流I 是由电子定向流动形成的,电子的平均定向速度为v ,电量为e ,回答下列问题:

(1)达到稳定状态时,导体板上侧面A的电势下侧面A的电势(填高于、低于或等于)。

(2)电子所受的洛伦兹力的大小为。

(3)当导体板上下两侧之间的电势差为U 时,电子所受的静电力的大小为.

(4)由静电力和洛伦兹力平衡的条件,证明霍尔系数k =

ne I ,其中n 代表导体板单位体积中电子的个数。

【点拨解疑】霍尔效应对学生来说是课本里没有出现过的一个新知识,但试题给出了霍尔效应的解释,要求学生在理解的基础上,调动所学知识解决问题,这实际上是对学生学习潜能的测试,具有较好的信度和效度。

(1)首先分析电流通过导体板时的微观物理过程。由于导体板放在垂直于它的磁感应强度为B 的匀强磁场中,电流是电子的定向运动形成的,电流方向从左到右,电子运动的方向从右到左。根据左手定则可判断电子受到的洛仑兹力的方向向上,电子向A 板聚集,A 1板出现多余的正电荷,所以A 板电势低于A 1板电势,应填“低于”。

(2)电子所受洛仑兹力的大小为evB f =

(3)横向电场可认为是匀强电场,电场强度h

U E =,电子所受电场力的大小为 h

U e eE F == (4)电子受到横向静电力与洛伦兹力的作用,由两力平衡有

e =evB 可得U=h v B

通过导体的电流强度微观表达式为 nevdh I =

由题目给出的霍尔效应公式 d

IB K U =,有 d nevdhB K hvB =得ne

K 1= 点评:①该题是带电粒子在复合场中的运动,但原先只有磁场,电场是在通电后自行形成的,在分析其他问题时,要注意这类情况的出现。②联系宏观量I 和微观量的电流表达式 nevdh I = 是一个很有用的公式。

【例题3】 正负电子对撞机的最后部分的简化示意图如图3所示(俯视图),位于水平面内的粗实线所示的圆环形真空管道是正、负电子作圆运动的“容器”,经过加速器加速后的正、负电子分别引入该管道时,具有相等的速度v ,它们沿管道向相反的方向运动。在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A 1、A 2、A 3、…A n ,共n 个,均匀分布在整个圆环上(图中只示意性地用细实线画了几个,其他的用虚线表示),每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下。磁场区域的直径为d ,改变电磁铁内电流的大小,就可改变磁感应强度,从而改变电子偏转角度的大小。经过精确的调整,首先实现了电子沿管道的粗虚线运动,这时电子经每个磁场区域时入射点和出射点都是磁场区域的同一直径的两端,如图4所示。这就为正、负电子的对撞做好了准备。

(1)试确定正、负电子在管道中是沿什么方向旋转的。

(2)已知正、负电子的质量都是m ,所带的电荷都是e ,重力不计。求电磁铁内匀强磁场的磁感应强度的大小。

【点拨解疑】(1)根据洛伦兹力提供向心力和磁场方向向下,可判断出正电子沿逆时针方向转动,负电子沿顺时针方向转动。

(2)如图5所示,电子经过每个电磁铁,偏转角度是n

πθ2=

,射入电磁铁时与该处直径的夹角为2θ,电子在磁场内作圆周运动的半径为Be mv R =。由几何关系可知,R d 22sin =θ,解得:de n mv B πsin 2=。

【例题4】 图6是生产中常用的一种延时继电器的示意图。铁芯上有两个线圈A 和B 。线圈A 跟电源连接,线圈B 的两端接在一起,构成一个闭合电路。在拉开开关S 的时候,弹簧k 并不能立即将衔铁D 拉起,从而使触头C (连接工作电路)立即离开,过一段时间后触头C 才能离开;延时继电器就是这样得名的。试说明这种继电器的工作原理。

【点拨解疑】当拉开开关S 时使线圈A 中电流变小并消失时,铁芯中的磁通量发生了变化(减小),从而在线圈B 中激起感应电流,根据楞次定律,感应电流的磁场要阻碍原磁场的减小,这样,就使铁芯中磁场减弱得慢些,因此弹簧k 不能立即将衔铁拉起 针对训练

1.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。为了简化,假设流量计是如图7所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面。当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为

A .

)(a c bR B I ρ+ B .)(c

b aR B I ρ+ C .)(b a cR B I ρ+ D .)(a b

c R B I ρ+

2.图8是电容式话筒的示意图,它是利用电容制作的传感器,话筒的振动膜前面镀有薄薄的金属层,膜后距膜几十微米处有一金属板,振动膜上的金属层和这个金属板构成电容器的两极,在两极间加一电压U ,人对着话筒说话时,振动膜前后振动,使电容发生变化,导致话筒所在的电路中的其它量发生变化,使声音信号被话筒转化为电信号,其中导致电容变化的原因可能是电容器两板间的( )

A .距离变化

B .正对面积变化

C .介质变化

D .电压变化

3.如图9所示是一种延时开关,当S 1闭合时,电磁铁F 将衔铁D 吸下,C 线路接通。当S 1断开时,由于电磁感应作用,D 将延迟一段时间才被释放。则

A .由于A 线圈的电磁感应作用,才产生延时释放D 的作用

B .由于B 线圈的电磁感应作用,才产生延时释放D 的作用

C .如果断开B 线圈的电键S 2,无延时作用

D .如果断开B 线圈的电键S 2,延时将变长

4.电视机显象管的偏转线圈示意图如图10所示,它由绕在磁环上的两个相同的线圈串联而成,线圈中通有方向如图所示的电流。则由里向外射出的电子流将向哪个方向偏转?

A .向上偏转

B .向下偏转

C .向左偏转

D .向右偏转

5.如图11所示为静电除尘器的原理示意图,它是由金属管A 和悬在管中的金属丝B 组成,A 接高压电源的正极,B 接负极,A 、B 间有很强的非匀强电场,距B 越近处场强越大。燃烧不充分带有很多煤粉的烟气从下面入口C 进入。经过静电除尘后从上面的出口D 排除,下面关于静电除尘器工作原理的说法中正确的是

A .烟气上升时,煤粉接触负极

B 而带负电,带负电的煤粉吸附到正极A 上,在重力作用下,最后从下边漏斗落下。

B .负极B 附近空气分子被电离,电子向正极运动过程中,遇到煤粉使其带负电,带负电的煤粉吸附到正极A 上,在重力作用下,最后从下边漏斗落下。

C .烟气上升时,煤粉在负极B 附近被静电感应,使靠近正极的一端带负电,它受电场引力较大,被吸附到正极A 上,在重力作用下,最后从下边漏斗落下。

D .以上三种说法都不正确。

6.如图12所示,有的计算机键盘的每一个键下面都连一小金属块,与该金属片隔有一定空气隙的是另一块小的固定金属片,这两块金属片组成一个小电容器。该电容器的电容C 可用公式d

S C ε=计算,式中常量12109-?=εF/m ,S 表示金属片的正对面积,d 表示两金属片间的距离。当键被按下时,此小电容器的电容发生变化,与之相连的电子

图 15

线路就能检测到是哪个键被按下了,从而给出相应的信号。设每个金属片的正对面积为

50mm 2 ,键未按下时两金属片的距离为0.6mm 。如果电容变化了0.25pF ,电子线路恰能检测出必要的信号,则键至少要被按下mm 。

7.(2003年上海卷)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的

透明有机玻璃,它的上下底面是面积A =0.04m 2的金属板,间距L =0.05m ,当连接到

U =2500V 的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图13所示,

现把一定量均匀分布的烟尘颗粒密闭在容器内,每立方米有烟尘颗粒1013个,假设这些

颗粒都处于静止状态,每个颗粒带电量为q =+1.0×10-17C ,质量为m =2.0×10-15kg ,不

考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。求合上电键后:

(1)经过多长时间烟尘颗粒可以被全部吸附?(2)除尘过程中电场对烟尘颗粒共做了多少功?(3)经过多长时间容器中烟尘颗粒的总动能达到最大?

8.(2002年全国理综卷)电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区域,如图14所示。磁场方向垂直于圆面。磁场区中心为O ,半径为r 。当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。为了让电子束射到屏幕边缘P 点,需要加一匀强磁场,使电子束偏转一已知角度 ,此时磁场的磁感应强度B 应为多少?

9.(2001年全国理综卷)图15(1)是一台发电机定子中的磁场分布图,其中N 、S 是永久磁铁的两个磁极,它们的表面呈半圆柱面形状。M 是圆柱形铁芯,它与磁极的柱面共轴。磁极与铁芯之间的缝隙中形成方向沿圆柱半径、大小近似均匀的磁场,磁感应强度B =0.050T

图15(2)是该发电机转子的示意图(虚线表示定子的铁芯M )。矩形线框abcd 可绕过ad 、cb 边的中点并与图(1)中的铁芯M 共轴的固定转轴oo ′旋转,在旋转过程中,线

框的ab 、cd 边始终处在图(1)所示的缝隙内的磁场中。已知ab 边长l 1=25.0cm, ad 边长l 2=10.0cm 线框共有N =8匝导线,线框的角速度s /250=ω。将发电机的输出端接入图中的装置K 后,装置K 能使交流电变成直流电,而不改变其电压的大小。直流电的另一个输出端与一可变电阻R 相连,可变电阻的另一端P 是直流电的正极,直流电的另一个输出端Q 是它的负极。

图15(3)是可用于测量阿伏加德罗常数的装置示意图,其中A 、B 是两块纯铜片,插在CuSO 4稀溶液中,铜片与引出导线相连,引出端分别为x 、 y 。

现把直流电的正、负极与两铜片的引线端相连,调节R ,使CuSO 4溶液中产生I =0.21A 的电流。假设发电机的内阻可忽略不计,两铜片间的电阻r 是恒定的。

(1)求每匝线圈中的感应电动势的大小。

(2)求可变电阻R 与A 、B 间电阻r 之和。

10.如图16所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外、大小可调节的均匀磁场,质量为m ,电量为+q 的粒子在环中做半径为R 的圆周运动。A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为+U ,B 板电势仍保持为零,粒子在两极间电场中加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径

不变。

⑴设t =0时,粒子静止在A 板小孔处,在电场作用下加速,并绕

行第一圈。求粒子绕行n 圈回到A 板时获得的总动能E n 。

⑵为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期

性递增。求粒子绕行第n 圈时的磁感应强度B 。

⑶求粒子绕行n 圈所需的总时间t n (设极板间距远小于R )。

⑷在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?

11.在原子反应堆中抽动液态金属或在医疗器械中抽动血液等导电液体时,常使用电磁泵。某种电磁泵的结构如图17所示,把装有液态钠的矩形截面导管(导管是环形的,图中只画出其中一部分)水平放置于匀强磁场中,磁场的磁感应强度为B ,方向与导管垂直。让电流I 按如图方向横穿过液态钠且电流方向与B 垂直。设导管截面高为a ,宽为b ,导管有长为l 的一部分置于磁场中。由于磁场对液态钠的作用力使液态钠获得驱动力而不断沿管子向前推进。整个系统是完全密封的。只有金属钠本身在其中流动,其余的部件都是固定不动的。

图 16

(1)在图上标出液态钠受磁场驱动力的方向。

(2)假定在液态钠不流动的条件下,求导管横截面上由磁场驱动力所形成的附加压强p 与上述各量的关系式。

(3)设液态钠中每个自由电荷所带电量为q ,单位体积内参与导电的自由电荷数为n ,求在横穿液态钠的电流I 的电流方向上参与导电的自由电荷定向移动的平均速率v 0。

12.如图18所示是静电分选器的原理。将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域的中央处开始下落,经分选后的颗粒分别装入A 、B 桶中,混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带负电,

所有颗粒所带的电量与质量之比均为10-5C/kg 。若已知两板之间的距离为10cm ,两板的

竖直高度为50cm 。设颗粒进入电场时的初速度为零,颗粒间相互作用不计。如果要求两种颗粒离开两极板间的电场区域时,有最大的偏转量且又恰好不接触到极板,

(1)两极板间所加的电压应多大?

(2)若带电平行板的下端距A 、B 桶底高度为H =1.0m ,求颗粒落至桶底时速度的大小。

13.美国航天飞机“阿特兰蒂斯”号上进行过一项卫星悬绳发电实验。航天飞机在赤道上空圆形轨道上由西向东飞行,速度为7.5km/s 。地磁场在航天飞机轨道处的磁感应强

度B =0.50×10-4T ,从航天飞机上发射出的一颗卫星,携带一根与航天飞机相连的场

L =20km 的金属悬绳,航天飞机和卫星间的这条悬绳方向沿地球径向并指向地心,悬绳电阻约r =800Ω,由绝缘层包裹。结果在绳上产生的电流强度约I=3A 。

(1)估算航天飞机运行轨道的半径。取地球半径为6400km ,第一宇宙速度为7.9km/h 。

(2)这根金属绳能产生多大的感应电动势?计算时认为金属绳是刚性的,并比较绳的两端,即航天飞机端与卫星端电势哪端高?

(3)试分析绳上的电流是通过什么样的回路形成的?

(4)金属绳输出的电功率多大?

参考答案:

1.A

2.A 解析:电容式话筒中振动膜上的金属层和这个金属板构成电容器相当于一个平行板电容器。当人对着话筒说话时,振动膜前后振动,使两极板间的距离发生变化,从而导致电容器的电容发生变化.所以选(A ).

3.BC 4.A 5.B 6.0.15

7.(1)当最靠近上表面的烟尘颗粒被吸附到下板时,烟尘就被全部吸附。烟尘颗粒受到的电场力 F =qU /L ①

mL

qUt at L 2212

2== ② ∴)(02.02s L qU

m t == ③

(2)NALqU W 2

1==2.5×10-4(J ) ④ (3)设烟尘颗粒下落距离为x

)()(212x L NA x L

qU x L NA mv E k -?=-?= ⑤ 当2L x =

时 E K 达最大, 2121at x =)(014.021s L qU m a x t === ⑥ 8.电子在磁场中沿圆弧ab 运动,圆心为C ,半径为R 。以v 表示电子进入磁场时的速

度,m 、e 分别表示电子的质量和电量,则22

1υm eU = ① R mv evB 2= ② 又有R

r tg =2θ

③ 由以上各式解得 2

21θtg e mU r B = ④

9.(1)设线框边的速度为,则 ω22

1l v = 一匝线圈中的感应电动势为v Bl E 112?=

代入数据解得 31.01=E V

(2)N 匝线圈中的总感应电动势为 1NE E =

由欧姆定律,得 )(r R I E +=

代入数字解得 Ω=+12r R

10.(1)设经n 圈回到A 板时被加速n 次,由动能定理得,nqU =E n -0,得E n = nqU

(2)经n 次加速后,速度为v n ,由动能定理得,nqU =22

1n mv ,

在绕行第n 圈时,由R

mv B qv n n n 2= 解得 q

nmU R B n 21

= (3)绕行第n 圈时间 R v R t n n ππ22==n

qU m 12 )131211(22321n

qU m R

t t t t t n ++++=++++= π (4)不可能。 11.(1)F 的方向沿导管水平向里,且与B 、I 垂直

(2)b

BI p = (3)nqbl I v =0 12.(1)U=10 000V (2)v=5.5m/s

13.(1)7.1×103

km (2)7500V 航天飞机上电势高

(3)悬绳相当于电源,周围稀薄气体电离产生的离子导电构成回路(4)15.3 km

高三物理第二轮复习计划

高三物理第二轮复习计划 一、复习任务 高三物理通过第一轮的复习,已对必修1,必修2,选修3-1及部分选修3-2内容进行了复习。大部分学生都能掌握物理学中的基本概念、规律及其一般应用。第二轮复习的任务是将选修3-2剩余部分,学生对选修课程的选择内容进行基础复习,并将前一阶段中较为凌乱的、繁杂的知识系统化、条理化、模块化,建立起各部分知识之间的联系,提高综合运用知识的能力,因此该阶段也称为全面综合复习阶段。 二、复习措施 1.认真研究考试大纲,加强近年高考信息的研究。正确定位复习难度; 2.专题复习与综合训练相结合,第二轮复习时间大致在6-8周,需合理安排 复习时间; 3.突出重点与兼顾全面,以练代讲,练后点评、自学补漏的方法为主; 4.高频考点详讲,反复多练,注重方法、步骤及一般的解题思维训练; 5.提高课堂教学的质量,加强集体备课,平时多交流,多听课,多研究课堂教学; 6.特别关注临界生。发现临界学生在复习中存在的问题,要及时帮助其分析解 决; 7.对不同水平层次的学生,需灵活变通,有些高频考点的内容难度太大时,可 采取不讲、少讲或降低要求的做法,争取得步骤分。将节省的时间用在其他基础内容的复习上。 三、措施细则 1.在第二轮复习中,我们要打破章节界限,对高考热点、重点、难点问题,实 行专题复习。设置专题的方式可以有以下几2种:以知识的内在联系设置专题和以题型设置专题。 ①牛顿三定律与匀变速直线运动的综合。 ②动量和能量的综合:动量守恒、能量守恒的综合应用问题是高考热点。复习 中,应注重多物理过程分析能力的培养,训练从守恒的角度分析问题的思维方法。 ③场:电场、磁场是中学物理重点内容之一。应加强对力、电综合问题、联系 实际问题等高考热点命题的复习。 ④电磁感应现象与闭合电路欧姆定律的综合:用力学和能量观点解决导体棒在 匀强磁场中的运动问题。 ⑤图象问题:学生要具有阅读图象、描述图象、运用图象解决问题的能力。 ⑥串、并联电路规律与电学实验的综合: 2.抓好审题、规范和心理素质培养,提高应试能力 审题能力:关键词语的理解、隐含条件的挖掘、干扰因素的排除。 表达能力及解题的规范化:物理解题的规范性,包括必要的文字说明,字母和方程书写要规范,解题步骤要规范齐全,结论的正确表达等等。 3.精读课本,不留死角 对物理学中的热学、光学、原子物理学部分,难度不是很大,一定要做到熟读、精读,看懂、看透,绝对不能留死角,包括课后的阅读材料、小实验等,因为大

高三物理一轮复习教案设计(精品)

第一章 运动的描述 匀变速直线运动的研究 第1单元 直线运动的基本概念 1、 机械运动:一个物体相对于另一物体位置的改变(平动、转动、直线、曲线、圆周) 参考系:假定为不动的物体 (1) 参考系可以任意选取,一般以地面为参考系 (2) 同一个物体,选择不同的参考系,观察的结果可能不同 (3) 一切物体都在运动,运动是绝对的,而静止是相对的 2、 质点:在研究物体时,不考虑物体的大小和形状,而把物体看成是有质量的点,或者 说用一个有质量的点来代替整个物体,这个点叫做质点。 (1) 质点忽略了无关因素和次要因素,是简化出来的理想的、抽象的模型,客观 上不存在。 (2) 大的物体不一定不能看成质点,小的物体不一定就能看成质点。 直 线 运 动 直线运动的条件:a 、v 0共线 参考系、质点、时间和时刻、位移和路程 速度、速率、平均速度 加速度 运动的描述 典型的直线运动 匀速直线运动 s=v t ,s-t 图,(a =0) 匀变速直线运动 特例 自由落体(a =g ) 竖直上抛(a =g ) v - t 图 规律 at v v t +=0,2021at t v s + =as v v t 2202=-,t v v s t 2 0+=

(3) 转动的物体不一定不能看成质点,平动的物体不一定总能看成质点。 (4) 某个物体能否看成质点要看它的大小和形状是否能被忽略以及要求的精确程 度。 3、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末。 时间:前后两时刻之差。时间坐标轴线段表示时间,第n 秒至第n+3秒的时间为3秒 (对应于坐标系中的线段) 4、位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。 路程:物体运动轨迹之长,是标量。路程不等于位移大小 (坐标系中的点、线段和曲线的长度) 5、速度:描述物体运动快慢和运动方向的物理量, 是矢量。 平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,υ=s/t (方向为位移的方向) 平均速率:为质点运动的路程与时间之比,它的大小与相应的平均速度之值可能不相同(粗略描述运动的快慢) 即时速度:对应于某一时刻(或位置)的速度,方向为物体的运动方向。(t s v t ??=→?0lim ) 即时速率:即时速度的大小即为速率; 【例1】物体M 从A 运动到B ,前半程平均速度为v 1,后半程平均速度为v 2,那么全程的平均速度是:( D ) A .(v 1+v 2)/2 B .21v v ? C .212221v v v v ++ D .21212v v v v +

高考物理 共点力的平衡复习学案

第三章相互作用 §3.4 共点力的平衡复习学案 【学习目标】 1、理解共点力作用下的物体平衡条件及其在解题中的应用。 2、掌握几种常见的平衡问题的解题方法。 【自主学习】 1.共点力 物体同时受几个力的作用,如果这几个力都作用于物体的或者它们的作用线交于,这几个力叫共点力。 2.平衡状态: 一个物体在共点力作用下,如果保持或运动,则该物体处于平衡状态. 3.平衡条件: 物体所受合外力.其数学表达式为:F合=或F x合= F y合= ,其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力.平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向. (2)物体在同一平面内的三个互不平行的力的作用下处于平衡状态时,这三个力必为共点力. (3)物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成封闭三角形,即表示这三个力的矢量首尾相接,恰能组成一个封闭三角形. 4.力的平衡: 作用在物体上的几个力的合力为零,这种情形叫做。 若物体受到两个力的作用处于平衡状态,则这两个力. 若物体受到三个力的作用处于平衡状态,则其中任意两个力的合力与第三个力. 5.解题途径 当物体在两个共点力作用下平衡时,这两个力一定等值反向;当物体在三个共点力作用下平衡时,往往采用平行四边形定则或三角形定则;当物体在四个或四个以上共点力作用下平衡时,往往采用正交分解法. 【典型例题】 例1.一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是 A.探测器加速运动时,沿直线向后喷气

北京市高三物理二轮复习 恒定电流专题教学案(一)

高考综合复习恒定电流专题 一、电流和电流强度I 二、电阻R 1、定义式: 2、电阻定律:,ρ为电阻率。 3、测量:伏安法测电阻,欧姆表。 4、超导体 三、闭合电路欧姆定律: 1、U—I关系曲线 2、电源的输出功率、内阻消耗的电功率、电源的总功率P总=Iε P出=IU P内=I2r 当外电路电阻与内阻相等时,电源的输出功率最大。 例题分析: 例1、一个电源的电动势为ε、内阻为r,在外电路上接一个电阻R0和一滑动变阻器R,求①滑动变阻器消耗的最大电功率是多少?②定值电阻R0消耗的最大电功率是多少?

分析:(1)由前面的知识复习,已知道:若外电路电阻与内电路电阻阻值相等,则外电路消耗的电功率最大。因此,我们可以用等效思想将R0与r看作新电源的内阻(r+R0),新电源的电动 势仍为ε。这样,当R的阻值与内阻(r+R0)相等时,变阻器R消耗的电功率最大,等于。 (2)第2问与第1问的问题看起来相似,但实际上却是完全不同的两个问题。区别就在于第2问涉及的是一个定值电阻消耗的最大电功率问题。由电功率定义知,R0消耗的电功率P=I2R0,可见, I取最大值时,R0消耗的电功率最大,由于,所以R取最小值即R等于零时,定值 电阻消耗的功率最大,等于。 小结:此题两问分别涉及定值电阻与可变电阻消耗的最大电功率问题,处理方法不同。切不可将“外电路电阻与内电阻相等时,外电路消耗的电功率最大”这一结论无条件地、任意的推广。 例2、如图,直线A为电源的路端电压U与电流I的关系图象,直线B是电阻R的两端电压与其中电流I的图象。用该电源与电阻R组成闭合电路,则电源的输出功率为___________,电源的效率为_____________。 分析:A图线是U—I特性曲线,从A图线上可以获取的信息是:纵轴截距—ε,横轴截距—— 短路电流,所以,知道电源电动势ε=3V,内阻r=0.5Ω。电阻R的阻值可由图线B的斜率得出:R=1Ω。电路见上图。据闭合电路欧姆定律和P R=I2R,可得电源的输出功率为4W,效率 。 小结:A、B两图线分别给出了电路中电源及电阻的信息,应注意利用图象寻找有关信息,另外,也应注意区分两条图线。 例3、在如图所示的电路中,电源的电动势为ε。内电阻为r,当滑动变阻器的滑片P处于R 的中点位置时,小灯泡L1、L2、L3的亮度相同。若将滑片向左滑动时,三个小灯泡的亮度如何变化?

高三物理最新教案-2018高考总复习第二阶段力学专题[整理] 精品

力学专题㈠ 力的作用效应 1.如左图所示,一根轻弹簧竖直地放在水平桌面上,下端固定,上端放一个重物。稳定后弹簧的长为L 。现将该轻弹簧截成等长的两段,将该重物也等分为重量相等的两块,按右图连接,稳定后两段弹簧的总长度为L /。则 A.L /=L B.L />L 中,B C.L /g 2 C.m 1m 2,g 1>g 2

高三物理总复习第一轮复习教案

第四章曲线运动万有引力与航天 [考纲展示] 1.运动的合成和分解Ⅱ 2.抛体运动Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 6.万有引力定律及其应用Ⅱ 7.环绕速度Ⅰ 8.第二宇宙速度和第三宇宙速度Ⅰ 说明:(1)斜抛运动只作定性要求 (2)第二宇宙速度和第三宇宙速度只要求知道其物理意义 [命题热点] 1.运动的合成与分解的方法和思想是热点,尤其是处理类平抛运动、带电粒子在电磁复合场中的复杂运动,可以以选择题形式呈现,也可以以计算题的形式呈现. 2.运用圆周运动的知识和方法处理生活中常见的圆周运动、电场磁场中的圆周运动都是高考考查的热点,主要以计算题的形式考查,这几乎是高考必考内容. 3.运用万有引力定律及向心力公式分析人造卫星的绕行速度、运行周期以及计算天体的质量、密度等在近几年高考中每年必考. 第一节曲线运动运动的合成与分解 【三维目标】 知识与技能 1.知道曲线运动的条件及规律 2.知道并掌握运动合成与分解的方法 过程与方法 理解和掌握运动合成与分解的基本方法与过程 情感态度与价值观 培养学生对物理现象的分析及表达能力 【教学重点】 运动的合成与分解的方法 【教学难点】 小河渡河问题的分析 【教学过程】 复习引入(课前5分钟) 从曲线运动与直线运动的区别引入、复习 [基础知识梳理](课中35分钟) 一、曲线运动 1.曲线运动的特点 在曲线运动中,运动质点在某一点的瞬时速度的方向就是通过曲线的这一点的________向,因此,质点在曲线运动中速度的方向时刻在变化.所以曲线运动一定是_________运动,但是,变速运动不一定是曲线运动,直线运动中速度大小变化时也是变速运动. 2.做曲线运动的条件 (1)从运动学角度,物体的加速度方向跟速度方向____________时,物体就做曲线运动.

高中:高三物理一轮复习教学案

高中物理新课程标准教材 物理教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 物理教案 / 高中物理 / 高三物理教案 编订:XX文讯教育机构

高三物理一轮复习教学案 教材简介:本教材主要用途为通过学习物理知识,可以让学生培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助,本教学设计资料适用于高中高三物理科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 课题:运动学基本概念 班级_____姓名_____学号____ 一、知识梳理 1.机械运动是指物体相对于的位置的改变,选择不同的参照物来观察同一个运动物体,观察的结果往往; 2.质点是一种理想化的模型是指; 3.位移表示,位移是量,路程是指,路程是量,只有当物体做运动时位移的大小才等于路程; 4.时刻指某,在时间轴上表示为某一点,而时间指间隔,在时间轴上表示为两点间线段的长度; 5.速度表示质点运动的,速度是量,它的方向就是物体的方向,也是位移变化的方向,但不一定与位移方向相同;平均速度指,平均速度的方向与位移方向相同,平均速度总

是与那一段时间或那一段位移相对应;即时速度指; 6.匀速直线运动是指; 二、例题精讲 例1.下列关于质点的说法正确的是() a.体积很大的物体不能看成质点 b.质点是一种理想化模型实际不存在 c.研究车轮的转动时可把车轮看成质点d.研究列车从徐州到南京的时间时可把车轮看成质点 例2.如图所示,一质点沿半径为r的圆周从a点到b点运动了半周,它在运动过程中位移大小和路程分别是() a.πr、πr b.2r、2r c.2r、πr d.πr、r 例3.关于时刻和时间,下列说法正确的是 ( ) a.时刻表示时间较短,时间表示时间较长 b.时刻对应位置,时间对应位移 c.作息时间表上的数字均表示时刻 d.1min只能分成60个时刻 例4.速度大小是5m/s的甲、乙两列火车,在同一直路上相向而行。当它们相隔XXm时,一只鸟以10m/s的速度离开甲车头向乙车飞去,当到达乙车车头时立即返回,并这样连续在

2020届高三物理一轮教案匀变速直线运动

2020届高三物理一轮教案匀变速直线运动 一、匀变速直线运动公式 1.常用公式有以下四个 at v v t +=0 2 02 1at t v s + = as v v t 22 02=- t v v s t 2 0+= 点评: 〔1〕以上四个公式中共有五个物理量:s 、t 、a 、v 0、v t ,这五个物理量中只有三个是独 立的,能够任意选定。只要其中三个物理量确定之后,另外两个就唯独确定了。每个公式中只有其中的四个物理量,当某三个而要求另一个时,往往选定一个公式就能够了。假如两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。 〔2〕以上五个物理量中,除时刻t 外,s 、v 0、v t 、a 均为矢量。一样以v 0的方向为正方 向,以t =0时刻的位移为零,这时s 、v t 和a 的正负就都有了确定的物理意义。 2.匀变速直线运动中几个常用的结论 〔1〕Δs=aT 2,即任意相邻相等时刻内的位移之差相等。能够推广到 s m -s n =(m-n)aT 2 〔2〕t s v v v t t =+= 202/,某段时刻的中间时刻的即时速度等于该段时刻内的平均速度。 2 2 2 02/t s v v v += ,某段位移的中间位置的即时速度公式〔不等于该段位移内的平均速度〕。 能够证明,不管匀加速依旧匀减速,都有2/2 /s t v v <。

点评:运用匀变速直线运动的平均速度公式t s v v v t t =+= 202/解题,往往会使求解过程变得专门简捷,因此,要对该公式给与高度的关注。 3.初速度为零〔或末速度为零〕的匀变速直线运动 做匀变速直线运动的物体,假如初速度为零,或者末速度为零,那么公式都可简化为: gt v = , 221at s = , as v 22= , t v s 2 = 以上各式差不多上单项式,因此能够方便地找到各物理量间的比例关系。 4.初速为零的匀变速直线运动 〔1〕前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶…… 〔2〕第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶…… 〔3〕前1米、前2米、前3米……所用的时刻之比为1∶2∶3∶…… 〔4〕第1米、第2米、第3米……所用的时刻之比为1∶ ( ) 12-∶〔23-〕∶…… 对末速为零的匀变速直线运动,能够相应的运用这些规律。 5.一种典型的运动 经常会遇到如此的咨询题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,能够得出以下结论: 〔1〕t s a t a s ∝∝∝ ,1 ,1 〔2〕2 21B v v v v = == 6、解题方法指导: 解题步骤: 〔1〕依照题意,确定研究对象。 〔2〕明确物体作什么运动,同时画出运动示意图。 〔3〕分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。 〔4〕确定正方向,列方程求解。 a 1、s 1、t 1 a 2、s 2、t 2

高三物理第二轮专题复习教案[全套]_物理

第一讲平衡问题 一、特别提示[解平衡问题几种常见方法] 1、 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关 系,借助三角函数、相似 三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这 两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、 力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一 平面上,而且必有共点力。 3、 正交分解法:将各力分解到 x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件 C F x =0^ F y =0)多用于三个以上共点力作用下的物体的平衡。值得注意的是,对 x 、y 方向 选择时,尽可能使落在 x 、y 轴上的力多;被分解的力尽可能是已知力。 4、 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首 尾相接恰好构成三角形,则 这三个力的合力必为零,利用三角形法求得未知力。 5、 对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静 力学中所研究对象有些具有 对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意 到这一点,会使解题过程简化。 6、 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系, 则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即 a = 0。表现:静 匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1质量为m 的物体置于动摩擦因数为 」的水平面上,现对它 一个拉力,使它做匀 速直线运动,问拉力与水平方向成多大夹角时这 最小? 解析取物体为研究对象,物体受到重力mg ,地面的支持力N , 力f 及拉力T 四个力作用,如图1-1所示。 :-=arcctg arcctg J 不管拉力T 方向如何变化,F 与水平方向的夹角:?不变,即F 为一个方向不发生改变的变力。 这显然属于三力平衡中的 动态平衡问题,由前面讨论知,当 T 与F 互相垂直时,T 有最小值,即当 拉力与水平方向的夹角 V - 90 - arcctg -I 二arctg 」时,使物体做匀速运动的拉力 T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静 止但有运动趋势时,属于 静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的方向要随运动或 运动趋势的方向的改变而改变,静摩擦力大小还可在一定范围内变动,因此包括摩擦力在内的平衡 问题常常需要多讨论几种情况,要复杂一些。因此做这类题目时要注意两点 iTlg 止或 施加 个力 摩擦 由于物体在水平面上滑动,则 f =:-N ,将f 和N 合成,得到合力 F ,由图知F 与f 的夹角:

高三物理第二轮平衡问题专题复习教案

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它 施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角 时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N , 摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcct g 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的

高三物理第二轮复习教案

高三物理第二轮复习教案 电场 知识框架: 建议课时:2课时 教学目标: 1. 熟练应所学电场知识分析解决带电粒子在匀强电场中的运动问题。 2. 理解电容器的电容,掌握平行板电容器的电容的决定因素 3. 掌握示波管,示波器及其应用。 附:知识要点梳理(要求学生课前填写)

1.带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。 qU=mv t2/2-mv02/2 ∴v t= ,若初速v0=0,则 v= 。 2.带电粒子经电场偏转:处理方法:灵活应用运动的合 成和分解。 带电粒子在匀强电场中作类平抛运动,U、d、l、m、q、v0已知。 ①穿越时间: ②末速度: ③侧向位移: ,讨论:对于不同的带电粒子 (1)若以相同的速度射入,则y与成正比(2)若以相同的动能射入,则y与成正比 (3)若以相同的动量射入,则y与成正比(4)若经相同的电压U0加速后射入,则y=UL2/4DU0,与m、q关,随加速电压的增大而,随偏转电压的增大而。 ④偏转角正切:(从电场出来时粒子速度方向的反向延长线必然过) 3.处理带电粒子在电场中运动的一般步骤: (1)分析带电粒子的受力情况,尤其要注意是否应该考虑重力,电场力是否恒力等。 (2)分析带电粒子的初始状态及条件,确定带电粒子作直线运动还是曲线运动。 (3)建立正确的物理模型,进而确定解题方法是运力学、是动量定恒,还是能量守恒。 (4)利用物理规律或其他手段(如图线等)找出物理间的关系,建立方程组。 4.带电粒子受力分析注意点: (1)对于电子、氕、氘、氚、核、 粒子及离子等,一般不考虑重力; (2)对于带电的颗粒,液滴、油滴、小球、尘埃等,除在题目中明确说明或暗示外,一般均应考虑重力; (3)除匀强电场中电量不变的带电粒子受恒定的电场力外,一般电场中的电场力多为变力; (4)带电导体相互接触,可能引起电量的重新分配,从而引起电场力变化。

高三物理第二轮专题复习教案(全套)

第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、 y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静 止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小? 解析 取物体为研究对象,物体受到重力mg ,地面的支持力N ,摩擦力f 及拉力T 四个力作用,如图1-1所示。 由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角: μ==αarcctg N f arcctg 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T 与F 互相垂直时,T 有最小值,即当拉力与水平方向的夹角μ=μ-=θarctg arcctg 90时,使物体做匀速运动的拉力T 最小。 (2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物

高中物理复习教案.专题复习2―弹簧类问题分析

弹簧类系列问题 [P3.] 复习精要 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视. (一)弹簧类问题的分类 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k?△x来求解。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4、弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [P5.] (二)弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点: W k =-(?kx 2 2-?kx 1 2),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=?kx 2,高 考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. [P7.] 例1.(2001年上海)如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平 拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度

最新高三物理一轮复习教案圆周运动

高三物理一轮复习教案 圆周运动 课时安排:2课时 教学目标:1.掌握描述圆周运动的物理量及相关计算公式 2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲重点:1.描述圆周运动的物理量及相关计算公式 2.用牛顿定律和动能定理解决竖直面内的圆周运动问题 本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题 考点点拨:1.“皮带传动”类问题的分析方法 2.竖直面内的圆周运动问题 3.圆周运动与其他运动的结合 第一课时 一、考点扫描 (一)知识整合 匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。 描述圆周运动的物理量 1.线速度 (1)大小:v = t s (s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。 (3)物理意义:描述质点沿圆周运动的快慢 2.角速度 (1)大小:ω= t φ (φ是t 时间内半径转过的圆心角) 单位:rad/s (2)对某一确定的匀速圆周运动来说,角速度是恒定不变的 (3)物理意义:描述质点绕圆心转动的快慢 3.描述匀速圆周运动的各物理量间的关系:r fr T r v ωππ===22 4.向心加速度a (1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会

改变线速度的大小。 (1)大小:R f m R T m R m R v m ma F 22222 244ππω=====向 (2)方向:总指向圆心,时刻变化 做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。 (二)重难点阐释 在竖直平面内的圆周运动问题 在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为: (1)无支撑(如球与绳连结,沿内轨道的“过山车”) 在最高点物体受到弹力方向向下. 当弹力为零时,物体的向心力最小,仅由重力提供,由牛顿定律知mg=R v m 2 0,得临界 速度gR v =0.当物体运动速度v 产生离心运动, 要维持物体做圆周运动,弹力应向下.当gR v < 物体有向心运动倾向, 物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向. (3)对于无约束的情景,如车过拱桥,当gR v > 时,有N=0,车将脱离轨道.此时 临界速度的意义是物体在竖直面上做圆周运动的最大速度. 以上几种情况要具体问题具体分析,但分析方法是相同的。 二、高考要点精析 (一)“皮带传动”类问题的分析方法 ☆考点点拨 在分析传动问题,如直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,要抓住相等量和不等量的关系。两轮边缘上各点的线速度大小相等;同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。然后利用公式ωr v =或r v =ω即可顺利求解。 【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶

高三物理第二轮专题复习教案[全套]_物理.docx

第一讲 平衡问题 一、特别提示 [ 解平衡问题几种常见方法 ] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反 向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反 方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡, 利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到 x 轴上和 y 轴上,运用两坐标轴上的合力等于零的条件 ( F x F y 0) 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对 x 、 y 方向选择时,尽可能使落在 x 、 y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。 在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。 解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度 关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即 a 0 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例 1 质量为 m 的物体置于动摩擦因数为 的水平面上, 现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角 时这个力最小? 解析 取物体为研究对象, 物体受到重力 mg ,地面的支持力 N , 摩擦力 f 及拉力 T 四个力作用,如图 1-1 所示。 由于物体在水平面上滑动,则 f N ,将 f 和 N 合成,得到合力 F ,由图知 F 与 f 的夹角: arcctg f arcctg N 不管拉力 T 方向如何变化, F 与水平方向的夹角 不变,即的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当 F 为一个方向不发生改变 T 与 F 互相垂直时, T 有最小值,即当拉力与水平方向的夹角 90 arcctg arctg 时,使物体做匀速运动 的拉力 T 最小。 ( 2)摩擦力在平衡问题中的表现 这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物

高三物理复习教案参考

高三物理复习教案参考 高三物理复习教案参考 一、误差和有效数字 1.误差 测量值与真实值的差异叫做误差。误差可分为系统误差和偶然误差两种。 (1)系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。 (2)偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。这个平均值比某一次测得的数值更接近于真实值。 2.有效数字 带有一位不可靠数字的近似数字,叫做有效数字。 (1)有效数字是指近似数字而言。 (2)只能带有一位不可靠数字,不是位数越多越好。 注:凡是用测量仪器直接测量的结果,读数一般要求在读出仪器最小刻度所在位的数值(可靠数字)后,再向下估读一位(不可靠数字),这里不受有效数字位数的限制。间接测量的有效数字运算不作要求,运算结果一般可用2~3位有效数字表示。 二、考试大纲规定的学生实验 1.长度的测量(游标卡尺和螺旋测微器)

(1)游标卡尺 ①10分度的游标卡尺。游标上相邻两个刻度间的距离为0.9mm,比主尺上相邻两个刻度间距离小0.1mm。读数时先从主尺上读出厘米数和毫米数,然后用游标读出0.1毫米位的.数值:游标的第几条刻线跟主尺上某一条刻线对齐,0.1毫米位就读几(不能读某)。其读数准确到0.1mm。 ②20分度的游标卡尺。游标上相邻两个刻度间的距离为0.95mm,比主尺上相邻两个刻度间距离小0.05mm。读数时先从主尺上读出厘米数和毫米数,然后用游标读出毫米以下的数值:游标的第几条刻线跟主尺上某一条刻线对齐,毫米以下的读数就是几乘0.05毫米。其读数准确到0.05mm。 ③50分度的游标卡尺。游标上相邻两个刻度间的距离为0.98mm,比主尺上相邻两个刻度间距离小0.02mm。这种卡尺的刻度是特殊的,游标上的刻度值,就是毫米以下的读数。这种卡尺的读数可以准确到0.02mm。 注意:游标卡尺都是根据刻线对齐来读数的,所以都不再往下一位估读。 要知道主要构造的名称:主尺、游标尺、外测量爪、内测量爪、深度尺、紧固螺钉。 (2)螺旋测微器 固定刻度上的最小刻度为0.5mm(在中线的上侧);可动刻度每旋转一圈前进(或后退)0.5mm。在可动刻度的一周上平均刻有50条刻

高三物理复习教案

高三物理复习教案 静电场 教学目标 通过复习整理静电场的规律、概念,建立静电扬的知识结构。利用场的思想、场叠加的思想认识和解决电场问题,加深对静电场的理解。 教学重点、难点分析 静电场部分的内容概念性强,规律内容含义深刻,是有关知识应用的基础。但由于概念和规律较抽象,对掌握这些概念和规律造成了一定的难度。所以,恰当地建立有关的知识结构,处理好概念之间、规律之间的关系,是解决复习困难的有效方式。 教学过程设计 教师活动 一、对规律和概念的回顾 从本节课开始,我们复习静电场的有关知识,请同学们回顾一下,我们原来学过的规律和概念都有哪些?(将学生分组,进行回顾和整理) 学生活动 学生按组,回忆已学的有关知识,相互提醒,相互启发。 在教师的安排下,每组学生选择一名代表,将他们整理的知识内容写在黑板上。(安排3个,由于内容基本相同,其它组再做一些补充。) 学生代表上台。 建立知识结构: 从同学们整理出来的知识内容上看,基本上能够把静电场的有关内容列举出来,但一般来说,每个同学在整理知识时,方式方法又有所区别。为了使知识在我们头脑中更有利于理解和记忆,建立一个适合于自己的知识结构网络是必要的和有效的。下面,我们来共同构造这个静电场部分的知识结构网络。 (带领学生整理和建立静电场的知识结构,知识结构图表见附图) 二、静电场概念的几个问题讨论 1.场概念的巩固 [问题1]带电小球A、C相距30cm,均带正电。当一个带有负电的小球B放在A、C 间连线的直线上,且B、C相距20cm时,可使C恰受电场力平衡。A、B、C均可看成点电

荷。①A 、B 所带电量应满足什么关系?②如果要求A 、B 、C 三球所受电场力同时平衡, 它们的电量应满足什么关系? 学生读题、思考,找学生说出解决方法。 通过对此题的分析和求解,可以加深对场强概念和场强叠加的理解。学生一般从受力平 衡的角度进行分析,利用库仑定律求解。在学生解题的基础上做以下分析。 分析与解:①C 处于平衡状态,实际上是要求C 处在A 、B 形成的电场中的电场强度为 零的地方。 既然C 所在处的合场强为零,那么,C 所带电量的正或负、电量的多或少均对其平衡无 影响。 ②再以A 或B 带电小球为研究对象,利用上面的方法分析和解决。 答案:①q A ∶q B =9∶4,②q A ∶q B ∶q C =9∶4∶36。 [问题2]如图3-1-1所示,在方框区域内有匀强电场,已知U A =2V ,U B =-6V ,U C = -2V 。试用作图法画出电场中电场线的方向。 学生读题、思考。找学生在黑板上作图。 通过此题的分析和解决,使学生对匀强电场的理解更深刻。 分析和解:据题A 、B 两点间的电势差为8V ,A 、C 两点间的电势差为4V 。所以,先 将A 、B 两点用直线连接,则A 、B 两点间的中点的电势为4V ,与C 点的电势相同。将这 两点连起来,就是电势为-2V 的等势线,电场线应与该直线垂直,且由高电势点指向低电 势点。(如图3-1-1所示) [问题3]我们知道,公式2r Q k E =表示点电荷Q 的场中的某一点的电场强度,得到的单位为N/C ;公式d U E =表示匀强电场中的场强。大小,其单位为V/m 。那么,单位N/C 能否用在匀强电场中?如果能,其物理意义是什么?单位V/m 能否用在点电荷的电场中,如 果能,其物理意义又是什么?

相关文档
最新文档