食用菌液体深层发酵在医药方面的应用

食用菌液体深层发酵在医药方面的应用
食用菌液体深层发酵在医药方面的应用

食用菌液体深层发酵在医药方面的应用

食用菌在深层发酵过程中,其发酵产品作为药品,如口服液、软饮料等已被人们接受。在发酵过程中,产生多糖、多肽、生物碱、萜类化合物、甾醇、甙类、酶、核酸、氨基酸、微生素等多种生理活性物质。这些物质有对人体心血管、肝脏、神经系统等人体器官的防病治病作用以及抗癌、抗炎、抗衰老、抗菌、抗溃疡等功效。

近30年来已有一些产品投放市场,如马来酸麦角新碱注射液、香菇多糖片(注射液)、猴菇菌片、蜜环菌片、香云片、云芝糖肽胶囊等。

下面简单介绍下食用菌的液态发酵过程

(1)香菇多糖的生产:

1)工艺流程:

26℃26℃26℃,8天斜面母种————→一级摇瓶种子——————→二级摇瓶种子—————→三级15天静置12~15天60-80转/分

26℃,12~15天26℃,5~6天罐压39~59千帕

摇瓶种子———————→种子罐—————————————→

60~80转/分1米3发酵液通人1米3/分空气

2)培养基:

①斜面培养基(%):葡萄糖2.0,酵母膏0.5,磷酸二氢钾0.l,7水硫酸镁0.1,琼脂2.0,pH值自然。

②种子培养基(%):葡萄糖1.0,蛋白胨0.12,酵母膏0.12,磷酸二氢钾0.15,7水硫酸镁0.05,微量元素液0.1,pH值7.00。

③发酵培养基(%):葡萄糖5.0,蛋白胨0.25,酵母膏0.25,氯化钙0.05,磷酸二氢钾

0.25,7水硫酸镁0.05,微量元素液0.2,pH值7.0。

一般情况下,8天菌龄时香菇多糖产生最多。用水浸提浓缩即可生产香菇多糖粉剂。若要生产饮料,则可在发酵液中加入0.06%~0.1%的柠檬酸,调pH值为5.5,加热至45—55℃,保持5~6小时,再升温至75℃,30分灭酶活,板框过滤,取滤液加入30%白糖液,加柠檬酸调pH值为5.0,加入0.01%山梨酸钾。此液滤后即为香菇保健饮料。

(2)银耳孢子的发酵:

1)生产工艺:

28℃28℃,2天28℃,3天

斜面菌种———→一级摇瓶种子——————→二级摇瓶种子—————→发酵罐4天220转/分220转/分

28℃,60~68小时

—————————————————————→

280~330转/分,1米3发酵液通入1米3/分空气

2)培养基:

①斜面菌种:PDA。

一级摇瓶种子:马铃薯20%,蔗糖2%,硫酸铵0.2%,pH自然。

二级摇瓶种子:同一级摇瓶种子。

②发酵罐培养基:可采用两者之一。

第一,马铃薯8%,蔗糖2%,玉米淀粉0.5%,蛋白胨0.4%,硫酸铵0.2%,pH自然。

第二,玉米粉10%,黄豆饼粉0.3%,花生饼粉1.2%,磷酸二氢钾0.225%,7水硫酸镁0.075%,豆油0.02%(用а-淀粉酶糖化后灭菌)。

银耳孢子深层发酵液经过滤,滤渣用5倍量热水煮沸提取两次,每次2小时,过滤去渣,合并滤液并减压浓缩至孢子多糖4毫克/毫升(比重1.02),取浓缩液800毫升,加入蔗糖300克、尼泊金0.5克,加水至1000毫升。煮沸溶解,装瓶灭菌。

(3)猴头菌的发酵生产:

1)工艺流程:

24~26℃24~26℃斜面菌种————→一级摇瓶种子————————→二级摇瓶种子—————→

200转/分,4-5天90转/分,3天

26~28℃

种子罐——————→发酵罐(26~28)l米3发酵液通人1米3/分空气,7天。

3天

2)培养基:

①斜面培养基:麦麸5%(煮沸30分过滤取滤液),葡萄糖1%,蛋白胨0.2%,磷酸二氢钾0.1%,7水硫酸镁0.075%,维生素B1微量,琼脂2%,pH值5~6。

②摇瓶培养基:同斜面培养基,但不加琼脂。

③种子罐培养基:葡萄糖2%,豆饼粉1%,蛋白胨或酵母浸膏0.1%,磷酸二氢钾0.15%,7水硫酸镁0.075%,pH值5.6。

④发酵罐培养基(%):蔗糖3,豆饼粉1.5,蛋白胨0.1,磷酸二氢钾0.3,7水硫酸镁0.15,pH值5.6。

食用菌液体深层发酵技术与应用

作者:--来源:互联网点击数:847 更新时间:2010年03月06日【字体:大中小】 液体发酵技术属于现代生物技术之一。深层发酵技术直接生产食用菌菌体,同时获得富含氨基酸等营养成分的发酵液。 深层发酵培养基的选择 1、食用菌液体深层发酵技术研究的关键是培养基。不同食用菌要用不同的培养基进行培养,因此,培养基的选择与配制是食用菌液体深层发酵技术的关键。 食用菌的深层液体发酵生产主要是采用了抗生素生产的工艺和设备,其工艺大致是:母种-一级种子-二级种子-发酵罐深层发酵。 根据培养基组成的不同,可分为天然培养基和合成培养基。天然培养基的组成均为天然有机物,合成培养基则是采用一些已知化合成分的营养物质作为培养基,无论哪一种培养基,其组成都离不开碳源、氮源、无机盐、微量元素、维生素和生长素等。 2、选择培养基时应注意的问题 (1) 氮源过多会引起菌丝生长过于旺盛,不利于代谢产物的积累。碳源不足,又容易引起菌体衰老和自溶,碳、氮比不当,会影响菌丝按比例地吸收营养物质。 (2) 同一种原料因产地不同其营养成分有差异,这在氮源表现得较明显,如大豆、玉米浆、蛋白陈等,必须记下每一种原料的产地、批号、生产厂等,并对原料进行化学成分分析。 (3) 水质对发酵生产的影响也很大,自来水、地表水、河水、并水、雪水等,其中所含溶解氧、金属离子及酸碱度等均有差异。另外,有的水中还含有较多的氯离了。因此应对水质进行化学分析。 (4) 高温(或高压)灭菌会引起某些营养成分的破坏,特别是还原糖、氨基酸和肽类等共同加热时,会形成与—羟甲基糠醛及类黑精等物质。赖氨酸最容易与糖发生反应,形成棕色物。这些在选择培养基及灭菌时都应预先想到。 食用菌的摇瓶培养 将食用菌的试管母种接人已灭菌的三角瓶培养液中,然后置于摇床上振荡培养,这种培养方式即为摇瓶培养。经过摇瓶培养的菌丝体呈球状、絮状等多种形态。培养液可呈糊状,消液状等状态,有或无清香味及其他异味。菌液中有菌株发酵产生的次生代谢产物,可呈不同的颜色。在进行菌株的初期培养或生理生代研究时,一般皆采用摇瓶培养法。 影响摇瓶培养菌丝体及次生代谢产物产生的因素有:培养温度、摇床的振荡频率和瓶子的装料系数、pH值、菌龄、接种量、培养液的粘度和光照等。 食用菌的发酵罐深层培养 发酵罐深层培养具有生产周期短、产量高、效益大等优点,是食用菌进行大量生产的重要途径。 1、深层发酵的一般设备。 深层发酵生产要住发酵罐内不断地输入无菌空气以保证耗氧的需要及维持罐内有一定的压力,防止外界杂菌的侵入,发酵生产必须具有如下设备: (1)灭菌消毒设备 灭菌的方法很多,但食用菌的发酵生产中多采用“空消和实消”灭菌形式:空消即对发酵罐及管道进行空着消毒。实消即培养液置于发酵罐内用高压蒸汽消毒,其优点是只需蒸汽发生器这一专业设备,操作比较简便,其缺点是由于是在高温下且长时间的情况进行灭菌,故培养液极易发生过热而导致营养成分破坏。 (2)空气净化设备 发酵生产要求进入罐体的空气须是洁净无菌的干燥空气,由于空气压缩机输出的空气温度高,且含有杂菌、油、水等,因此必须经过处理后,才能进入罐体。

食用菌液体菌种生产方法

食用菌液体菌种的生产方法(发酵罐法) 传统菌种生产工艺,一般是由试管母种扩繁成二级种、三级种,生产周期长、污染率高、成本高、需大量人工、管理困难。液体菌种生产具有纯度高、活力强、繁殖快的特点,接种到培养料内有流动性好、萌发点多,发菌迅速等特种点。应用于生产与固体菌种相比有以下优点: 1.菌种生产周期短。固体种一般需25—40天,而液体种仅需3—7天。 2.接种后,萌发点多萌发点多、发菌快、出菇周期短。接种24小时菌丝布满料面,3—15天长满菌袋,一般品种10天左右可出菇。 3.接种方便、成本低。用液体菌种接种一般每袋成本是1—3分,每人每小时可接800袋以上,提高效益4—5倍。 4.适宜工厂化生产。可直接用于栽培料进行出菇,大批量生产菌袋。为食用菌集约化、标准化生产创造了条件。因此,适宜我国国情的液体菌种设备的出现,必将在食用菌生产领域引发一场新的革命。 液体菌种具有固体(颗粒)菌种无可比拟的优势,但是液体菌种生产设备是近几年刚发展起来并逐渐成熟的,因此很多人对此很陌生。在这里我们对此进行简单介绍 一、液体菌种设备基本原理 任何一种食用菌自身的生长必须满足其对温度、湿度、需氧量、养分等的需要,同时必须避免杂菌感染。在深层发酵技术上称之为选择性发酵技术,如啤酒生产技术当属此例,而白酒生产则是生物菌群发酵技术。 液体菌种发酵设备(包括四大系统,温控系统由控制器、电热管等组成;供气系统由空气压缩机、输送管道、空气过滤器等组成;冷却系统由热交换器、进出水管道组成;搅拌系统由射流器、提升管等组成。 二、液体菌种生产的关键技术 1、溶氧量 液体菌种生产中最关键的是培养液中氧的溶解量,因为在菌丝生长过程中,必须不断的吸收溶解其中的氧气来维持自身的新陈代谢,氧气在液体(水)中的溶解量与压力、温度有关,同时与培养液的接触面积、渗透压有很大的关系。因此我们设计发酵设备时有效地解决了这些问题,如安装射流器使气泡细碎度增加等。 2、空气过滤 技术的关键就是保证进入的空气无菌度高,因此必须选择孔径小、材料先进的过滤膜。一般细菌直径在0.5-5um,酵母菌在1-10um,病毒一般在20-400mu,所以选择过滤膜时应综合考虑以上因素。当然如果选的太小,成本将大幅度提高。另外环境对于空气影响很大,在空气压缩机房、制种车间必须保持环境清洁。 3、培养液 培养液是菌丝生长发育的营养源,要求营养全面均衡。不同的菌种对营养要求偏重不同。配制原料有糖、麸皮、磷酸二氢钾、硫酸镁、维生素、蛋白胨、土豆汁、酵母浸膏等。配置培养液时,先将土豆片、麸皮一起煮熟,将汁液滤出,后加入其它辅料混匀即可。 4、接种 培养器上端有接种口,也是装料口,将母种并瓶后加入抑菌剂,而后必须在火焰圈的保护下倒入罐体内,要求动作快、操作准确。

食用菌液体菌种生产方法(发酵罐法)

食用菌液体菌种生产方法(发酵罐法) 传统菌种生产工艺,一般是由试管母种扩繁成二级种、三级种,生产周期长、污染率高、成本高、需大量人工、管理困难。液体菌种生产具有纯度高、活力强、繁殖快的特点,接种到培养料内有流动性好、萌发点多,发菌迅速等特种点。应用于生产与固体菌种相比有以下优点: 1.菌种生产周期短。固体种一般需25—40天,而液体种仅需3—7天。 2.接种后,萌发点多萌发点多、发菌快、出菇周期短。接种24小时菌丝布满料面,3—15天长满菌袋,一般品种10天左右可出菇。 3.接种方便、成本低。用液体菌种接种一般每袋成本是1—3分,每人每小时可接800袋以上,提高效益4—5倍。 4.适宜工厂化生产。可直接用于栽培料进行出菇,大批量生产菌袋。为食用菌集约化、标准化生产创造了条件。因此,适宜我国国情的液体菌种设备的出现,必将在食用菌生产领域引发一场新的革命。 液体菌种具有固体(颗粒)菌种无可比拟的优势,但是液体菌种生产设备是近几年刚发展起来并逐渐成熟的,因此很多人对此很陌生。在这里我们对此进行简单介绍 一、液体菌种设备基本原理 任何一种食用菌自身的生长必须满足其对温度、湿度、需氧量、养分等的需要,同时必须避免杂菌感染。在深层发酵技术上称之为选

择性发酵技术,如啤酒生产技术当属此例,而白酒生产则是生物菌群发酵技术。 液体菌种发酵设备(包括四大系统,温控系统由控制器、电热管等组成;供气系统由空气压缩机、输送管道、空气过滤器等组成;冷却系统由热交换器、进出水管道组成;搅拌系统由射流器、提升管等组成。 二、液体菌种生产的关键技术 1、溶氧量 液体菌种生产中最关键的是培养液中氧的溶解量,因为在菌丝生长过程中,必须不断的吸收溶解其中的氧气来维持自身的新陈代谢,氧气在液体(水)中的溶解量与压力、温度有关,同时与培养液的接触面积、渗透压有很大的关系。因此我们设计发酵设备时有效地解决了这些问题,如安装射流器使气泡细碎度增加等。 2、空气过滤 技术的关键就是保证进入的空气无菌度高,因此必须选择孔径小、材料先进的过滤膜。一般细菌直径在0.5-5um,酵母菌在1-10um,病毒一般在20-400mu,所以选择过滤膜时应综合考虑以上因素。当然如果选的太小,成本将大幅度提高。另外环境对于空气影响很大,在空气压缩机房、制种车间必须保持环境清洁。 3、培养液 培养液是菌丝生长发育的营养源,要求营养全面均衡。不同的菌种对营养要求偏重不同。配制原料有糖、麸皮、磷酸二氢钾、硫酸镁、

柠檬酸液态发酵及提取工艺

柠檬酸液态发酵及提取工艺 0802班生物科学饶慧 (指导教师:胡远亮) 0前言 柠檬酸(citric acid)又名枸橼酸,学名2-羟基丙烷三羧酸(2-hydroxytricarboxylic acid)或2-羟基丙烷-l,2,3-三羧酸(2-hydroxy propane-1,2,3-triearboxylic acid)是生物体主要代谢产物之一,在自然界中分布很广,主要存在于柠檬、柑橘、菠萝、梅、李、梨、桃、无花果等果实中,尤以未成熟者含量居多。分子式:C6H8O7(相对分子质量:192.13),无色透明或半透明晶体,或粒状、微粒状粉末,虽有强烈酸味,但令人愉快,稍有涩味。极易溶于水,溶解度随温度的升高而增大;从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质,加热至175°C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸被称为第一食用酸味剂,极广泛地用作酸味剂、增溶剂、缓冲剂、抗氧化剂等,用于饮料、糖果、酿造酒、冰淇淋、酸奶、罐头食品、豆制品与调味品等的生产中。另外,在药物、美容品、化妆品工业上也有着重要的应用。它是香料和饮料的酸化剂,在食品和医学上用作多价螯合剂,同时是化学中间体,用于制造药物,也可用于金属清洁剂、媒染剂等。柠檬酸的盐类、酯类和衍生物也各具特点,用途极为广泛而有良好的发展前景。 柠檬酸循环(citric acid cycle)又称三羧酸循环(tricarboxylic acid cycle),克雷布斯循环(Krebs cycle)。体内物质糖、脂肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。 实验发酵机理: 1)以薯干粉、玉米粉或淀粉等糖类为原料经黑曲霉柠檬酸产生菌(我们采用黑曲霉M288)糖化后产生高浓度的葡萄糖。 2)黑曲霉利用糖类发酵产生柠檬酸:葡萄糖以EMP(糖酵解途径或者)、HMP

液体发酵技术

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(V olvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速 在液体培养中,液体培养基的营养成分分布均匀,有利于菌类营养体的充分接触和吸收。菌丝细胞能在反应器内处于最适温度、pH、氧气和碳氮比的条件下生长,能及时排放呼吸作用产生的代谢废气,因此新陈代谢旺盛,菌丝生长分裂迅速,能在短时间内积累大量的菌丝体和多糖、多肽等具有生理活性的代谢产物。

食用菌液体深层发酵在医药方面的应用

食用菌液体深层发酵在医药方面的应用 食用菌在深层发酵过程中,其发酵产品作为药品,如口服液、软饮料等已被人们接受。在发酵过程中,产生多糖、多肽、生物碱、萜类化合物、甾醇、甙类、酶、核酸、氨基酸、微生素等多种生理活性物质。这些物质有对人体心血管、肝脏、神经系统等人体器官的防病治病作用以及抗癌、抗炎、抗衰老、抗菌、抗溃疡等功效。 近30年来已有一些产品投放市场,如马来酸麦角新碱注射液、香菇多糖片(注射液)、猴菇菌片、蜜环菌片、香云片、云芝糖肽胶囊等。 下面简单介绍下食用菌的液态发酵过程 (1)香菇多糖的生产: 1)工艺流程: 26℃26℃26℃,8天斜面母种————→一级摇瓶种子——————→二级摇瓶种子—————→三级15天静置12~15天60-80转/分 26℃,12~15天26℃,5~6天罐压39~59千帕 摇瓶种子———————→种子罐—————————————→ 60~80转/分1米3发酵液通人1米3/分空气 2)培养基: ①斜面培养基(%):葡萄糖2.0,酵母膏0.5,磷酸二氢钾0.l,7水硫酸镁0.1,琼脂2.0,pH值自然。 ②种子培养基(%):葡萄糖1.0,蛋白胨0.12,酵母膏0.12,磷酸二氢钾0.15,7水硫酸镁0.05,微量元素液0.1,pH值7.00。 ③发酵培养基(%):葡萄糖5.0,蛋白胨0.25,酵母膏0.25,氯化钙0.05,磷酸二氢钾 0.25,7水硫酸镁0.05,微量元素液0.2,pH值7.0。 一般情况下,8天菌龄时香菇多糖产生最多。用水浸提浓缩即可生产香菇多糖粉剂。若要生产饮料,则可在发酵液中加入0.06%~0.1%的柠檬酸,调pH值为5.5,加热至45—55℃,保持5~6小时,再升温至75℃,30分灭酶活,板框过滤,取滤液加入30%白糖液,加柠檬酸调pH值为5.0,加入0.01%山梨酸钾。此液滤后即为香菇保健饮料。 (2)银耳孢子的发酵: 1)生产工艺: 28℃28℃,2天28℃,3天 斜面菌种———→一级摇瓶种子——————→二级摇瓶种子—————→发酵罐4天220转/分220转/分 28℃,60~68小时 —————————————————————→ 280~330转/分,1米3发酵液通入1米3/分空气 2)培养基: ①斜面菌种:PDA。 一级摇瓶种子:马铃薯20%,蔗糖2%,硫酸铵0.2%,pH自然。 二级摇瓶种子:同一级摇瓶种子。

发酵液体饲料

发酵液体饲料 早在19世纪末,来自屠宰场的下脚料和肉屑就被作为最初的液体饲料原料,到21世纪的今天,世界各国已开始广泛使用液体饲料,对液体饲料的应用也日益增长。近年来,研究者们发现,液体饲料经发酵较使用酸化剂可产生更多的酸,至此,饲喂前的精细发酵已成为液体饲料的一个新进展。这使得发酵液体饲料成为人们研究的新热点。 1 发酵液体饲料的优越性 发酵液体饲料(Fermented liquid Feed,简写FLF),作为一种新型饲料,它的最早使用是在20世纪80年代末的荷兰,当时的发酵液体饲料实际上就是湿拌料。之后,丹麦、法国、瑞典、西班牙、瑞士等国也陆续加入到了使用者的行列,发酵液体饲料开始得以探索性的使用,而液体饲料发酵技术也被越来越多的人所接受。相对于液体饲料而言,发酵液体饲料在以下几个方面对断奶仔猪表现了极大的优越性:(1)维持肠绒毛生长,同时提高采食量。小肠绒毛是猪体内生长最快的组织,其生长所需的多种养分直接从肠道吸收而得,即使是短暂的“饥饿”也会使肠绒毛长度迅速下降,从而影响肠道的吸收能力(Plugke等,1996)。而发酵液体饲料解决了固体饲料出现的适口性差的问题,能为断奶仔猪提供适宜的养分,维持了肠绒毛的生长,同时提高了采食量;(2)提高胃中酸度,防御细菌入侵。断奶仔猪缺乏胃酸这一防御细菌入侵的首道防线,使用发酵液体饲料能

加强对日粮的酸化作用,显著提高胃中的酸度(大约降低2个pH值),从而可以控制日粮和肠道中的病原菌;(3)有益后肠微生物菌群,增强抑菌作用。饲喂发酵液体饲料未能明显改变整个消化道的乳酸菌数量,但能显著降低小肠后部后肠和结肠中大肠杆菌的数量(Jense n等,1998),从而可使大肠杆菌隐性感率大辐度降低,具有较好的杀菌效果。 2 发酵液体饲料在断奶仔猪生产中的应用 近几年来,发酵液体饲料在欧洲已广泛使用,并成为人们研究的热点。然而,关于发酵液体饲料的研究也只是集中在养猪生产中,更确切地说是对断奶仔猪的研究,而对生长猪、母猪等却鲜有报道。迄今为止,研究者认为,发酵液体饲料在断奶仔猪生产中的应用主要表现在对仔猪生产性能的影响和对猪胃酸度及肠道菌群的影响两个方面。 2.1 对断奶仔猪生产性能的影响 发酵液体饲料对断奶仔猪生产性能的影响主要是促进仔猪采食,提高日增重。Russel等(1996)在研究中发现,使用乳酸菌发酵液体饲料显著提高了断奶仔猪的采食量和生长速度,与对照组(颗粒饲料,含乳清粉,适口性好对)相比较,采食量增加了20%,日增重提高了25%,而且仔猪对发酵液体饲料饲喂效果良好,没有出现断奶仔猪的腹泻现象。丹麦农业部Foulum研究中心的Jensen于1998

液态发酵年产10000吨米醋厂生产工艺设计

液态发酵年产10000吨米醋厂生产工艺设计

年产5000吨食醋设计说明书1 设计任务书 设计项目:液态发酵年产10000吨米醋厂生产工艺设计 设计规模:33.34吨 生产工艺:液态深层发酵 工作制度:全年工作发酵日300天,三班作业,连续生产 主要原料:玉米 辅助原料:谷糠,麸皮 成品:4度酿造米醋 理化指标:总酸(以乙酸计):g/100ml≥3.50 不挥发酸(以乳酸计):无 可溶性无盐固形物:g/100ml≥0.50 微生物指标:菌落总数:(个/ml)≤10000 大肠菌群:(MPN/100ml)≤3 致病菌(系指肠道治病菌);不得检出 产品相关标准:要符合GB2719-1996《米醋卫生标准》,GB18187-2000《酿 造米醋》,ZBX66004-86《米醋质量标准》 感官指标:具有正常的米醋色泽,气味和滋味,不涩,无其他不良气味和 异味,无悬浮物,不浑浊,无沉淀,无异物,无醋鳗,醋 虱。 2 产品方案 2.1 生产规模 醋厂年产量为5000t,厂设计采取统一的规划布局,规范化建设,科学化管理,规模化生产。一体化经营,完全采用现代化企业管理模式 将逐渐形成规模。 2.2主要原料的规格 粮食:应符合GB2715的规定 酿造用水:应符合GB5749的规定 食用盐:应符合GB5461的规定 食用酒精:应符合GB10343的规定 糖类:应符合相应国家标准或行业标准规定 食品添加剂:应选用GB2760中允许使用的添加剂,还应符合 相应的食品添加剂的产品标准 2.3 工期设定 生产品种为4度酿造米醋,年产量5000t,采用瓶装生产,设

计日产 量为16.7t 2.4 产品质量及标准 GB/T601-1988 化学试剂滴定分析(容量分析)用标准溶液的 制备 GB2715-1981 粮食卫生标准 GB2719-1996 米醋卫生标准 GB2760-1996 食品添加剂使用卫生标准 GB4789.22-1994 食品卫生微生物检验调味品检验 GB/T5009.41-1996食品卫生标准分析方法 GB5461—2000 食用盐 GB5749—1985 生活饮用水卫生标准 GB/T6682—1992 分析实验室用水规格和试验方法 GB7718—1994 食品标签通用标准 GB10343—1989 食用酒精 3 生产工艺流程设计 3.1工艺流程选择论证 3.2 工艺流程图

液体深层发酵

液体深层发酵 一、液体深层发酵的操作方式。根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵和补料分批发酵三种类型。 1、分批发酵。营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出,与外部没有物料交换。特点:一次性;发酵过程中,营养不断减少,微生物不断增殖,环境非稳态;微生物生长的四个时期明显。应用:广泛。 2、连续发酵。连续发酵是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的液量维持恒定,微生物在稳定状态下生长。稳定状态可以有效地延长分批培养中的对数期。特点:培养基等量流入流出;各种变化=0;微生物群体生长的四个时期不存在。应用:常用于废水处理、葡萄糖酸、酒精、氨基酸发酵等工业中。优点:操作稳定;利于机械、自动化;提高设备的利用率;减少灭菌次数;易于过程优化。缺点:易染菌;微生物易变异;对产品类型的适应性不广;对设备及附件要求高。 3、补料分批发酵。补料分批发酵又称半连续发酵,是介于分批发酵和连续发酵之间的一种发酵技术,是指在微生物分批发酵中,以某种方式向培养系统补加一定物料的培养技术。通过向培养系统中补充物料,可以使培养液中的营养物浓度较长时间地保持在一定范围内,既保证微生物的生长需要,又不造成不利影响,从而达到提高产率的目的。特点:可以解除底物抑制、产物抑制、分解阻遏或克服微生物过度生长;提高有用产物的转化率;应用:应用广泛,用于面包酵母、氨基酸、抗生素等工业;二、发酵工艺控制。发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。反映发酵过程变化的参数可以分为两类:(1)直接参数:可以直接采用特定的传感器检测的参数。它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等。(2)间接参数:至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。这些参数需要根据一些直接参数,借助于电脑计算和特定的数学模型才能得到。上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。 1、温度:温度能影响酶的活性,也能影响生物合成的途径。温度还会影响发酵液的物理性质,以及菌种对营养物质的分解吸收等。应采用具备热交换装置发酵罐。 2、pH:pH能够影响酶的活性,以及细胞膜的带电荷状况。还会影响培养基中营养物质的分解等。常用的控制方法有:①调整生理碱性和酸性盐类的比例;②选择不同C、N的种类和比例;③添加缓冲剂。 3、溶解氧:在发酵过程中菌种只能利用溶解氧。因此,必须向发酵液中连续补充大量的氧,并要不断地进行搅拌,以提高氧在发酵液中的溶解度。 4、泡沫:发酵过程中,通气、搅拌、微生物的代谢过程及培养基中某些成分的分解等,都有可能产生泡沫。过多的持久性泡沫对发酵是不利的。常采用机械消泡和消泡剂消沫。 5、营养物质的浓度:发酵液中各种营养物质的浓度,特别是碳氮比、无机盐和维生素的浓度,会直接影响菌体的生长和代谢产物的积累。三、发酵设备。进行微生物深层培养的设备统称发酵罐。由于微生物有好氧与厌氧之分,所以其培养装置也相应地分为好氧发酵设备与厌氧发酵设备。(1)液态好氧发酵罐。特点:有冷却装置。有通风装置。代表:机械搅拌发酵罐、通气搅拌发酵罐。(2)液态厌氧发酵罐。特点:有冷却装置。没有通风装置。代表:酒精发酵罐、啤酒发酵罐。 1、机械搅拌式发酵罐。它是利用机械搅拌器的作用,使空气和发酵液充分混合,促进氧的溶解,以保证供给微生物生长繁殖和代谢所需的溶解氧。类型:通用式发酵罐、自吸

DNS法对食用菌发酵液淀粉酶活力的测定

DNS法对食用菌发酵液淀粉酶活力的测定 摘要选取广泛栽培的著名食用菌香菇、平菇和姬菇菌丝体为研究菌种,采用3,5-二硝基水杨酸(DNS)比色法检测供试食用菌的淀粉酶产生能力。以2%可溶性淀粉为唯一碳源的查氏液体培养基诱导发酵,供试食用菌产生的淀粉酶活力在1.513~3.417 U/ mL,为食用菌工业发酵菌种的选育提供了参考依据和分析方法。 AbstractEnzyme energy of amylase from edible fungi was determinated based on 3,5-dinitryl-salicyle(DNS).Taking czapek as induction medtum in whith the only carbon source was 2% soluble starch,and amylase energy ranged from 1.513 to 3.417 U/mL among Lentinula edodes,Pleurotus ostreatus,Pleurotus cornucopiae,so as to put forward a reference and analysis method for the edible fungistrain selection. Key wordsedible fungi;fermention;DNS;amylase;activity determination 经过人工驯化培养的食用真菌的菌丝体,可以栽培扭结成食药用价值很高的子实体。近年来,人们发现食用真菌菌丝体也可以仿效青霉菌发酵,大规模生产食用菌多糖、抗生素、酶制剂等亟待研发的生物活性物质[1]。食用菌发酵有赖于适宜的工艺条件与生物反应器,但更取决于具工业开发价值的生产菌种的生理性状,其中包括食用菌生产菌种对环境的适应性,归结为食用菌的代谢能力,能够利用廉价原料迅速生长并大量合成目的产物。许多工业发酵菌种不能直接利用淀粉,生物工厂必须对原材料进行预处理,通过液化、糖化生产微生物可以直接利用的淀粉水解糖。如果选育出具有淀粉酶活力的生产菌种,就可以实现边糖化边发酵,可极大地提高生产效率。因此,探讨灵敏而准确的食用菌淀粉酶活力的测定技术,具有重要的生理学意义和实践应用潜力。 淀粉酶活性测定方法较多[2],但大致分为4类:一是测定底物淀粉的消耗量,有粘度法、浊度法和碘—淀粉比色法等;二是生糖法,测定产物葡萄糖的生成量;三是色原底物分解法;四是酶偶联法。利用3,5-二硝基水杨酸(DNS)比色法测定还原糖含量来反映淀粉酶活力是目前较常采用的方法。此法是用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。该方法测试所用试剂易得,溶液有效期长,且测试精确度高,结果比较可靠。故笔者采用此法来测定供试食用菌产生淀粉酶的活力[3-5]。 1材料与方法 1.1供试材料 香菇(Lentinula edodes)、平菇(Pleurotus ostreatus)和姬菇(Pleurotus

不同食用菌种类的液体菌种发酵种配方

不同食用菌种类的液体菌种发酵种配方 (1)平菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸30克,蛋白胨1.5克,磷酸二氢钾1.5克,硫酸镁0.75克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (2)金针菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (3)白灵菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (4)香菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (5)杏鲍菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (6)榆黄蘑配方:马铃薯100克,红糖12克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾1.5克,硫酸镁0.75克,维生素B11片,聚氧丙稀甘油0.3毫升,p H值自然; (7)茶新菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸50克,蛋白胨2. 5克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (8)鲍鱼菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (9)鸡腿菇配方:马铃薯100克,红糖12克,葡萄糖12克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然;

液态深层发酵制醋的研究及发展方向

液态深层发酵制醋的研究及发展方向 醋酸发酵可以说起源于食醋的发酵,而食醋发酵在古代最早只是酿酒受细菌污 染的结果,即所谓"酒酸变醋"。因此醋酸发酵的历史几乎与酿酒一样悠久,可以追 溯至一万年前。能生产食醋的原料很多如葡萄、苹果、青菜等果蔬原料,大米、玉 米、高粱等天然含糖原料,食用酒精等。早先 获得醋酸的方法有天然发酵醋的蒸馏和木材的分解蒸馏,即所谓"木酸"。真正的醋 酸发酵应该是从快速制醋法开始发展起来的。它是现代淋醋工艺的前身,此法在国 外称为"德国工艺",由德国波恩的弗林斯公司(Heinrich Frings)做了许多改进 ,他们采用强制通气、控制温度、酒醪喷淋等 措施提高了传热优质效率,大大提高了发酵速率,这种工艺采用12%~15%高浓度 的乙醇,其醋酸的转化率可达98%,产酸速率可达5L/立方米.d,一个半世纪以来 ,此法一直是工业生产食醋的重要方法。 深层发酵的工艺是上世纪50年代发展起来的一种新工艺,当时德国的Hromatk a和Ebner在1994年和1951年报道了对于工业深层发酵工艺的初步研究,与淋醋工艺 相比,深层发酵的乙醇氧化速率提高了约30倍,生产可以高度自动化,经济效益 明显提高。 深层发酵又称全面发酵,这一方法最早应用于抗生素的工业生产,工业规模生 产大设备完成于西德的Frings公司的醋化器,其生产能力为该公司所设计的循环醋 化器法的6~7倍。不久,美国的Cohee和Burgoon 以及Magor设计出了连续发酵装置Cavicator。我国起步较晚,自上世纪70年代 开始研究以来,目前,在全国许多地方得到推广应用。这一工艺劳动生产效率高, 液化、糖化、酒精发酵、醋酸发酵都可在液态下进行,醋酸发酵的要点是将酒液及 扩培的醋酸菌借强大的无菌空气或自吸的气流进行充分搅拌,使气、液面积尽量加 大,进行全面酒精的氧化以生产醋酸。由于反 应迅速,生产周期大大缩短,全部工艺仅用50~70小时,同时产生大量热能,须迅 速冷却,保持菌种最适作用温度,因而能源消耗提高,所以通气条件及冷却条件是 本工艺的关键因素。 深层发酵的特点在于接入大量纯菌种的醋酸菌在较短时间稳定地生产大量食醋 ,在一定条件下生产出质量一致的产品及高酸度的食醋产品。 用酒精稀释液生产酸度11 %~12 %酒精醋时,要将酒精稀释至5 %~6.5%

液体发酵技术

液体发酵技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(Volvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速

液体酿酒技术

继承和发展传统酿造技术,“君明生物”已成为液态酿酒行业的中坚。在有效地吸收我国传统固态酿酒技术和液态酿酒技术的基础上,引进国际上先进的酿酒理论和工艺,“君明生物”独创的“液态酿酒新技术”在保持了“液态生料酿酒技术”出酒率高,酒糟(饲料)含蛋白质高,营养全面的同时,使所产白酒的酒质更好,口感更佳,具有:纯粮原浆,醇香浓郁,清澈透明如矿泉水,好喝不上头的特点。这一新技术投资少,见效快,效益高,风险低,产品大众化易销售,市场开发空间广阔,更适合农村、乡镇利用当地自然资源和人力资源,开创中、小型酿酒、养殖业。该技术优势明显已成农村经济发展中,快速致富的首选项目! “君明液态酿酒及高蛋白糖化饲料生产技术”对粮食进行有效的生物深加工,使粮食的附加值成倍的增长,绿色无污染。可同时从几个行业中(如:酿酒、饲料、养殖、能源、种植等)获得可观的经济效益和社会效益。通过扩大的养殖业可为土地改良、减少板结、提高使用率提供更多的“有机肥类”,实现农村立体化养殖业、种植业的良性循环和发展。 让山更绿,水更清,民更富,造福子孙! ★【功能卓越,物美价廉的新型酿酒设备】 科学的技术,更要依靠与其相配套的先进设备,来体现其巨大的经济效益内涵。 “君明牌”新型液态酿酒设备(又名:“饲料发生器”),以现代液态酿酒理论为指导,采用国际食品设备加工标准,采用0Ri18Ni9Ti进口不锈钢为原料,精心设计加工而成。它具有:结构简单、合理、轻便、成本低(仅为同类产品的2/3),生产操作简单、稳定,常温常压,运行安全可靠,经济耐用,使用寿命十年以上。设备终身保修,常年提供免费技术指导。 ★【优质瓶装品牌酒的最佳伙伴-基酒】 科学的技术,更要依靠与其相配套的先进设备,来体现其巨大的经济效益内涵。 “君明牌”新型液态酿酒设备(又名:“饲料发生器”),以现代液态酿酒理论为指导,采用国际食品设备加工标准,采用0Ri18Ni9Ti进口不锈钢为原料,精心设计加工而成。它具有:结构简单、合理、轻便、成本低(仅为同类产品的2/3),生产操作简单、稳定,常温常压,运行安全可靠,经济耐用,使用寿命十年以上。设备终身保修,常年提供免费技术指导。 ★【优质的高产“酒曲”,是成功的保证】 “君明生物”以现代酿酒理念为指导,以科技生物工程为手段,独家研创的“液态增香型高产酒曲”、“液态复合香型高产曲种”,是微生物超浓缩群体。具有活性强,淀粉转化率高,性能稳定,出酒率高的特点。百斤大米可以生产50%白酒95斤以上,百斤玉米可以生产50%白酒75斤以上。酒的口感好,酒质高。该酒曲用量少(0.58-0.68市斤/百斤粮),操作简单,劳动强度低,发酵周期短(2-12天),成本低,利润高,安全卫生,是液态生、熟料酿酒,膨化发酵酿酒等工艺最理想的发酵用曲种。由于该酒曲科技含量高,生物活性强,也成为广大液态生料酿酒厂和用户,更新换代,提升技术的理想酒曲。 “君明液态复合香型高产酒曲”同时还可以应用于米酒、涝糟、食用醋、桔杆发酵等行

教育部奖项目简介-食用菌发酵罐

项目名称微生物液态发酵智能装备关键技术及工程应用 主要完成人宋永献、王博、朱湘临、王经卓、朱强、张先进、阎斌伦、郭飞、徐启华、丁煜函、朱忠平、朱丽 推荐单位 (专家) 淮海工学院 项目简介 项目针对微生物液态发酵装备及智能测控技术进行研究,并开展相关的产业化推广研究,属于发酵工程、生物工程、控制工程、机械工程等多学科内容的交叉技术领域。 微生物发酵装备是发酵类产品(发酵食品、发酵医学品、发酵能源等)生产过程中的关键部件,在发酵装备中,液态发酵装备所占比重最大且处于主导地位。随着我国经济的发展和人民生活水平的日益提高,以及对“能源与环境”的关注度不断提升,多种类、高质量、低成本、低污染甚至零污染的微生物发酵产品的需求量不断增加,随之高性能液态发酵装备的刚性需求与日俱增。多年来我国微生物液态发酵过程基础研究不足,液态发酵装备工艺、自动化水平和可靠性不高,智能测控系统和大型发酵装备依赖进口;而且国内绝大多数液态发酵装备及其配套企业大都相对独立地开展研发工作,尚未建立液态发酵装备与测控系统集成一体化设计研究体系,导致我国液态发酵装备在关键部件、测控技术、数字化系统开发等方面的核心技术匮乏,产品存在能耗和生产成本高、自动化程度和可靠性差等问题,亟待升级换代的现实问题。 针对高性能液态发酵装备领域亟需解决的重大技术难题,项目组依托淮海工学院江苏省生物工程重点建设学科、江苏省海洋科学与技术优势学科、江苏省海洋生物技术重点实验室以及江苏大学的农业电气化与自动化国家重点学科、现代农业装备与技术教育部重点实验室、生物与控制工程研究所,并在国家高技术研究发展计划(863课题)、国家“十二五”863课题、江苏省自然科学基金以及市科技计划项目等国家、省部级和市厅级课题的资助下,联合国内液态发酵装备制造骨干企业,共同开展高性能液态发酵装备关键技术难题攻关。通过发挥参与单位各自优势,分工协作,突破液态发酵装备主要部件优化设计、关键参量软测量、多参量解耦控制和智能补料控制等关键技术,并研发拥有自主知识产权的系列高性能微生物液态酵装备产品,实现微生物液态发酵过程的“高密度、高表达、低成本”,项目总体达到国际先进水平。 主要科技创新:(1)构建液态发酵装备结构设计和优化平台,优化设计液态发酵装备的主要组件,大幅提高液态发酵装备的自动化水平与发酵效率;基于计算流体动力学CFD方法,针对微生物发酵过程工艺机理与菌体生长特性,优化设计发酵罐罐体结构和搅拌桨叶形状,提高液态发酵装备的节能效果和运行性能;设计新型对偶气体环流供气装置,有效增加液态发酵过程的溶解氧,降低发酵周期,提高发酵得率;设计新型的液态发酵装备移种装置,大幅度提高液态发酵接种过程的自动化程度。(2)针对动力学模型已知与未知两种情况的微液态发酵过程,分别提出基于模糊神经逆与混沌粒子群支持向量机的秸杆固态液态并行发酵过程不可直接测量关键参量的软测量方法与技术,突破微生物液态发酵过程关键参量不可直接在线检测的瓶颈技术难题,实现关键过程参量在线实时估计;(3)针对动力学模型已知与未知两种情况液态发酵过程,分别提出基于模糊神经逆多变量动态解耦与模糊神经网络预测控制的非线性解耦闭环控制方法与技术,实现液态发酵过程关键参量的动态实时调节。

灵芝菌丝体深层液体发酵的菌种选育

灵芝菌丝体深层液体发酵的菌种选育 作者 学校哈尔滨学院 院系食品科学与工程 班级 10-2 学号

摘要:本文主要列举了灵芝菌丝体深层液体发酵的菌种选育的几种方法,有人工选择,诱变育种,杂交育种,细胞融合工程育种,基因工程育种,通过对比比较,可选出对公司或个人最适合的菌种选育方法。 Abstract: This paper enumerates several methods of breeding strains of Ganoderma lucidum mycelium deep liquid fermentation, artificial selection, mutation breeding, cross breeding, cell fusion engineering breeding, gene engineering breeding, by comparison, can choose the most suitable for company or individual species breeding method. 关键词:菌种选育人工选择诱变育种杂交育种细胞融合工程育种基因工程育种 Keywords: Strain breeding , artificial selection , mutation breeding , cross breeding , Cell fusion engineering breeding , Gene engineering breeding .

灵芝为担子菌纲多孔菌科灵芝属,是一种药,食两用真菌。全世界有104种,我国主要有20多种可作药用,其中重要的有赤芝,紫灵芝,薄树芝等,多分布于贵,鲁,冀,吉,苏,浙等省。自古誉为瑞草仙药,是扶正培本的珍品。它在防病治病,延年益寿等方面的作用得到中外学者的公认。现代医学表明,灵芝具有很高的营养价值和保健价值。 但人工栽培灵芝的生长周期长(大于2~3个月),受环境影响大,产量低、品质不稳定,生产成本高,极大地影响了灵芝及其生物活性物质在饲料业中的发展。因此,近年来人们转向灵芝菌液体深层发酵培养的研究,获得灵芝菌丝体及其活性生长代谢产物(灵芝酸、灵芝多糖等),并通过发酵条件的控制,缩短生产周期,降低生产成本,使灵芝及其生物活性物质饲料添加剂在畜牧业中应用和推广成为可能。 灵芝真菌液体深层发酵培养的基本过程是:生产菌种→孢子制备→种子制备→发酵→发酵产物(提取、精制)→产品。在液体深层发酵生产的过程中,影响生产周期、生产水平和生产成本高低的最主要因素有3个:生产菌种、培养基成分和发酵工艺参数。本文就是灵芝菌丝体深层液体发酵的菌种选育一综述。 在液体发酵生产的过程中,生产菌种的特性是决定生产周期和生产水平的最重要因素。从自然界分离出的灵芝菌,依靠自身代谢调节系统,趋向于平衡生长和繁殖,生长速度慢,生产能力低,不能满足饲料工业规模化生产的需要。为此,采用种种方法来打破灵芝菌的正常代谢,使之失去自我保守性的调节控制,不仅快速生长而且大量积累我们所需要的目标代谢产物(如灵芝多糖、灵芝酸等)。为达到此目的,主要措施就是进行灵芝菌菌种选育工作。菌种是灵芝的根 本。菌种性状的优劣直接影响到生产。因此,必须认真做好菌种的选育工作。通常菌种选育有以下几种方法: 1 人工选择 人工选择也称淘汰法。它是较原始的育种方法,即从自然界有的菌种中通过人工选择,利用人工方法来控制生物的生殖,使生物生殖有选择的进行,从而去劣存优,形成人类所需要的优质新品种。人工选择方法简便,主要有以下几个步骤: (一)收集原始品种根据灵芝的特点,确定采种目标尽可能收集菇形漂亮,朵大,无病虫害等有代表性的菌株。 (二)分离纯种种菇采到后,要尽快进行组织分离,已取得纯种。 (三)测定菌株生理特性分离后,观察菌丝生长的速度,长势,对温度,湿度,光线等条件的反应,初步了解其生物特性。 (四)实验对照采用不同的栽培方法,比较各菌种的生产性能,产量,品质,菇期,温性等各方面进行记录。 (五)规模试验对比试验后,选择相对优质的菌种再进行规模化试验,以便进一步选择优良菌种 (六)菌种推广试验经过规模化试验后,进一步确定了菌种的性能,从而可大面积生产,对广大菇农进行示范推广 2 诱变育种 微生物的诱变育种是以人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高和性状优良的突变株,并

相关文档
最新文档