股市预测中的小波神经网络方法

股市预测中的小波神经网络方法
股市预测中的小波神经网络方法

基于Bp神经网络的股票预测

基于B p神经网络的股 票预测 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] ,,makingin-depththeoreticalanalysisandempiricalstudiesontheshort-termclosingpriceforecastsofsinglestock. Secondly,makingresearchonthemodelandstructureofBPneuralnetwork, learningrules,weightsofBPalgorithmandsoon,buildingastockshort-termforecastingmodelbasedontheBPneuralnetwork,,usingsystemofmultiple-inputsingle-outputandsinglehiddenlayer,,. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

小波神经网络的时间序列预测-短时交通流量预测

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

(完整版)小波神经网络的时间预测

基于小波神经网络的短时交通流预测 摘要 将小波神经网络的时间序列预测理论应用于短时交通流量的预测。通过小波分解与重构获取交通流量数据中的低频近似部分和高频随机部分, 然后在分析各种模型的优、劣的基础上, 选取较有效的模型或模型结合方式, 建立了交通流量预测模型。最后, 利用实测交通流量数据对模型仿真, 结果表明该模型可以有效地提高短时交通流量预测的精度。 关键词: 小波变换 交通流预测 神经网络 1.背景 众所周知, 道路交通系统是一个有人参与的、时变的、复杂的非线性大系统, 它的显著特点之一就是具有高度的不确定性(人为的和自然的影响)。这种不确定性给短时交通流量预测带来了极大的困难。这也就是短时交通流量预测相对于中长期预测更复杂的原因所在。在交通流量预测方面,小波分析不是一个完全陌生的工具,但是仍然处于探索性的应用阶段。实际上,这种方法在计算机网络的流量的预测中有着广泛的应用。与计算机网络一样,车流也表现出复杂的习性。所以可以把它的应用推广类比到交通流量的预测中来。小波分析有着与生俱来的解决非稳定时间序列的能力, 所以常常被单独用来解决常规时间序列模型中的问题。 2.小波理论 小波分析是针对傅里叶变换的不足发展而来的,傅里叶变换是信号处理领域里最为广泛的一种分析手段,然而他有一个严重的不足,就是变换抛弃了时间信息,变换结果无法判断某个信号发生的时间。小波是一种长度有限,平均值为0的波形,它的特点包括: (1)时域都具有紧支集或近似紧支集; (2)直流分量为0; 小波变换是指把某一基本小波函数ψ(t)平移b 后,再在不同尺度a 下与待分析的信号x(t)做内积。 dt a b t t x a b a WT x )()(1),(-=?*ψ??==?*)(),()()(,,t t x dt t t x b a b a ψψ (2 — 1) 等效的时域表达式为 dt a b x a b a WT x ωωψωj e )()(1),(-=?* a > 0 (2 — 2) 3.小波神经网络 小波神经网络是小波分析理论与神经网络理论相结合的产物,把小波基函数作为隐含层节点的传递函数,信号前向传播的同时误差反向传播的神经网络。 图一中1x ,2x ,....k x 是小波神经网络的输入参数,1y ,2y ....,m y 是小波神经网络的预测输出。

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

小波神经网络程序

这是一个小波神经网络程序,作者judyever %参考<青岛海洋大学学报> 2001年第1期一种基于BP算法学习的小波神经网络%% %step1--------网络初始化------------------------------------------- clc; clear all; %设定期望的误差最小值 err_goal=0.001; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 d=sin(8*pi*x)+sin(16*pi*x);%目标输出序列 M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa(n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end

基于神经网络的股票价格走势预测及其MATLAB实现——论文

基于神经网络的股票价格走势预测及其MATLAB实现 摘要 伴随着我国经济的高速发展和广大投资者日益旺盛的需求,股票投资已经成为一种常见的投资手段,而股票价格预测也逐渐成为广大投资者关心和研究的重点问题。股票价格的波动是一个高度复杂化的非线性动态系统,其本身具有诸如大规模数据、噪声、模糊非线性等特点。针对这些特点本文在深入分析股票市场实际预测中所面临的关键问题和比较各种已有的股票预测方法的基础上,探讨运用神经网络这一人工智能工具,研究基于历史数据分析的股票预测模型。 神经网络是建立在对大规模的股票历史数据的学习仿真的基础上,运用黑盒预测方式找出股市波动的内在规律,并通过将其存储在网络的权值、阈值中,以此来预测未来短期或是中长期的价格走势。 关键字:神经网络,股票,预测,MATLAB工具箱 ABSTRACT Along with the economy growth and increasingly strong demand of many investors in our country, stock has become a common means of investment, and stock price forecast has greatly been one of the focuses of study topic. The change of stock price is a highly complicated nonlinear dynamic system, itself has many characteristics such as massive data, noise, fuzzy and nonlinear. This article analyses the key issues being existent in the real stock market prediction and compares various existing stock forecasting methods. We will try to research on stock price prediction model based on a neural network with huge historical data. Neural network is based on studying massive historical data, uses the black box of forecasting ways to find the internal disciplinarian of stock market, and stores them in the weights and valves values of the neural network for predicting the short-term or long-term trend in the future. KEYWORD:Neural networks, Stock, prediction, MATLAB toolbox

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络 摘要:基于小波分析的神经网络在我们的日常生产中有着重要的作用,尤其是在故障检测中,正因为有了它的存在,使得我们能更好的对一些机器内部微小的部件进行检测。在一定程度上,避免了人工检测工作量大且准确度不高的情况,降低了检验的成本,减少了因零件损坏而带来的损失,为工业的生产提供了极大的帮助。 关键词:小波分析,神经网络,故障诊断 随着科学的进步与时代的发展,神经网络正慢慢的运用到我们的日常生活与生产之中。从1943年人们首次提出了人工神经网络这一概念至今,神经网络已经与越来越多的其他技术结合了起来,例如,结合神经元的混沌属性提出混沌神经网络,应用于组合优化的问题中,与粗集理论结合,应用于对数据的分类处理,与分形理论结合,应用于图形识别、图像编码、图像压缩等,与小波分析结合,应用于机械设备的故障检测中。以下是我对基于小波分析的神经网络的见解。 一、概述 小波分析即小波变换,是1981年Morlet首先提出的,经过发展后成为了一门学科,小波分析对低频信号在频域和高频信号在时域里有着较好的分辨率。而神经网络特有的对非线性适应性信息处理能力,当它与小波分析相结合后,使得它们能在对高压电网的信号处理,机械故障的检测等方面发挥了重要的作用。

二、小波神经网络的算法 小波神经网络的算法大体的思路是这样的,小波神经网络的核心是隐层神经元的激活函数小波基函数(Morlet )进行非线性映射,信号通路只进行前向传递,待分类信号进行前向传递的同时,误差信号进行反向的传递。输出层的传递函数为S 函数,小波函数的拓扑结构如下所示: 小波函数的修正公式如下: (k 1)(k)*E mc ωωη ωω?+=++? (1) a(k 1)(k)*E a mc a a η?+=++? (2) b(k 1)(k)*E b mc b b η ?+=++? (3) 误差函数如下: 211 1(y yt )2N M n n m m n m E N ===-∑∑ (4) 输入层 隐含层 输出层

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

小波神经网络研究进展及展望_陈哲

综 述 小波神经网络研究进展及展望 陈 哲 冯天瑾 (青岛海洋大学电子工程系,青岛,266003)摘 要 关于小波分析与人工神经网络结合的研究,近些年来已成为信号处理学科的热点之一,已有大量的研究成果见诸各种学术刊物和会议论文。小波变换具有良好的时频局部性质,神经网络则具有自学习功能和良好 的容错能力,小波神经网络(W NN )由于较好地结合了两者的优点而具有强大的优势。作者较系统地综述了小 波神经网络的研究进展,讨论了小波神经网络的主要模型和算法,并就其存在的一些问题,应用与发展趋势进 行了探讨。 关键词 神经网络;小波分析;小波神经网络 中图法分类号 T P 911.7 小波自80年代提出以来,理论和应用都得到了巨大的发展,小波分析的出现被认为是傅立叶分析的突破性进展[1~3]。多层感知器(M ultila yer Perceptr on,M L P)是一种广泛应用的神经网络模型,实践证明M L P 具有较好的空间映射能力和推广能力。目前,神经网络的理论研究日趋深入,其重要发展方向之一,就是注重与小波、混沌、模糊集等非线性科学理论相结合。小波变换具有时频局部特性和变焦特性,而神经网络具有自学习、自适应、鲁棒性、容错性和推广能力,如何把两者的优势结合起来,一直是人们关注的问题。一种方法是用小波分析对信号进行预处理,即以小波空间作为模式识别的特征空间。通过将小波基与信号的内积进行加权和来实现信号的特征提取,然后将提取的特征向量送入神经网络处理;另一种即所谓的小波神经网络(W av elet neura l netw or k,W NN )或小波网络,把小波变换与神经网络有机地结合起来,充分继承了两者的优点。小波与前馈神经网络的结合是小波网络的主要研究方向,也是本文着重讨论的内容。小波还可以与其它类型的神经网络相结合:例如用Koho nen 网络对信号做自适应小波分解[4],RBF 网络与小波的结合[5]等。1 小波神经网络 小波神经网络可看作是以小波函数为基底的一种函数连接型网络,也可以认为是径向基函数(Radial ba-sis functio n,RBF)网络的推广,但它又具有与一般前馈网络和RBF 网络所不同的特点,在神经网络研究领域中具有巨大的潜力。现就其主要模型和算法综述如下。 1.1小波网络基本模型 Pati 和Krish napra sad [6]最早研究了神经网络与小波变换的联系,提出了离散仿射小波网络模型。其思想是将离散小波变换引入神经网络模型,通过对Sig moid 函数的平移伸缩构成L 2(R )中的仿射框架,进而构造小波神经网络。1992年Zhang Qing hua 和Benv eniste [7]明确提出了小波网络的概念和算法。其思想是用小波元代替了神经元,即用已定位的小波函数代替S ig modi 函数作激活函数,通过仿射变换建立起小波变换与网络系数之间的联接,并应用于函数逼近。随后Szu 等[8]又提出了基于连续小波变换的两种自适应小波神经网络模型。一种用于信号表示,偏重于函数逼近;另一种偏重于选取合适的小波做特征提取,其实质是在小波特征空间中寻找一组最佳的小波基,因不涉及重构问题,小波的正交性要求不是很苛刻, 第29卷 第4期 1999年10月 青岛海洋大学学报J OU RN AL OF OCE AN UVIVE RSI TY OF Q INGDAO 29(4):663~668  Oct.,1999  国家自然科学基金课题(69675005)资助 收稿日期:1998-09-23;修订日期:1999-05-11 陈 哲,男,1976年6月出生,硕士生。

小波神经网络预测的代码1

clc; clear all; %设定期望的误差最小值 err_goal=0.01; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 %d=sin(8*pi*x)+sin(4*pi*x)+5*sin(pi*x);% d=[1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 9 8 7];%目标输出序列M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa:1n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end end

基于Bp神经网络的股票预测

深圳大学 神经网络原理课程实验 题目:基于BP神经网络的股票预测姓名: 专业: 学院: 信息工程学院 指导教师: 职称: 2014年5月17日

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

用小波神经网络来对时间序列进行预测

/* Note:Your choice is C IDE */ #include"stdio.h" void main() { }/*用小波神经网络来对时间序列进行预测 */ /*%File name : nprogram.m %Description : This file reads the data from %its source into their respective matrices prior to % performing wavelet decomposition. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Clear command screen and variables */ clc; clear; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired resolution level (Tested: resolution = 2 is best)*/ level = menu('Enter desired resolution level: ', '1',... '2 (Select this for testing)', '3', '4'); switch level case 1, resolution = 1; case 2, resolution = 2; case 3, resolution = 3; case 4, resolution = 4; end msg = ['Resolution level to be used is ', num2str(resolution)]; disp(msg); /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired amount of data to use */ data = menu('Choose amount of data to use: ', '1 day', '2 days', '3 days', '4 days',... '5 days', '6 days', '1 week (Select this for testing)'); switch data case 1, dataPoints = 48; /*%1 day = 48 points */ case 2, dataPoints = 96; /* %2 days = 96 points */ case 3, dataPoints = 144; /*%3 days = 144 points */ case 4, dataPoints = 192; /*%4 days = 192 points */ case 5, dataPoints = 240; /* %5 days = 240 points */

神经网络预测时间序列

神经网络预测时间序列 如何作预测?理想方法是利用已知数据建立一系列准则,用于一般条件下预测,实际上由于系统的复杂性而不太可能,如股票市场预测。另一种途径是假设一次观测中过去、未来值之间存在联系。其中一种选择是发现一个函数,当过去观测值作为输入时,给出未来值作为输出。这个模型是由神经网络来实现的。 1.2 神经网络预测时间序列 (1) 简单描述 在时间序列预测中,前馈网络是最常使用的网络。在这种情形下,从数学角度看,网络成为输入输出的非线性函数。记一个时间序列为}{n x ,进行其预测可用下式描述: ),,(1+-1-+=m n n n k n x x x f x (1) 时间序列预测方法即是用神经网络来拟合函数)(?f ,然后预测未来值。 (2) 网络参数和网络大小 用于预测的神经网络性质与网络参数和大小均有关。网络结构包括神经元数目、隐含层数目与连接方式等,对一个给定结构来说, 训练过程就是调整参数以获得近似基本联系,误差定义为均方根误差,训练过程可视为一个优化问题。 在大多数的神经网络研究中,决定多少输入与隐层单元数的定量规则问题目前尚未有好的进展,近有的是一些通用指导:首先, 为使网络成为一个完全通用的映射,必须至少有一个隐层。1989年证明一个隐层的网可逼近闭区间内任意一个连续函数。其次,网络结构要尽可能紧致,即满足要求的最小网络最好。实际上,通常从小网络开始。逐步增加隐层数目。同样输入元数目也是类似处理。 (3) 数据和预测精度 通常把可用的时间序列数据分为两部分:训练数据和检验数据。训练数据一般多于检验数据两倍。检验过程有三种方式: 短期预测精度的检验。用检验数据作为输入,输出与下一个时间序列点作比较,误差统计估计了其精度。 长期预测中迭代一步预测。以一个矢量作为输入,输出作为下一个输入矢量的一部分,递归向前传播。 直接多步预测。即用1+-1-m n n n x x x ,,直接进行预测,输出k n x +的预测值,其中 1>k 。

神经网络预测方法

(4)神经网络的预测方法 神经网络(Neural Network)是由许多并行的、高度相关的计算处理单元组成,这些单元类似生物神经系统的神经元。虽然单个的神经元的结构十分简单,但是,由大量神经元相互连接所构成的神经元系统所实现的行为是十分丰富的。与其它方法相比,神经网络具有并行计算和白适应的学习能力㈤。神经网络系统是一个非线性动力学系统计算系统。神经网络模型有许多种类,经常使用的有BP网络、RBF网络、Hopfield网络、Kohonen网络、BAM网络等等,近年又出现了 神经网络与模糊方法、遗传算法相结合的趋势。浚方法已在交通流预测中得到了应用。在交通流预测中应用最早使用最多的是反传BP网络。 应用神经网络进行交通流预测的步骤如下: 第一步,根据实际情况,选择适当的网络结构作为预测工具,根据已确定的预测因子和被预测量,决定网络的输入和输出,进而决定网络的结构(网络 各层次的节点数) 第二步,准备样本数据和样本的规范化处理,样本分为训练样本和检验样本;第三步,利用训练样本是对网络进行训练和学习; 第四步,利用检验样本对网络训练结构进行检验,验证网络的泛化能力; 第五步,用训练好的网络,根据已知的数据进行实际预测。 与传统的预测方法相比,神经网络的预测方法的预测精度要好一些。这主要 是得益于神经网络自身的特点。神经网络擅长描述具有较强非线性、难于用精确数学模型表达的复杂系统的特性,并且具有自适应能力。由于神经网络算法是离线学习,在线预测,所以几乎没有延时,实时性很好。此外,神经网络对预测因子的选择也较为灵活,任何认为与待预测交通流量有关的数据均可纳入输入向量中。但是,神经网络也有一些弱点,主要表现在以下几个方面: 三、由于使用大量的样本进行训练,所以神经网络的学习训练过程收敛 较慢,容易产生“过度学习”的情况,陷入对样本值的机械记忆而降低了泛化能力。因此,应用神经网络目前很难做到在线学习,只能将学习与预测分离成两个阶段(一个离线、一个在线)来完成。 四、神经网络的训练与学习是基于训练样本所隐含的预测因子与被预测 量的因果关系,这种学习不能反映外部环境的变化及其对预测的影响。因此,当预测对象所处的外部环境发生改变,或以某一路段数据训练好的神经网络去预测其它路段(口)的交通流量时,预测的准确率就会大大降低,错误率明显上升。这是由单一的神经网络的有限学习能力所决定的,表明经过训练的神经网络并不具有良好的“便携性”。 五、截止到目前,各类文献所见的基于神经网络的短期交通流的预测,最小 的预测时间跨度ht.15rain的水平上,对更小的预测周期,神经网络预测的适应性、精度如何,还有待检验。

相关文档
最新文档