支持向量机数据分类预测

支持向量机数据分类预测
支持向量机数据分类预测

支持向量机数据分类预测

一、题目——意大利葡萄酒种类识别

Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。

二、模型建立

模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。

三、Matlab实现

3.1 选定训练集和测试集

在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。

% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量

load chapter12_wine.mat;

% 选定训练集和测试集

% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集

train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];

% 相应的训练集的标签也要分离出来

train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];

% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集

test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];

% 相应的测试集的标签也要分离出来

test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];

3.2数据预处理

对数据进行归一化:

%% 数据预处理

% 数据预处理,将训练集和测试集归一化到[0,1]区间

[mtrain,ntrain] = size(train_wine);

[mtest,ntest] = size(test_wine);

dataset = [train_wine;test_wine];

% mapminmax为MATLAB自带的归一化函数

[dataset_scale,ps] = mapminmax(dataset',0,1);

dataset_scale = dataset_scale';

train_wine = dataset_scale(1:mtrain,:);

test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );

3.3 训练与预测

用训练集对SVM分类器进行训练,用得到的模型对测试集进行标签预测,其中SVM的实现采用的是libsvm工具箱。

%% SVM网络训练

model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1');

%% SVM网络预测

[predict_label, accuracy] = svmpredict(test_wine_labels, test_wine, model);

四、分类结果

%% 结果分析

% 测试集的实际分类和预测分类图

% 通过图可以看出只有一个测试样本是被错分的

figure;

hold on;

plot(test_wine_labels,'o');

plot(predict_label,'r*');

xlabel('测试集样本','FontSize',12);

ylabel('类别标签','FontSize',12);

legend('实际测试集分类','预测测试集分类');

title('测试集的实际分类和预测分类图','FontSize',12);

grid on;

运行结果:

Accuracy = 98.8764% (88/89) (classification)

图1 测试集的分类结果图

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/143302260.html,.

遥感作业-关于计算机解译中的专家系统分类法与支持向量机分类法的阐述

关于计算机解译中的专家系统分类法与支持向量机分类法 的阐述 摘要:本文从什么叫计算机目视解译,专家系统分类法、支持向量机分类法的概念三个方面进行了阐述。进一步详细地了解了什么是遥感图像的计算机目视解译,以及专家系统分类法与支持向量机的前沿应用 关键字:计算机目视解译专家系统分类法支持向量机分来法 遥感图像的目视解译又称目视判断,或目视判译,它指专家人员通过直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。 目视解译的目的是从遥感图像中获取需要的地学专题地图,它需要解决的问题是判读出遥感图像中有哪些地物,他们分布在哪里,并对其数量特征给予粗略的估计。 地面各种目标地物在遥感图像中存在着不同的色、形、位的差异。构成了可供识别的目标地物特征。目视解译人员依据目标地物的特征,作为分析、解译、理解和识别遥感图像的基础。目视解译的主要步骤是:从已知到未知,先易后难,先地表后深部,先整体后局部,先宏观后微观,先图形后线形。 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。 为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据

支持向量机在模式分类中的应用

支持向量机在模式分类中的应用 谢骏胡均川笪良龙 (海军潜艇学院战术水声环境数据中心,山东青岛266071) 摘要:介绍了支持向量机的基本思想,依据是否引入核函数,是否具有惩罚因子,支 持向量分类算法被分为线性分界面硬间隔、线性分界面软间隔、非线性分界面硬间隔和 非线性分界面软间隔四类,并讨论了它们的数学模型。以RBF为核函数的非线性支持向 量机对2类2维样本进行的仿真分析,并与最近邻法分类结果进行了比较,结果表明支 持向量机分类能力受核函数参数影响较大,当选取适当参数时,其分类性能与最近邻法 相当。 关键词:特征提取;最近邻分类法;支持向量机;模式分类 中图分类号:TP391.4 文献标识码:A 文章编号: The Application of Support Vector Machines in Pattern Classification XIE Jun,HUN Junchuan,DA Lianglong (Naval Submarine Academy,QingDao266071, China) Abstract:The foundations of support vector machines are introduced. Four mathematics models of support vector classifications including linearly hard margin SVM, linearly soft margin SVM, non- linearly hard margin SVM and non-linearly soft margin SVM are discussed. Comparison between non-linearly SVM classification with RBF kernel and nearest neighbour classification for a 2-dimension feature data set which contains two types.The results show that the classification performance of SVM is affected by kernel function parameter. the classification performance of SVM is equivalent with nearest neighbour classification while kernel function parameter is selected appropriately. Key words:feature abstract; nearest neighbour classification ;support vector machines; pattern classification 1、引言 在模式识别领域如何设计一种具有较好泛化能力的优良分类器一直以来是个备受关注的问题。传统的模式识别或人工神经网络方法都都是以大样本统计理论为基础的,而许多实际问题中常常面对的是小样本。如何从小样本集出发,得到泛化能力较好的模型,是模式识别研究领域内的一个难点。Vapnik[1]等人早在20世纪60年代就开始研究有限样本情况下的机器学习问题,但这些研究长期没有得到充分的重视。近十年来,有限样本情况下的机器学习理论逐渐成熟起来,形成了一个较完善的统计学习理论(SLT)体系。而同时,神经网络等较新兴的机器学习方法的研究则遇到一些重要的困难,比如如何确定网络结构的问题、过拟合与欠拟合问题、局部极小点问题等。在这种情况下,试图从更本质上研究机器学习的SLT 体系逐步得到重视。1992-1995年,在SLT的基础上发展了支持向量机(SVM)算法[1],在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。尤其是在非线性支持向量机中通过引入核函数,将原始空间的非线性问题转化为特征空间的线性问题来求解,而且核方法的引入从理论上较好的解决了经验风险最小化原则下统计学习的一致性条件,在这1 1基金项目:国防预研基金,51303060403-01;新世纪优秀人才支持计划NCET。 作者简介:谢骏(1976-), 男, 安徽颍上, 汉, 博士生, 讲师, 研究方向为声纳环境效应仿真、水下目标特性分析。

实验2分类预测模型-支持向量机

实验2分类预测模型——支持向量机SVM 一、 实验目的 1. 了解和掌握支持向量机的基本原理。 2. 熟悉一些基本的建模仿真软件(比如SPSS 、Matlab 等)的操作和使用。 3. 通过仿真实验,进一步理解和掌握支持向量机的运行机制,以及其运用的场景,特别是在分类和预测中的应用。 二、 实验环境 PC 机一台,SPSS 、Matlab 等软件平台。 三、 理论分析 1. SVM 的基本思想 支持向量机(Support Vector Machine, SVM ),是Vapnik 等人根据统计学习理论中结构风险最小化原则提出的。SVM 能够尽量提高学习机的推广能力,即使由有限数据集得到的判别函数,其对独立的测试集仍能够得到较小的误差。此外,支持向量机是一个凸二次优化问题,能够保证找到的极值解就是全局最优解。这希尔特点使支持向量机成为一种优秀的基于机器学习的算法。 SVM 是从线性可分情况下的最优分类面发展而来的,其基本思想可用图1所示的二维情况说明。 图1最优分类面示意图 图1中,空心点和实心点代表两类数据样本,H 为分类线,H1、H2分别为过各类中离分类线最近的数据样本且平行于分类线的直线,他们之间的距离叫做分类间隔(margin )。所谓最优分类线,就是要求分类线不但能将两类正确分开,使训练错误率为0,而且还要使分类间隔最大。前者保证分类风险最小;后者(即:分类间隔最大)使推广性的界中的置信范围最小,从而时真实风险最小。推广到高维空间,最优分类线就成为了最优分类面。 2. 核函数 ω

支持向量机的成功源于两项关键技术:利用SVM 原则设计具有最大间隔的最优分类面;在高维特征空间中设计前述的最有分类面,利用核函数的技巧得到输入空间中的非线性学习算法。其中,第二项技术就是核函数方法,就是当前一个非常活跃的研究领域。核函数方法就是用非线性变换 Φ 将n 维矢量空间中的随机矢量x 映射到高维特征空间,在高维特征空间中设计线性学习算法,若其中各坐标分量间相互作用仅限于内积,则不需要非线性变换 Φ 的具体形式,只要用满足Mercer 条件的核函数替换线性算法中的内积,就能得到原输入空间中对应的非线性算法。 常用的满足Mercer 条件的核函数有多项式函数、径向基函数和Sigmoid 函数等,选用不同的核函数可构造不同的支持向量机。在实践中,核的选择并未导致结果准确率的很大差别。 3. SVM 的两个重要应用:分类与回归 分类和回归是实际应用中比较重要的两类方法。SVM 分类的思想来源于统计学习理论,其基本思想是构造一个超平面作为分类判别平面,使两类数据样本之间的间隔最大。SVM 分类问题可细分为线性可分、近似线性可分及非线性可分三种情况。SVM 训练和分类过程如图2所示。 图2 SVM 训练和分类过程 SVM 回归问题与分类问题有些相似,给定的数据样本集合为 x i ,y i ,…, x n ,y n 。其中,x i x i ∈R,i =1,2,3…n 。与分类问题不同,这里的 y i 可取任意实数。回归问题就是给定一个新的输入样本x ,根据给定的数据样本推断他所对应的输出y 是多少。如图3-1所示,“×”表示给定数据集中的样本点,回归所要寻找的函数 f x 所对应的曲线。同分类器算法的思路一样,回归算法需要定义一个损失函数,该函数可以忽略真实值某个上下范围内的误差,这种类型的函数也就是 ε 不敏感损失函数。变量ξ度量了训练点上误差的代价,在 ε 不敏感区内误差为0。损失函数的解以函数最小化为特征,使用 ε 不敏感损失函数就有这个优势,以确保全局最小解的存在和可靠泛化界的优化。图3-2显示了具有ε 不敏感带的回归函数。 o x y 图3-1 回归问题几何示意图 o x y 图3-2 回归函数的不敏感地

基于matlab的svm分类预测实现

2017年第3期信息通信2017 (总第171 期)INFORMATION & COMMUNICATIONS (Sum. No 171)基于matlab的svm分类预测实现 屈玉涛,邓万宇 (西安邮电大学,陕西西安710061) 摘要:支持向量机(英文简称SVM)可以很好地应用在数据分类及预测上,由于SVM在数据挖掘中具有通用性好、有效 性、计算简单、理论完善等优点,所以得到了广泛的应用,文章利用matlab软件,基于S V M实现了对意大利葡萄酒的分 类和预测。 关键词:SVM;分类;预测 中图分类号:TP393 文献标识码:A文章编号:1673-1131(2017)03-0033-02 〇引言 随着数据种类的增多以及数量的增长,人工处理数据已 经变得不太现实。B P神经网络在过去获得了大量的应用,但 由于其具有收敛速度慢,容易陷入局部最小值得缺点,BP神经 网络并不能很好地处理实际中的问题。支持向量机是一种分 类算法,通过最大化不同数据之间边缘距离来提高学习及其 各种方面的能力,能够构建出更为精确的分类模型,另外,也 能够在统计取样较少的情况下,得出较好的统计规律,即,统 计样本少,统计规律良好。 1阐述支持向量机的具体情况 所谓支持向量机是Vapnik以及Corinna Cortes等人于 1995年首先提出的,它的应用范围广泛,较为突出的应用是在 非线性回归以及模式分类等方面。支持向量机的最本质的作 用就是把一个分类的超平面当作为决策曲面,这样就会让正 例以及反例之间的间隔被其最大边缘化。SV M被广泛地应用 在自然语言处理、计算机视觉和机器学习中。 支持向量机优点很多,最突出的表现在下面五个方面,一 是不需要进行微调整,即鲁棒性;二是具有很强的通用性,可 以在各种函数中来集中构造其函数;三是具有非常明显的有 效性,可以解决各种事迹问题,并且非常有效;四是涉及的理 论较为完善,具备V C推广性的理论构架;五是计算较为简单, 能够利用较为简单的优化计算就能够实现计算。 例如:SV M的目标函数如公式(1)所示: r f{x) = w(x} + /)? r".⑴=> :(〇? —〇l )K(x,,x) +b i=1 其中w*代表的是一个d维的向量,b代表的是偏差。输 入数据X的一个非线性的映射。K为核函数,(a rai*)为拉格 朗日乘子,X为输入,Y为输出。 classnumber=3,记录的是类别数目; wine,178*13的一个double型矩阵,记录178个样本的 13个属性; wine lables,178*1的一个double型矩阵,记录178个样本的类标 2.2数据可视化图 wme数据的box可视化图Proline 00280/00315 of diluted v Hue Color intensitys Proanthocyanms Nonflavanoid phenols Flavanoids Total phenols Magnesium Alcalinity of ash Ash Malic acid Alcohol 图i数据的可视化图 3模型的建立 3.1选定训练集与预测集 在这178个样本中,1?59属于第一类,60?130属于 第二类,131?178属于第三类。现将每个类别分成两组,重 新组合数据,分为训练集(train_wine)和测试集(test_wine)。 第一步:将第一类中的1 ^30样本,第二类中660至95 样本,第三类中的131-153样本当做其训练集 代码表示为: trainwine= [wine(l:30,:);wine(60:95,:);wine(131:153,:)]; 第二对其训练集的标签进行分离 2葡萄酒种类识别相关背景 Wine数据的来源是U CI数据库,记录的是意大利同一区 域上三种不同类型葡萄酒的化学成分分析,数据集里含有178 个样本,每个样本含有13个属性,即化学成分,将每个样本的 类别用标签进行标注,并且已经给出相应标签,,然后将178个 样本的一半看做一个训练集,而另一半当做一个测试集,然后 用这个训练集对SV M进行训练,进而得到其分类模型,再用 得到的模型对测试集进行类标签的预测。 2.1对相关数据进行测试 整体数据存储在wine_data,数据可以从U C I数据库中下 载,数据内容为: 代码表示为: trainwinelabels =[wine_labels(l:30);wine_labels(60:95); wine_labels(131:153)]; ^三步:将第一类中的31至59样本,第二类中的96至 130样本,第三类中的154至178样本当做其测试集 代码表示为: test_wine= [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; 第四步:对其测试集的标签进行分离 代码表示为: test wine labels =[wine_labels (31: 59); wine labels (96: 130);wine_labels(154:178)] 33

相关文档
最新文档