三维伊辛模型的蒙特卡罗模拟

三维伊辛模型的蒙特卡罗模拟
三维伊辛模型的蒙特卡罗模拟

三维伊辛模型的蒙特卡罗模拟

吴洋

新疆大学物理科学与技术学院,新疆乌鲁木齐(830046)

E-mail: 328627928@https://www.360docs.net/doc/123576154.html,

摘要: 本文采用蒙特卡罗方法模拟三维晶格系统伊辛模型。在不同温度下,分别模拟了具有简立方晶格、体心立方晶格及面心立方晶格相互作用的三维伊辛模型。模拟结果表明:在高温下,系统磁化消失。在低温下,系统具有磁性,并存在一个临界状态。同时研究了三种晶格的磁化率、能量及比热随温度的变化趋势。

关键词:三维伊辛模型;蒙特卡罗方法;临界态

中图分类号:0552.6

1.引言

伊辛模型是一个简单但很重要的物理模型[1-5],伊辛在1925年解出的精确解表明一维伊辛模型中没有相变发生。二维伊辛模型[6-10]的临界问题及精确解在40年代由昂萨格严格求出。人们采用了分子场理论及其改进理论、高温级数展开、低温级数展开、重整化群理论等多种方法计算三维伊辛模型[11-16]的解,但至今没有被学术界公认的三维伊辛模型的精确解。本文通过蒙特卡罗方法模拟得到三维伊辛模型的近似解。

2.模型分析与计算

2.1 模型格点选取

本文研究三维伊辛模型的解,选取三维格点。首先我们选取最简单的简立方格点,因为它具有典型性和代表性,它是直接由二维平面4个最近邻延伸到三维空间6个最近邻。然后,再推广到体心立方晶格和面心立方晶格,只是最近邻点数目增加,处理问题的方法是相同的。

2.2 模型边界条件分析

我们选取周期性边界条件,因为考虑到计算机的运算能力有限,所研究模型的大小也应是有限的。但我们又要模拟无限大的空间系统,只有将边界条件取为周期性,才很好的解决了这个问题。无论是对于简立方格点还是体心立方格点和面心立方晶格,只要是处于边界的格点,可以通过周期边界条件进行延伸,从而保证每个格点周围的最近邻格点数是一致的。使用周期性边界条件,通常还可以减小来自边界的干扰。

2.3 反转概率函数选取

采用蒙特卡罗模拟方法研究三维伊辛模型,反转概率的选取是很关键的一步。假设一个自旋反转使系统的能量降低,由于我们总是想要处于或靠近模型的基态,我们应当以概率为1接受这一变动。因此,在能量变化为负的情形下,我们取跃迁概率为1。但是,这样一来,我们就陷入能量极小之中。为了避免发生这种情况,我们也要接受能量增加的变动。不过我们只允许能量增加的变动很少发生,因此它们的反转概率很低。我们可以将反转概率和[0,1]之间的随机数比较,确定是否反转。

2.4 具体计算步骤

1) 先选定格点规格L*L*L,对温度(即J/KT)赋初值. 任选一个自旋点阵排列为起始状态,

由每一格点及其邻近自旋情况,可得反转的概率.当格点为点阵边缘的格点时,可采取周期性边界条件确定格点的近邻.

2) 由[0,1]均匀分布产生一个随机数,与所求的概率值比较,判断是否接受反转.

3) 按上面的方法确定点阵上所有格点的自旋指向,即完成一个蒙特卡罗步(MCS).

4) 演化足够的MCS,使系统达到平衡状态,以后每隔若干MCS抽取一格状态为样本,计算样本的每格点磁化强度M,收集足够的样本,求平均每格点的磁化强度.

5) 将J/KT值加上一增量作为新的J/KT值,重复以上步骤,即可得到随J/KT值的变化关系,同样可得到能量、磁化率、比热随J/KT的变化关系.

3. 数据结果及分析

3.1 数据绘图

按上述算法编程,即可进行模拟计算,模拟数据结果绘图如下:

3.1.1 简立方格点

图(1)磁距、磁化率随温度变化图(2)能量、比热随温度变化

3.1.2 体心立方格点

图(3)磁距、磁化率随温度变化图(4)能量、比热随温度变化

3.1.3 面心立方格点

图(5)磁距、磁化率随温度变化图(6)能量、比热随温度变化

3.2 结果分析

从图(1)--图(6):分别表示简立方格子、体心立方格子及面心立方格子的每个格点平均磁距(M)和磁化率(XT)随温度(J/KT)的变化关系以及能量(E)和比热(CH)随温度(J/KT)的变化关系。

从图中我们可以得到,对于三种不同的格子,随着温度减小(相对应图中JKT值的增大),有着共同的顺磁态向铁磁态转变的规律,并且磁距对应的磁化率和能量对应的比热在突变处出现尖峰,与热力学公式是相符的。但是,不同的是后二种格子相对简立方格子临界值向高温方向偏移。在二维情形中,我们知道平均场结果:J/KT=1/Zd(Zd为格点最近邻配位数).假设在三维情形中该结论仍成立,考虑到简立方格点的配位数较小,其J/KT的临界值较高。

4.论文结论

本文通过蒙特卡罗模方法模拟三维格点伊辛模型,通过数据结果分别得出简立方格子,体心立方格子,面心立方格子顺磁态向铁铁磁态转变临界值J/KT分别为:0.22、0.16、0.10。与参考文献[15]、[16]中简立方格点结果J/KT=0.22165以及文献[14]中面心立方格点结果J/KT=0.102比较,在本文所研究的精度范围内(精确到小数点后两位数字)是完全一致的。,我们可以将JKT做更精确的循环以得出更精确的结果,本文的研究结果可以为以后进一步探讨三维伊辛模型的精确解提供一定的参考依据。

参考文献

[1] 吴国均胡经国. Ising模型的Monte Carlo模拟[J]. 吉首大学学报(自然科学版),2000,21(2):3

[2] 刘策军 严尚维 宋钢 李伟昌 宋清.S = 1伊辛模型临界温度METROPOLIS 动力学标度计算[J] . 华南农业大学学报,1996,17 (4):114

[3] 陶玉荣胡经国,晶格Ising 模型动力学模拟[J] .徐州师范大学学报(自然科学版),2001,19(2):35

[4] 黄东翁永刚,一种具有铁磁反铁磁相互作用Ising模型的热力学研究[J] .物理学报,1994,43(7):1173

[5] 张翠萍辛子华,三亚点阵 Ising模型相图[J]. 沈阳师范学院学报(自然科学版),2001,19(3):35

[6] 张祥 陈冬保 陈武鸣.二维伊辛模型蒙特卡罗模拟[J] . 南京大学学报,1997,33(1):137

[7] 林旭升,二维伊辛模型相变临界点温度的模拟计算[J] . 大学物理,2000,19(5):13

[8] 刘策军郑有因,二维伊辛模型自旋状态图样的蒙特卡罗模拟[J] .华南农业大学学报,1995,16(4):103

[9] 孙前芳,二维伊辛模型附近临界指数的计算机模拟[J] .科学技术与工程,2005,5(17):1237

[10] 郭子政周培勤吴小薇,二维Fibonacci准晶伊辛模型的蒙特卡罗计算[J] .内蒙古大学报(自然科学汉文版),1997,1(1):31

[11] 林旭升,三维伊辛模型临界点模拟计算[J] .汕头大学学报(自然科学版),1999,14(2):11

[12] 许玲晏世雷,三维横向晶场稀疏 Ising模型的相变行为及磁化[J]. 苏州大学学报(自然科学版),2007.23(1):35

[13] 邵元智蓝图林光明,三维动态 Ising 模型中的非平衡相变:三临界点的存在[J]. 物理学报,2001,90(5):943

[14] D.M.Saul,Conflunt singularities and correction-to-scaling exponent for the d=3 fcc

Ising model [J]. Phys .Rev. B , 1975, 11(7):2571

[15] Alan M. Ferrenberg and D. P. Landau, Critical behavior of the three-resolution Monte Carlo study[J]. Phys Rev. B, 1991, 44(10):5081

[16] Clive F. Baillie, Monte Carlo renormalization-group study of the three-dimensional Ising model [J]. Phys Rev. B, 1992, 45(18):10438

Monte Carlo simulation of 3-D Ising model

Wu Yang

XinJiang University, Wulumuqi(830046)

Abstract

In the article, we have used Monte Carlo method to simulate 3-D Ising model. At different temperatures, respectively, to simulate the simple cubic lattice, the body-centered cubic lattice and the face-centered cubic lattice of the three-dimensional Ising model, under high temperature, the magnetic of the systems disappears. At low temperature, it is magnetic, and there is a transition. At the same time we have studies the susceptibility, energy and heat capacity as a function of the temperature of the three lattice models.

Keywords: three-dimensional Ising model; Monte Carlo method; transition

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

一、蒙特卡洛随机模拟

系列一 蒙特卡洛随机模拟 实验目的:学会用计算机随机模拟方法来解决随机性问题 蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸你的方法。此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 一. 预备知识: 随机数的产生 提示:均匀分布(0, 1)U 的随机数可由C 语言或Matlab 自动产生,在此基础上可产生其他分布的随机数. 1.逆变换法: 设随机变量U 服从(0,1)上的均匀分布,则)(1U F X -=的分布函数为)(x F . 步骤:(1) 产生)1,0(U 的随机数U ;(2) 计算)(1 U F X -=, 则X 服从)(x F 分布. 问题:练习用此方法产生常见分布随机数.例如“指数分布,均匀分布),(b a U ”.还有其它哪种常见分布的随机数可用此方法方便产生?

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

三维伊辛模型的蒙特卡罗模拟

三维伊辛模型的蒙特卡罗模拟 吴洋 新疆大学物理科学与技术学院,新疆乌鲁木齐(830046) E-mail: 328627928@https://www.360docs.net/doc/123576154.html, 摘要: 本文采用蒙特卡罗方法模拟三维晶格系统伊辛模型。在不同温度下,分别模拟了具有简立方晶格、体心立方晶格及面心立方晶格相互作用的三维伊辛模型。模拟结果表明:在高温下,系统磁化消失。在低温下,系统具有磁性,并存在一个临界状态。同时研究了三种晶格的磁化率、能量及比热随温度的变化趋势。 关键词:三维伊辛模型;蒙特卡罗方法;临界态 中图分类号:0552.6 1.引言 伊辛模型是一个简单但很重要的物理模型[1-5],伊辛在1925年解出的精确解表明一维伊辛模型中没有相变发生。二维伊辛模型[6-10]的临界问题及精确解在40年代由昂萨格严格求出。人们采用了分子场理论及其改进理论、高温级数展开、低温级数展开、重整化群理论等多种方法计算三维伊辛模型[11-16]的解,但至今没有被学术界公认的三维伊辛模型的精确解。本文通过蒙特卡罗方法模拟得到三维伊辛模型的近似解。 2.模型分析与计算 2.1 模型格点选取 本文研究三维伊辛模型的解,选取三维格点。首先我们选取最简单的简立方格点,因为它具有典型性和代表性,它是直接由二维平面4个最近邻延伸到三维空间6个最近邻。然后,再推广到体心立方晶格和面心立方晶格,只是最近邻点数目增加,处理问题的方法是相同的。 2.2 模型边界条件分析 我们选取周期性边界条件,因为考虑到计算机的运算能力有限,所研究模型的大小也应是有限的。但我们又要模拟无限大的空间系统,只有将边界条件取为周期性,才很好的解决了这个问题。无论是对于简立方格点还是体心立方格点和面心立方晶格,只要是处于边界的格点,可以通过周期边界条件进行延伸,从而保证每个格点周围的最近邻格点数是一致的。使用周期性边界条件,通常还可以减小来自边界的干扰。 2.3 反转概率函数选取 采用蒙特卡罗模拟方法研究三维伊辛模型,反转概率的选取是很关键的一步。假设一个自旋反转使系统的能量降低,由于我们总是想要处于或靠近模型的基态,我们应当以概率为1接受这一变动。因此,在能量变化为负的情形下,我们取跃迁概率为1。但是,这样一来,我们就陷入能量极小之中。为了避免发生这种情况,我们也要接受能量增加的变动。不过我们只允许能量增加的变动很少发生,因此它们的反转概率很低。我们可以将反转概率和[0,1]之间的随机数比较,确定是否反转。 2.4 具体计算步骤 1) 先选定格点规格L*L*L,对温度(即J/KT)赋初值. 任选一个自旋点阵排列为起始状态,

基于蒙特卡罗模拟的VAR估计

:t s 表示t 时刻期货的价格 :i t s +表示t+i 时刻期货的价格 :u 表示期货日收益率的均值 :δ表示期货日收益率的标准差 :ε表示服从标准正态分布的随机变量 ①基于蒙特卡罗模拟的VaR 对香港恒生指数期货的实证研究 禾祺夫,董立娟 文章编号:1007-6921(2010)01-0013-03 ②应用蒙特卡罗模拟法计算VaR 的实证分析 摘要 模型三采用了蒙特拉罗模拟法来计算VAR ,选用了几何布朗运动作为反应上的随机模型,预测出明年这个时候的期货的单位价格,并且计算出相对应期货的该时间段的95%置信水平下的日VAR 。选取的对象是作为商品期货和金融期货代表的铜、玉米和五年期国债。 模型三 基于蒙特卡罗模拟的VAR 估计 3.1 名词解释 蒙特卡罗模拟法(Monte Carlo Simulation ,简称MC)是一种随机模拟方法,它用根据市场数据估计的历史波动参数产生市场因子未来波动的大量可能路径(而历史模拟法只能根据市场因子的特定历史产生路径产生有限的未来波动情景)。与历史模拟法相比,它所需要的历史数据更少,而且计算精度和可靠性更高。另外,它是一种全值估计方法,无须假定市场因子服从正态分布,有效地解决了分析方法在处理非线性、非正态问题中遇到的困难,近年来,在国外的研究中已被广泛应用。但缺陷是计算复杂,因为多次重复可以提高衡量值的准确性,但也就使计算量增大。由于计算机技术的广泛应用,能够有效解决计算问题,故我们将采用基于蒙特卡罗模拟的VaR 方法对多种期货进行分析。 3.2 VAR 简介 在一本关于VaR 的开山之作中,菲利普·乔瑞(PhilippeJorion )是这样定义VaR 的:“给定置信区间的一个持有期内的最坏的预期损失”。例如,在给定持有期为一个星期,给定的置信水平为99%,某投资组合的VaR 为1000 万人民币,就意味着在下一个星期有99%的概率该投资组合的最大损失不会超过1000 万人民币,或者说有1%的可能性该投资组合的损失将超过1000 万元人民币。根据Jorion 的定义,VaR 实际上是要估测“正常”情况下风险资产或风险资产组合的预期价值与在一定置信区间下的最低价值之差,即Jorion 所定义的可能最坏的预期损失。 用公式表示为: * )(1var)(W W E VAR c p P -=-=>?② 其中:E(W)为资产组合的预期价值

R软件 蒙特卡罗模拟

R使用指南 打开R 下图是R软件的主窗口,R软件的界面与Windows的其他编程软件类似,由一些菜单和快捷按钮组成。快捷按钮下面的窗口便是命令输入窗口,它也是部分运算结果的输出窗口,有些运算结果则会在新建的窗口中输出。 当一个R 程序需要你输入命令时,它会显示命令提示符。默认的提示符是>。技术上来说,R 是一种语法非常简单的表达式语言(expression language)。它大小写敏感,因此A 和a 是不同的符号且指向不同的变量。可以在R 环境下使用的命名字符集依赖于R 所运行的系统和国家(就是系统的locale 设置)。通常,数字,字母,. 和都是允许的(在一些国家还包括重音字母)。不过,一个命名必须以. 或者字母开头,并且以. 开头时第二个字符不允许是数字。基本命令要么是表达式(expressions)要么就是赋值(assignments)。如果一条命令是表达式,那么它将会被解析(evaluate),并将结果显示在屏幕上,同时清空该命令所占内存。赋值同样会解析表达式并且把值传给变量但结果不会自动显示在屏幕上。命令可以被(;)隔开,或者另起一行。基本命令可以通过大括弧(f和g) 放在一起构成一个复合表达式(compound expression)。注释几乎可以放在任何地方7。一行中,从井号(#)开始到句子收尾之间的语句就是注释。如果一条命令在一行结束的时候在语法上还不完整,R 会给出一个不同的提示符,默认是+。该提示符会出现在第二行和随后的行中,它持续等待输入直到一条命令在语法上是完整的。该提示符可以被用户修改。在后面的文档中,我们常常省略延续提示符(continuation prompt),以简单的缩进表示这种延续。 R的帮助

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

蒙特卡罗也称统计模拟方法

蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。 工作过程 在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 计算步骤 使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的: ① 使用随机数发生器产生一个随机的分子构型。 ②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。 ③计算新的分子构型的能量。 ④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

相变中的伊辛模型

伊辛模型的相变讨论 姓名:胡博昊( 安庆师范学院物理与电气工程学院安徽安庆 246011) 指导老师:尹训昌 摘要:平均场理论认定一个粒子,这个粒子受到其它粒子的相互作用,把它平均一下,看这个粒子在平均场中受到什么样的相互作用。伊辛模型就是模拟铁磁性物质的结构,解释这类相变现象的一种粗略的模型。它的优点在于,用统计物理方法,对二维情形求得了数学上严格的解。在热力学与统计物理教材中,应用平均场理论研究了伊辛模型的相变。本文应用重整化群的方法研究了相同的问题,得到了系统的相变点。与平均场理论相比较,该方法更易于理解和掌握。 关键词:伊辛模型,重整化群,相变,平均场理论 引言: 在热力学与统计物理教材中,应用平均场理论研究了一种描写铁磁材料最简单的模型——伊辛(Ising)模型的相变,得到下面的结论:对于一维Ising模型不存在有限温度的相变,只有零温相变;对于二维一维Ising模型,相变点为0.25。由于此种方法推到复杂,不容易掌握。本文应用了一种简单的方法——重整化群(RG)对Ising模型的相变进行了讨论,得到了相同的结果。与平均场理论相比,这种方法推导较少,容易接受。 1平均场理论 在连续介质微观力学中,有两类基于微结构信息确定非均匀介质有效性能的基本理论:基于物理的平均场理论和数学的渐近均匀化理论. 平均场理论,顾名思义,认定一个粒子,这个粒子受到其它粒子的相互作用,把它平均一下,看这个粒子在平均场中受到什么样的相互作用。范德瓦耳斯的状态方程是最早的平均场理论,后来还有很多不同的名称。1937年朗道提出了二类相变的普遍理论。朗道的平均场理论,拿一个具体的例子说明,单轴各向异性的铁磁体,磁化强度只能向上或者向下,现在是向上的。认为热力学函数是序参量的解析函数。这是一个假定,热力学函数可以展开,有二次方和四次方项(由于反演对称,没有奇次方项),展开系数是温度的函数,a是一个正数,b也是一个正数。曲线在高于Tc的时候和低于Tc的时候是不一样的,高于Tc的时候,最小值是Mo=0,就是没有自发磁化;如果低于Tc,就有不等于0的极小点。按照平均场理论算出来,临界指数β等于二分之一;算出与磁场的关系,在临界点上是这样的关系,d=3。可以算出平常说的磁化率,

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析 蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。 简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的? 什么是蒙特卡罗模拟? 今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。 形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。 将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

伊辛模型自旋状态的模特卡罗模拟

《计算材料学》课程设计 指导老师:江建军教授 电子科学与技术系 2004年6月

伊辛模型自旋状态的蒙特卡罗模拟 宋银锋 李敏 易冬柏 刘嘉 周磊 朱颖 吴华 刘文俊 沈文轶 罗睿 彭晓风 (华中科技大学电子科学与技术系,武汉 430074) 摘要:以Metropolis 蒙特卡罗模拟方法考察了20×20正方格子上的二维伊辛模型自旋模型,采用C 语言和LABVIEW 程序分别得到了该模型不同温度下自旋状态的图样,符合统计力学分析,并将该模型推广到三维情况,得到了相似的结论。 关键词:伊辛模型;自旋状态;Metropolis 蒙特卡罗模拟 SPIN CONFIGURATIONS OF THE ISING MODEL IN MONTE CARLO SIMULATION Abstract : Monte Carlo studies of the two-dimensional Ising model on 20×20 square lattice with periodic boundary conditions and nearest neighbor interactions are presented. The spin configurations of this model at various temperatures are obtained, consistent with the analyses of statistical mechanics. Three-dimensional Ising model is deduced, and similar conclusions are obtained. Key words : Ising model; spin configuration; Metropolis Monte Carlo Simulation 引言 伊辛自旋模型是一个十分重要的统计模型。理论上,它是最先被严格要求并表明有相变 存在的模型;实验上,它可用来描述铁磁体相变、格气、二元合金以及生物体中DNA 的融化等[1]。 把铁磁物质看成是N 个粒子组成的系统,每个粒子有一个自旋磁矩μ并处在晶体的格点 上。我们考虑一个具有N 个固定格点的晶体,格点以周期点阵排列,点阵的几何结构可以是简单立方,体心立方和六角形的等等。粒子在晶格上的自旋变量以(1,2,...,)i S i N =表示,i S 只能+1和—1的值。i S =1表示粒子的自旋朝上,i S = -1表示粒子的自旋朝下,可以用,↑↓表 示。当一组变数{}i S 给定以后,就完全确定了一个微观状态。假设,每个自旋只和它近邻的 自旋有相互作用,把这个模型就叫做伊辛模型。

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法 期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。 蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。 §1. 预备知识 ◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。 大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律: 设12,,ξξL 为独立同分布的随机变量序列,若 [],1,2,k E k ξμ=<∞=L 则有1 1(lim )1n k n k p n ξμ→∞===∑ 显然,若12,,,n ξξξL 是由同一总体中得到的抽样,那么由 此大数定律可知样本均值1 1n k k n ξ=∑当 n 很大时以概率1收敛于

总体均值μ。 中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。 设12,,ξξL 为独立同分布的随机变量序列,若 2 [],[],1,2,k k E D k ξμξσ=<∞=<∞=L (0,1)n k d n N ξ μ -??→∑ 其等价形式为2 1 1lim ()exp(),2n x k k n t n P x dt x ξμσ =→∞ -∞ -≤= --∞<<∞∑?。 ◆Black-Scholes 期权定价模型 模型的假设条件: 1、标的证券的价格遵循几何布朗运动 dS dt dW S μσ=+ 其中,标的资产的价格S 是时间t 的函数,μ为标的资产 的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。 2、证券允许卖空、证券交易连续和证券高度可分。 3、不考虑交易费用或税收等交易成本。 4、在衍生证券的存续期内不支付红利。 5、市场上不存在无风险的套利机会。 6、无风险利率r 为一个固定的常数。 下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

计算材料学_Ising模型实验报告

Monte Carlo实验报告 一、项目名称:Ising 模型 二、项目内容概要 1、编译和运行 进入实验的文件夹:cd□~/sourcecode/2D_Ising 文件夹里有源代码mc2d.f和输入文件in.2d 阅读理解并编辑输入文件:gedit□in.2d 之后编译mc2d.f f95 mc2d.f -o mc2d.exe 运行可执行文件 ./mc2d.exe 查看刚刚生成的四个输出文件,四个文件的内容如下: file1.out:温度;时间;单位原子能量;单位原子磁化强度 file2.out:温度;单位原子能量;能量变化;单位原子磁化强度;磁化强度变化;单位原子热容 file3.out:温度;自旋构型 file 4.out:温度;能量升高而被接受的数目;能量下降而被接受的数目;被拒绝的数目2、gnuplot 作图

作温度与能量图:p “file2.out” u 1:2 w p ps 3 pt 5 作出file2.out 中第1 列与第2 列数据; 作温度与磁化强度图:p “file2.out” u 1:4 w p ps 3 pt 5 作出file2.out 中第1 列与第4 列数据 作温度与热容图:p “file2.out” u 1:6 w p ps 3 pt 5 作出file2.out 中第1 列与第6 列数据 三、项目实施方法/原理 1925 年,伊辛提出描写铁磁体的简化模型:设有N 个自旋组成的d 维晶格 (d=1,2,3),第i 格点自旋为Si=±1(i=1,2,…N; ±代表上下)。只考虑最近邻作用,相互作用能为±J(J>0 为铁磁性, J<0 为反铁磁性),平行为-J,反平行为J。 伊辛模型的蒙特卡洛模拟基本步骤如下:

蒙特卡罗法方法的应用 【开题报告】

开题报告 信息与计算科学 蒙特卡罗法方法的应用  一、综述本课题国内外研究动态, 说明选题的依据和意义 1773年法国G.-L.L.von布丰曾通过随机投针试验来确定圆周率的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年J.von诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 随着现代计算机技术的发展,蒙特卡罗方法已经在自然科学研究中发挥了重要的作用. 鉴于的重要性, 使得蒙特卡罗方法不仅在传统的应用领域如核物理、统计物理、分子动力学等领域得到广泛的应用, 而且还在诸如经济学、人口学、医学等领域得到了推广和发展. 统计物理学中蒙特卡罗方法是用随机抽样的计算机模拟来研究平衡或非平衡热动力学系统的模型. 蒙特卡罗的抽样有两种: 简单抽样和重要性抽样. Metropolis方法就是最早的一种重要性抽样方法. 后来人们对此方法进行了一系列的改进, 衍生出诸如Swenden-Wang方法、Wolff方法等团簇算法, 随着人们对蒙特卡罗方法认识的进一步加深,新的更有效的方法必将越来越多的出现. 以蒙特卡罗法模拟晶粒生长过程的研究进展为例, 自20世纪40年代中期, 由于科学技术的发展和电子计算机的发明, 23法作为一种独立的方法被提出来, 并且在核武器的研制中首先得到了应用. 直到80年代初由美国EXXON研究组开发出二维算法后, 很快引起重视并应用于再结晶、多晶材料的晶粒长大、有序-无序畴转变等多种金属学和物理学仿真过程. 1983年, Anderson提出一个新型的MC程序, 将其应用于二维的晶粒长大动力学模拟, 后来又将MC法应用于模拟晶粒生长的尺寸分布、拓扑学和局部动力学的研究. 1992年, Anderson使用蒙特卡罗法结合晶粒间的相互作用能, 模拟晶粒边界能量和点缺陷浓度的最小值来驱动的微观结构的进化, 模拟结果与试验值复合很好. 此后, 蒙特卡罗法在材料领域中得到了迅速的发展. 1994年, Paillard等人应用MC技术

23(蒙特卡罗模拟)

专题5 蒙特卡罗模拟的有关问题 大家知道,只有当经典回归模型满足所有的假定条件时,参数的估计量才具有最佳线性无偏特性,即有限样本特性,同时也具有渐近特性。当假定条件不成立时(比如存在异方差、自相关等),所采用的广义最小二乘法,以及对联立方程模型的估计,动态分布滞后模型的估计,向量自回归模型的估计所得参数的估计量只具有渐近特性。也就是说,只有当样本容量相当大时,渐近特性才起作用。而当样本容量不是很大,甚至很小时,仍然不知道估计量的有限样本分布特征。 另外通过对非平稳过程的研究知单位根检验式和非平稳变量之间回归参数和t统计量不服从正态分布。他们都是渐近地服从Wiener过程函数的分布。参数估计量和统计量的有限样本特性不能用解析的方法求解。 对于上述两种情形,若要研究这些估计量和统计量的有限样本分布特征,通常采用两种方法。一种为数值计算法。也称为有限样本近似法(finite-sample approximation)。这种方法要用到许多数学知识,专业性很强,使没有受过专门训练的人员运用此方法受到限制。(2)蒙特卡罗模拟方法。又称随机模拟法。Boot strap 1.蒙特卡罗(Monte Carlo)模拟和自举(Boost trap)发展过程 这是一种通过设定随机过程(数据生成系统),反复生成时间序列,并计算参数估计量和统计量,进而研究其分布特征的方法。蒙特卡罗在欧洲的摩那哥,以著名赌城而得名。据说这个术语是Metropolis 在1949年提出的。若再晚些时候,蒙特卡罗模拟也许就称作Las Vegas(在美国的Nevada州,著名赌城)模拟方法了。 自举模拟与蒙特卡罗模拟既有联系,又不相同。自举(Boost trap,亦称靴襻)这个名词是Efron在1979年提出的。“自举”一词来源于儿童故事。指一个人落水时,试图用自提鞋扣儿的方法自救。20世纪80,90年代发展很快。自举,即采用从总体中反复抽取样本的方法计算参数估计量的值,置信区间或相应统计量的值并估计这些量的分布。这里介绍的远不是自举模拟的全貌,而是参数估计方面的应用。 因为这些方法的实现是以高容量和高速度的计算机为前提条件,所以只是在近年才得到广泛推广。 2.蒙特卡罗模拟和自举模拟原理 进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。 计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。 在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。

蒙特卡洛模拟法

蒙特卡洛模拟法 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

相关文档
最新文档