多晶硅电阻率

多晶硅电阻率
多晶硅电阻率

多晶硅电阻率

2010/9/13 16:10:26

高质量的高纯硅单晶是制做各种辐射探测器和光电探测器的重要材料。在真空环境下提纯并生长硅单晶可以使材料达到并保持更高的纯度,因而高阻真空区熔硅单晶是研制某些高灵敏度探测器的必选材料,主要有电阻率(3~5)×103Ω·cm和(1~2)×104Ω·cm两种规格,可分别用于研制雪崩光电二极管和PIN管型的光电探测器件。

多晶原料:(1)国产一级多晶硅料,基硼电阻率≥7000Ω·cm,基磷电阻率≥800Ω·cm,用于研制电阻率(3~5)×103Ω·cm的真空高阻区熔硅单晶。(2)美国ASMI多晶硅料,基硼电阻率≥9000Ω·cm,基磷电阻率≥1000Ω·cm,用于研制电阻率(1~2)×104Ω·cm的真空高阻区熔硅单晶。

热场条件:单匝平板线圈,外径45mm,内径28mm。线圈下表面刻有微型凹槽。

籽晶:5mm×5mm×60mm,晶向<111>,p型,电阻率≥3000Ω·cm。

掺杂剂:电阻率不小于15MΩ·cm的高纯去离子水配制的B2O3水溶液,原子浓度分别为1×1016和5×1016cm-3。

多晶提纯:

研制电阻率(3~5)×103Ω·cm的硅单晶,需先对多晶硅进行两次真空区熔提纯,使其电阻率达到n型1×104Ω·cm以上,然后再进行微量的硼掺杂;研制电阻率(1~2)×104Ω·cm的硅单晶,需要对多晶硅进4~5次的真空区熔提纯,使多晶为p型导电、电阻率(1 5~2 5)×104Ω·cm。

多晶提纯时熔区移动速率为1mm/min左右,提纯的同时调整多晶直径为30~35mm。

多晶掺杂:

(1)掺杂剂量的确定。通过掺杂试验来获得掺杂时所需要的掺杂剂量,具体方法为:同等质量规格的多晶经过两次提纯后检测其轴向电阻率,查电阻率与载流子浓度的关系曲线可以知道该多晶所对应的载流子浓度,与目标电阻率的相对比并结合多晶的质量计算出所需掺入的剂量,并以此为最初的依据进行区熔掺杂。

区熔掺杂过程完成后,检测多晶的轴向电阻率,查电阻率与载流子浓度的关系曲线得到所对应的载流子浓度,与掺杂前多晶的初始载流子浓度对比,即可知道实际的掺入剂量,再与理论计算的剂量相比较,就可以得到掺杂工艺中所需要的掺杂因子K,则

B实际=K(Cn+Cp)V多晶(1)

式中:B实际为实际操作中需要掺的硼原子数量;Cp为掺杂目标电阻率对应的多晶中p型载流子浓度;Cn为掺杂前多晶电阻率对应的n载流子浓度;V多晶为多晶的体积。

研制电阻率(3~5)×103Ω·cm的真空区熔单晶,掺杂后多晶的轴向电阻率应控制为(4~6)×103Ω·cm。

(2)掺杂方法。由于掺杂剂量很小,为控制掺杂的均匀性,采用了在多晶表面逐点滴涂掺杂溶液,然后在0.12MPa压力的氩气气氛下对多晶进行区熔的掺杂方式。掺杂时熔区以1.5mm/min的速度下移,下轴旋转速率为18r/min。为使滴涂在硅棒表面的溶剂能迅速挥发,在溶液滴涂前需先烘烤硅棒至其表面温度达到50℃左右。

在掺杂前的提纯过程中使多晶硅的轴向电阻率比较均匀,更有利于掺杂后多晶电阻率范围的控制。

常见金属电阻率

常用金属导体在20℃时的电阻率 材料电阻率(Ωm) (1)银1.65×10-8 (2)铜1.75×10-8 (3)金2.40×10-8 (4)铝2.83×10-8 (5钨5.48×10-8 (6)铁9.78×10-8 (7)铂2.22×10-7 (8)锰铜4.4×10-7 (9)汞9.6×10-7 (10)康铜5.0×10-7 (11)镍铬合金1.0×10-6 (12)铁铬铝合金1.4×10-6 (13)铝镍铁合金1.6×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘体的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做半导体(semiconductors)。 另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ωm),αo(×10-3) 锌20 5.94.2 铝(软)202.754.2 铝(软)–781.64 石墨(8~13)×10-6 阿露美尔合金20331.2 锑038.75.4 铱206.53.9 铟08.25.1 殷钢0752 锇209.54.2 镉207.44.2 钾206.95.1① 钙204.63.3 金202.44.0 银201.624.1 铬(软)2017

镍铬合金(克露美尔)—70—110.11—.54 钴a06.376.58 康铜—50–.04–1.01 锆30494.0 黄铜–5—71.4–2 水银094.080.99 水银2095.8 锡2011.44.5 锶030.33.5 青铜–13—180.5 铯20214.8 铋201204.5 铊20195 钨205.55.3 钨100035 钨3000123 钨–783.2 钽20153.5 金属温度(0℃)ραo,100 杜拉铝(软)—3.4 铁(纯)209.86.6 铁(纯)–784.9 铁(钢)—10—201.5—5 铁(铸)—57—114 铜(软)201.724.3 铜(软)1002.28 铜(软)–781.03 铜(软)–1830.30 钍20182.4 钠204.65.5① 铅20214.2 镍铬合金(不含铁)20109.10 镍铬合金(含铁)2095—104.3—.5 镍铬林合金—27—45.2—.34 镍(软)207.246.7 镍(软)–783.9 铂2010.63.9 铂100043

连接器接触电阻

连接器接触电阻 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2.1 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的 5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻

影响电阻或电阻率测试的主要因素

影响电阻或电阻率测试的 主要因素 一、环境温湿度 一般材料的电阻值随环境温湿度的升高而减小。相对而言,表面电阻(率)对环境湿度比较敏感,而体电阻(率)则对温度较为敏感。湿度增加,表面泄漏增大,体电导电流也会增加。温度升高,载流子的运动速率加快,介质材料的吸收电流和电导电流会相应增加,据有关资料报道,一般介质在70C时的电阻值仅有20C时的10%。因此,测量材料的电阻时,必须指明试样与环境达到平衡的温湿度。 二、测试电压(电场强度) 介质材料的电阻(率)值一般不能在很宽的电压范围内保持不变,即欧姆定律对此并不适用。常温条件下,在较低的电压范围内,电导电流随外加电压的增加而线性增加,材料的电阻值保持不变。超过一定电压后,由于离子化运动加剧,电导电流的增加远比测试电压增加的快,材料呈现的电阻值迅速降低。由此可见,外加测试电压越高,材料的电阻值越低,以致在不同电压下测试得到的材料电阻值可能有较大的差别。 值得注意的是,导致材料电阻值变化的决定因素是测试时的电场强度,而不是测试电压。对相同的测试电压,若测试电极之间的距离不同,对材料电阻率的测试结果也将不同,正负电极之间的距离越小,测试值也越小。 三、测试时间 用一定的直流电压对被测材料加压时,被测材料上的电流不是瞬时达到稳定值的,而是有一衰减过程。在加压的同时,流过较大的充电电流,接着是比较长时间缓慢减小的吸收电流,最后达到比较平稳的电导电流。被测电阻值越高,达

到平衡的时间则越长。因此,测量时为了正确读取被测电阻值,应在稳定后读取数值或取加压1分钟后的读数值。 另外,高绝缘材料的电阻值还与其带电的历史有关。为准确评价材料的静电性能,在对材料进行电阻(率)测试时,应首先对其进行消电处理,并静置一定的时间,静置时间可取5分钟,然后,再按测量程序测试。一般而言,对一种材料的测试,至少应随机抽取3~5个试样进行测试,以其平均值作为测试结果。 四、测试设备的泄漏 在测试中,线路中绝缘电阻不高的连线,往往会不适当地与被测试样、取样电阻等并联,对测量结果可能带来较大的影响。为此: 为减小测量误差,应采用保护技术,在漏电流大的线路上安装保护导体,以基本消除杂散电流对测试结果的影响; 高电压线由于表面电离,对地有一定泄漏,所以尽量采用高绝缘、大线径的高压导线作为高压输出线并尽量缩短连线,减少尖端,杜绝电晕放电; 采用聚乙烯、聚四氟乙烯等绝缘材料制作测试台和支撑体,以避免由于该类原因导致测试值偏低。 五、外界干扰 高绝缘材料加上直流电压后,通过试样的电流是很微小的,极易受到外界干扰的影响,造成较大的测试误差。热电势、接触电势一般很小,可以忽略;电解电势主要是潮湿试样与不同金属接触产生的,大约只有20mV,况且在静电测试中均要求相对湿度较低,在干燥环境中测试时,可以消除电解电势。因此,外界干扰主要是杂散电流的耦合或静电感应产生的电势。在测试电流小于10-10A或测量电阻超过1011欧姆时;被测试样、测试电极和测试系统均应采取严格的屏蔽措施,消除外界干扰带来的影响。

接触电阻

导体的接触面积和接触电阻 作者:林勇发布日期:2009-4-17 10:06:41 (阅577次) 关键词: 工业插头插座驳克码 MARECHAL (摘要:在电流的传输过程中两个表面宏观接触表面应该等于导线的截面面积,两个导体真正相接触的部分只是 一定数量的点,由于材料表面的不平整性,真正的接触面积要比宏观上看到的接触表面要小。关键词:接触电阻,驳克码) 在我们给客户讲解产品的过程当中有一个经常被问到的问题,“你们这种触点连接的插头插座,导体截面积够吗?”,“触点连接比插针套筒连接的接触面积小,能保证连接可靠吗?”电气工程师都知道,电流越大,必须使用越粗大的电缆。有些人自然认为接触的面积应该等于导线的截面面积,因而对电气连接器的可靠性提出怀疑。实际上,两个表面宏观接触表面应该等于导线的截面面积,两个导体真正相接触的部分只是一定数量的点,由于材料表面的不平整性,真正的接触面积要比宏观上看到的接触表面要小。(图2) 优质的开关设备产品大都采用用银合金的接触点,通常触点是半球形的,而且把重点放在施加的力上而不是放在假定的接触面积上。种概念在接触器或者断路器制造业中得到广泛采用。从这个意义上讲,插头和插座是一个例外。 1.接触电阻的物理概念 无论使用哪一种接触,导体接触的不连续性会产生一个附加的电阻——称为“接触电阻”)。这个电阻比接 触器自身的电阻(在没有接触面存在时)要大。这个电阻值将决定连接的质量,因为:接触电阻阻值越高,则接触电阻上的压降越大,因而接触点释放的热量将越多。如果温度上升到一定的极限,接触点就会损坏。温度越高,损坏就越快,这种现象会迅速蔓延。 接触点接触电阻主要由以下两个参数决定: 接触表面的状态λ 所施加力的作用(图4)λ 1.1 接触表面的状态 三个主要参数决定了接触表面的状态:(图1) 物理化学结构λ 从微观角度来看,一个表面的物理化学结构是非常复杂的,周围环境中的外来元素与材料发生反应形成一个表面层,通常称为“侵蚀层”。 表面的粗糙度λ 一个表面的粗糙度是复杂的,表面的粗糙度由所采用的生产技术所决定,而且通常具有随机性和不可重复。它引入了材料挤压压力及塑性变形的概念。 表面的几何形状λ 从宏观角度来看,一个接触表面的几何形状是比较容易确定的。这个形状将决定在两个表面之间宏观的接触面积。 1.2 接触电阻的值 由于材料钢性及粗糙度的影响,实际的机械接触不是发

国家标准《硅、锗单晶电阻率测定方法》编制说明

硅、锗单晶电阻率测定方法修订 讨论稿编制说明 一、任务来源及计划要求 根据中色标所字[2006]26号文,关于下达2006-2008年第二批半导体材料国家标准修订计划的通知精神,对中华人民共和国国家标准GB/T 1551-1995《硅、锗单晶电阻率测定直流两探针法》和GB/T 1552-1995《硅、锗单晶电阻率测定直排四探针法》进行修订,将这两个标准合并编制为《硅、锗单晶电阻率测定方法》。 二、编制过程(包括编制原则、工作分工、征求意见单位、各阶段工作过程等) 本标准以国家标准GB/T 1551-1995和GB/T 1552-1995为基础,参照国外先进标准SEMI MF 84-1105 和SEMI MF 397-1106 ,对原标准进行了补充和修订。 该标准的修订工作组主要由信息产业部专用材料质量监督检验中心、中国电子科技集团公司第四十六研究所承担。 2006年12月成立了标准修订工作组,在国内广泛调研的基础上,于2007年8月完成了标准征求意见稿,并对中国有色金属工业标准计量质量研究所、宁波立立电子股份有限公司、杭州海纳半导体有限公司、有研半导体材料股份有限公司、万向硅峰电子股份有限公司、南京国盛电子有限公司等26家单位函审征求意见。 三、调研和分析工作情况 查阅了国外SEMI MF 84-1105 和SEMI MF 397-1106等相关标准。本标准以国家标准GB/T 1551-1995和GB/T 1552-1995为基础,参照国外先进标准SEMI MF 84-1105 和SEMI MF 397-1106 ,对原标准进行了补充和修订。 为指导硅、锗材料生产应用单位使用好该标准,对该方法的干扰因素进行了分析,在编制标准中增加了干扰因素。 对原测试标准中所列举的欧姆接触材料进行实验发现使用不便,经多家单位使用验证导电橡胶做两探针法端面接触材料方便有效。 四、主要修订点 4.1 本标准将GB/T 1551-1995《硅、锗单晶电阻率测定直流两探针法》和GB/T 1552-1995《硅、锗单晶电阻率测定直排四探针法》两个标准,合并编制为《硅、锗单晶电阻率测定方法》。 4.2 本标准去掉了原标准GB/T 1551-1995和GB/T 1552-1995中的若干记录测试数据的表格,简化了标准。

国家标准-硅单晶电阻率的测定 直排四探针法和直流两探针法-编制说明-送审稿

国家标准《硅单晶电阻率的测定直排四探针法和直流两探针法》 编制说明(送审稿) 一、工作简况 1、立项的目的和意义 硅单晶是典型的元素半导体材料,具有优良的热性能与机械性能,易于长成大尺寸高纯度晶体,是目前最重要、用途最广的半导体材料。在当今全球半导体市场中,超过95%以上的半导体器件和99%以上的集成电路都是在硅单晶片上制作的,在未来30年内,它仍是半导体工业最基本和最重要的功能材料。 一般而言,硅单晶的电学性能对器件性能有决定性的作用,其中电阻率是最直接、最重要的参数,直接反映出了晶体的纯度和导电能力。例如,晶体管的击穿电压就直接与硅单晶的电阻率有关。在器件设计时,根据器件的种类、特性以及制作工艺等条件,对硅单晶的电阻率的均匀和可靠都有一定的要求,因此,硅单晶电阻率的测试就显得至关重要。目前测试硅单晶电阻率时,一般利用探针法,尤其是直流四探针法。该方法原理简单,数据处理简便,是目前应用最广泛的一种测试电阻率的技术。 由于硅单晶电阻率与温度有关,通常四探针电阻率测量的参考温度为23℃±1℃,如检测温度有异于该温度,往往需要进行温度系数的修正。原来GB/T 1551-2009标准中直接规定测试温度为23℃±1℃,对环境的要求过于严格,造成很多企业和实验室无法满足,因此需要对标准测试温度进行修订,超出参考范围可以用温度系数修正公式修正。另外,原标准四探针和两探针法的干扰因素没有考虑全面,修订后的新标准对干扰因素进行了补充和修正。原标准的电阻率范围没有对n型硅单晶和p型硅单晶做出区分,由于n型硅单晶电阻率比p型硅单晶电阻率范围大,所以应该对n型和p型硅单晶的电阻率测试范围区分界定。综上,需要对GB/T 1551-2009标准进行修订,以便更好满足硅单晶电阻率的测试要求。该标准的修订将有利于得到硅单晶电阻率准确的测量结果,满足产品销售的要求,为硅产业的发展提供技术保障。 2.任务来源 根据《国家标准化管理委员会关于下达2018年第三批国家标准制修订计划的通知》(国标委综合[2018] 60号)的要求,由中国电子科技集团公司第四十六研究所(中国电子科技集团公司第四十六研究所是信息产业专用材料质量监督检验中心法人单位)负责修订《硅单晶电阻率的测定直排四探针法和直流两探针法》,计划编号为20181809-T-469,要求完成时间2020年。 计划项目由全国有色金属标准化技术委员会提出,后经标委会协调后于国家标准化

关于单晶电阻率判定标准的建议

关于直拉硅单晶电阻率判定标准的建议 一、氧施主的理论分析 氧是硅中的最主要杂质之一,在硅熔点处,最大溶解度为2.75×1018cm-3。氧直拉硅单晶的氧主要来源于石英埚,氧杂质在低温热处理时,会产生施主效应,使得P型硅晶体的电阻率变大,N型硅晶体的电阻率变小。施主效应严重时,能使P型硅晶体转化为N型,这就是氧的施主效应。氧的施主效应可以分为两种情况,有不同的性质,一种是在350~500℃左右温度范围生成的,称为热施主。 一般认为,450℃是硅中热施主形成的最有效温度,在此温度下退火,100小时左右可达到施主浓度最大值(1×1016cm-3左右),随后热施主浓度随时间的延长而下降。可以通过红外光谱直接测量到热施主的存在,还可以利用电子核磁共振谱的信号研究热施主。除了退火温度,硅中的初始氧浓度对热施主的形成速率和浓度有最大影响,初始氧浓度越高,热施主浓度越高,其形成速率也越快。 一般地,直拉硅单晶样片经过650℃温度退火30分钟急冷降温后,在低温热处理生成的热施主会完全消失,可是当它在这个温度段较长时间热退火时,会有新的和氧有关的施主现象出现,这就是新施主,因此掌握退火时间是比较关键的。 单晶的表皮氧含量往往由于扩散和冷却作用氧施主的形成极少,因此P型太阳能级单晶可以根据表皮电阻率来定义真实电阻率,而要得到真实的中心电阻率必须进行退火来实现。 二、单晶电阻率反翘的分析 1、在硅单晶中一般主要存在硼和磷两种杂质,当硼杂质浓度大于磷杂质浓度时导电类型表现为P型,反之为N型,在有杂质补偿的情况下,电阻率主要由有效杂质浓度(N硼-N磷)或(N磷-N硼)决定。我们生产的单晶产品为P型掺硼单晶1-3Ω-cm,在电阻率一定范围内有效杂质浓度(N硼-N磷)也一定,由于现在太阳能电池片已研究出硅片中硼杂质过高会导致光致衰减过大,影响转换效率,因此要尽量减小磷杂质浓度,由于硅单晶中磷杂质难以检验,现

各类材料和铜合金的电阻率和电阻温度系数参数

铜的电阻率温度系数 铜的电阻率温度系数是多少呢?铜的电阻率温度系数定义是什么呢?我们先来纠正下“铜的电阻率温度系数”这个词。铜的电阻率温度系数其实正确的叫“铜的电阻温度系数” o下面介绍到的铜的电阻率温度系数就是指铜的电阻温度系数。铜的电阻率温度系数的定义:英文全称叫做temperature coefficient of resistance,简称就是TCR,表示的是电阻当温度改变1°C时,电阻值的相对变化。铜的电阻率温度系数单位为ppm/°C,就是10E(-6)/°Co铜的电阻率温度系数大家可能很少接触到的。没关系,今天我们就为大家介绍下''铜的电阻率温度系数”的有关知识。 2、铜的电阻率温度系数: 2.1、定义式如下:TCR二dR/R.dT; 2.2、实际应用时,通常采用平均电阻温度系数,定义式如下: TCR(平均)=(R2-R1)/(R1X (T2-T1))二(R2-R1)/(RIX AT) 其中R1—温度为tl时的电阻值,Q; R2—温度为t2时的电阻值,Q。 表2.1铜的电阻率温度系数

表2.2黄铜的电阻率温度系数 表2. 3铜的电阻率温度系数 注;啓青铜的电阻率温度系数:辂青铜的电阻率温度系数为20~100它时为0?0033/。(2。

表2.4白铜的电阻率温度系数 注:1.BFe30-l-l20.012T 2, 锌白铜的电阻率温度系数:BZn 15-20的电阻率温度系数为2X10 lc C°C *; 3. 猛白铜的电阻率温度系数不同于白铜。 表2.5链白铜的电阻率温度系数 了解完了铜的电阻率温度系数有关知识,我们说下常用金属的电阻率和电阻温度系数,见下表。 表3.1常用金属电阻率和电阻温度温度系数

硅晶片电阻率测量技术的研究

(总第272期Oct .圆018收稿日期:2018-09-26硅晶片电阻率测量技术的研究 秦伟亮,常耀辉,戚红英,窦连水 (中国电子科技集团公司第四十六研究所,天津300220) 摘要:分析了硅晶片电阻率测试的重要性并介绍了国内外常用的电阻率测试方法,并对使用最广泛的工艺检测手段-四探针技术的原理、测准条件及发展状况进行了详细的介绍。 关键词:硅单晶片;电阻率;四探针测试法 中图分类号:TN307文献标识码:A 文章编号:1004-4507(2018)05-0045-05 Research on Resistivity Measurement Technology of Silicon Wafers QIN Weiliang ,CHANG Yaohui ,QI Hongying ,DOU Lianshui (The 46th Research institute of CETC , Tianjin 300220,China)Abstract:This paper analyzes the importance of silicon wafer resistivity measurement and introduces the commonly used resistivity measuring methods at home and abroad.And the most widely used process measuring method-four-point-probe technology is studied in detail including its principle ,accurate measurement conditions and development status. Key words:Monocrystal silicon wafers;Resistivity ;Four-point-probe array measuring method 随着科技的快速发展,电路的集成化程度也 越来越高,电路的功能也越来越强大,对制作集成 电路的各种半导体芯片质量的要求也越来越高, 这就对晶体的完美性、机械及电特性也提出了更 为严格的要求。电子器件的很多参数与电阻率及 其分布的均匀性有密切的关系,因此器件电阻率 的测试成为芯片加工中的重要工序。电阻率作为 硅晶片的重要电学特性参数之一,对其均匀性的 控制和准确的测量已成为将来能否制造出性能更 优器件的关键因素。 1硅晶片电阻率的测量及其测试方法作为基础元件的集成电路由超大规模向甚大规模发展的阶段,离不开对衬底硅晶片薄层电阻率的准确测量。其准确测量及其均匀性与器件若干重要电学参数有直接关系,如二极管的反向饱和电流、晶体管的饱和压降、MOS 电容器耗尽层弛豫时间Tc 、晶体管的放大倍数β等。如今,国内外开发出来的主要测试方法分为接触式测量与非接触式测量两大类。目前,经过归

影响接触电阻的因素

影响接触电阻的因素 接触电阻Rj由两部分组成,即收缩电阻Rs和表面膜电阻Rb。收缩电阻是电流在流经电接触区域时,从原来截面较大的导体突然转入截面很小的接触点,电流发生剧烈收缩现象,此现象所呈现的附加电阻称为收缩电阻。表面膜电阻为在电接触的接触面上,由于污染而覆盖着一层导电性很差的物质,这就是接触电阻的另一部分——膜电阻。很多现场勘查人员对插片、插座烧毁的痕迹习惯归结为接触不良、接触电阻过大所致,其实导致接触电阻增大有很多原因。 1、接触形式 接触电阻的形式可分为三类:点接触、线接触和面接触。接触形式对收缩电阻Rs的影响主要表现在接触点的数目上。一般情况下,面接触的接触点数n最大而Rs最小;点接触则n最小,Rs最大;线接触则介于两者之间。接触形式对膜电阻Rb的影响主要是看每一个接触点所承受的压力F。一般情况下,在对触头外加压力F相同的情况下,点接触形式n最小,单位面积承受压力F1最大,容易破坏表面膜,所以有可能使Rb减到最小;反之,面接触的F1就最小,对Rb的破坏力最小,Rb值有可能最大。在实际情况中,需要综合以上两个因素,对接触电阻的大小进行具体的分析判断。 2、接触压力 接触压力F对收缩电阻Rs值和表面膜电阻Rb值的影响最大,F的增加使接触点的有效接触面积增大,即接触点数n增加,从而使Rs减小。当加大F超过一定值时,可使触头表面的气体分子层吸附膜减少到2~3个;当超过材料的屈服压强时,产生塑性变形,表面膜被压碎出现裂缝,从而增加了接触面积,这就使收缩电阻Rs因表面膜电阻Rb的减小而下降,Rs和Rb同时减小,从而使接触电阻大大下降。相反,当接触不到位、接触触头失去了弹性变形等原因使接触压力F下降时,接触面积减小,收缩电阻Rs增大,表面膜电阻Rb受F的破坏作用减弱或不受其影响,从而使表面膜电阻Rb增大。同时因Rb增大,使接触面积减小,从而使Rj增大,二者的综合作用使接触电阻整体上升。 3、接触表面的光洁度 接触表面的光洁度对接触电阻有一定的影响,这主要表现在接触点数n的不同。接触表面可以是粗加工、精加工,甚至是采用机械或电化学抛光。不同的加工形式直接影响接触点数n的多少,并最终影响接触电阻的大小。 4、接触电阻在长期工作中的稳定性 电阻接触在长期工作中要受到腐蚀作用: (1)化学腐蚀。电接触的长期允许温度一般都很低,虽然接触面的金属不与周围介质接触,但周围介质中的氧会从接触点周围逐渐侵入,并与金属起化学作用,形成金属氧化物,从而使实际接触面积减小,使Rj增加,接触点温度上升。温度越高,氧分子的活动力越强,可以更深地侵入到金属内部,这种腐蚀作用变得更为严重; (2)电化学腐蚀。不同的金属构成电接触时,能够发生这种腐蚀。它使负极金属溶解到电解液中,造成负电极金属的腐蚀。 5、温度 当接触点温度升高时,金属的电阻率就会有所增大,但材料的硬度有所降低,从而使接触点的有效面积增大。前者使Rs增大,后者使Rs减小,结果是两者互为补偿,故接触电阻变化甚微。但是,发热使接触面上生成氧化层薄膜,增加了接触电阻,这种接触电阻可成百成千倍地增大。其氧化速度与触头表面温度有关,当发热温度超过某一临界温度时,这个过程就会加速进行,这就限制了接触面的极限允许温度。否则,则将使接触电阻剧增,会引

实验一:四探针法测半导体电阻率

实验一:四探针法测量半导体电阻率 1、实验目的 (1)熟悉四探针法测量半导体或金属材料电阻率的原理(2)掌握四探针法测量半导体或金属材料电阻率的方法 2、实验仪器 XXXX 型数字式四探针测试仪;XXXX 型便携式四探针测试仪;硅单晶; 3、实验原理 半导体材料是现代高新技术中的重要材料之一,已在微电子器件和光电子器件中得到了广泛应用。半导体材料的电阻率是半导体材料的的一个重要特性,是研究开发与实际生产应用中经常需要测量的物理参数之一,对半导体或金属材料电阻率的测量具有重要的实际意义。 直流四探针法主要用于半导体材料或金属材料等低电阻率的测量。所用的仪器示意图以及与样品的接线图如图1所示。由图1(a)可见,测试过程中四根金 属探针与样品表面接触,外侧1和4两根为通电流探针,内侧 2和3两根是测 电压探针。由恒流源经 1和4两根探针输入小电流使样品内部产生压降,同时 用高阻抗的静电计、电子毫伏计或数字电压表测出其它两根探针(探针2和探 针3)之间的电压V 23。 图1 四探针法电阻率测量原理示意图 若一块电阻率为的均匀半导体样品,其几何尺寸相对探针间距来说可以 看作半无限大。当探针引入的点电流源的电流为I ,由于均匀导体内恒定电场的 等位面为球面,则在半径为 r 处等位面的面积为2 2r ,电流密度为 2 /2j I r (1) 根据电流密度与电导率的关系 j E 可得 2 2 22j I I E r r (2) 距离点电荷r 处的电势为 2I V r (3)

半导体内各点的电势应为四个探针在该点所形成电势的矢量和。通过数学推导,四探针法测量电阻率的公式可表示为 1 232312 24 13 34 11112( ) V V C r r r r I I (4) 式中,1 12 24 13 34 11112( )C r r r r 为探针系数,与探针间距有关,单位为cm 。 若四探针在同一直线上,如图1(a)所示,当其探针间距均为S 时,则被测样 品的电阻率为 1 232311112( )222V V S S S S S I I (5) 此即常见的直流等间距四探针法测电阻率的公式。 有时为了缩小测量区域,以观察不同区域电阻率的变化,即电阻率的不均匀性,四根探针不一定都排成一直线,而可排成正方形或矩形,如图1(b)所示, 此时只需改变电阻率计算公式中的探针系数 C 即可。 四探针法的优点是探针与半导体样品之间不要求制备接触电极,极大地方便了对样品电阻率的测量。四探针法可测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀性。由于这种方法允许快速、方便、无损地测试任意形状样品的电阻率,适合于实际生产中的大批量样品测试。但由于该方法受到探针间距的限制,很难区别间距小于 0.5mm 两点间电阻率的变化。 根据样品在不同电流(I )下的电压值(V 23),还可以计算出所测样品的电阻率。 4、实验内容 1、预热:打开SB118恒流源和PZ158A 电压表的电源开关(或四探针电阻率测试仪的电源开关),使仪器预热 30分钟。 2、放置待测样品:首先拧动四探针支架上的铜螺柱,松开四探针与小平台的接触,将样品置于小平台上,然后再拧动四探针支架上的铜螺柱,使四探针的所有针尖同样品构成良好的接触即可。 3、联机:将四探针的四个接线端子,分别接入相应的正确的位置,即接线板上最外面的端子,对应于四探针的最外面的两根探针, 应接入SB118恒流 源的电流输出孔上,二接线板上内侧的两个端子,对应于四探针的内侧的两根探针,应接在PZ158A 电压表的输入孔上,如图 1(a)所示。

铜的电阻率

铜的电阻率 铜的电阻率是铜的物理性质,首先,我们要先来了解一下什么是铜的电阻率。电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率。电阻率的单位是欧姆·米(Ω·m或ohmm),常用单位是欧姆·毫米和欧姆·米。而铜的电阻率就是表示铜的电阻特性,铜的电阻率为1.75×10-8Ω·m。常态下导电性能最好的依次是银、铜、铝,这三种材料是最常用的,常被用来作为导线等,其中铜用的最为广,几乎现在的导线都是铜的(精密仪器,特殊场合除外)铝线由于化学性质不稳定容易氧化已被淘汰。 铜的一些基础知识: 元素名称:铜 元素符号:Cu 元素原子量:63.546 元素类型:金属元素 元素在太阳中的含量:(ppm) 0.7 晶体结构:等轴晶系 原子体积:(立方厘米/摩尔) 7.1 元素在海水中的含量:(ppm) 太平洋表面0.00008 氧化态:

Main Cu+2 Other Cu-1, Cu0, Cu+1, Cu+3, Cu+4 晶胞参数: a = 361.49 pm b = 361.49 pm c = 361.49 pm α = 90° β = 90° γ = 90° 地壳中含量:(ppm)50 质子数:29 中子数:35 原子序数:29 所属周期:3 所属族数:IB 电子层分布:2-8-18-1 莫氏硬度:3 声音在其中的传播速率:(m/S)3810 一般状况下的密度:8.9×10^3kg/m^3 铜的电阻率为1.75×10-8Ω·m 纯铜是一种坚韧、柔软、富有延展性的紫红色而有光泽的金属,1克

电接触的接触电阻研究

万方数据

万方数据

万方数据

万方数据

电接触的接触电阻研究 作者:许军, 李坤, XU Jun, LI Kun 作者单位:装甲兵工程学院,控制工程系,北京,100072 刊名: 电工材料 英文刊名:ELECTRICAL ENGINEERING MATERIALS 年,卷(期):2011(1) 被引用次数:1次 参考文献(8条) 1.布朗诺维克;[白俄]康奇兹;[俄罗斯]米西金;许良军电接触理论、应用与技术 2010 2.郭凤仪;陈忠华电接触理论及其应用技术 2008 3.Malucci R D High Frequency Considerations for MultiPoint Contact Interfaces 2001 4.Holm R Electrical Contacts 1979 5.Timoshenko S;Goodier J N Theory of Elasticity 1951 6.Greenwood J A Constriction Resistance and the Real Areaof Contact[外文期刊] 1966 7.Lionel Boyer Contact Resistance Calculations:Generalizations of Greenwood's Formula Including Interface Films 2001(l) 8.Nakamura M;Minowa I Computer Simulation for the Conductance of a Contact Interface[外文期刊] 1986本文读者也读过(10条) 1.林福昌.徐智安.何磊.刘浩菊.姚宗干金属化膜电容器接触电阻的计算[期刊论文]-高电压技术2003,29(1) 2.王文增.王宇新.WANG Wen-zeng.WANG Yu-xin石墨板-碳纸接触电阻的测量[期刊论文]-电源技术2005,29(9) 3.盛威金属材料表面接触电阻测试方法的改善[学位论文]2007 4.石颉.施海宁.姚建林.涂丰盛一种跟踪接触电阻变化趋势的测量装置[期刊论文]-微型机与应用2009,28(22) 5.于天禹.林雪燕.YU Tian-yu.LI Xue-yan Cu/Ni接触对的微动可靠性研究[期刊论文]-机电元件2009,29(3) 6.王志强.刘向军.WANG Zhiqiang.LIU Xiangjun新型接触电阻测试装置的研制[期刊论文]-低压电器2008(21) 7.周超峰电接触测试中的显微观测系统研究[学位论文]2010 8.孙启政.王凯接触焊机理的探索[期刊论文]-航空精密制造技术2001,37(4) 9.黄强.陆永超.王洋.郭伟.HUANG Qiang.LU Yong-chao.WANG Yang.GUO Wei聚酰亚胺型导电胶装片固化工艺的研究[期刊论文]-电子与封装2003,3(5) 10.程方杰.单平.廉金瑞.胡绳荪.李宝清一种新的适合于铝合金点焊的电流控制法[期刊论文]-汽车技术2002(4)引证文献(1条) 1.赵亚楠电触头电阻钎焊中预置钎料的填缝过程[期刊论文]-热加工工艺 2012(17) 本文链接:https://www.360docs.net/doc/103871486.html,/Periodical_dgcl201101002.aspx

硅单晶电阻率标准样品均匀性的研究

Material Sciences 材料科学, 2019, 9(11), 971-975 Published Online November 2019 in Hans. https://www.360docs.net/doc/103871486.html,/journal/ms https://https://www.360docs.net/doc/103871486.html,/10.12677/ms.2019.911120 Study on the Homogeneity of the Resistivity Samples of Silicon Single Crystal Zhuo Liu, Yanan Wang, Yunxia Liu, Sizhuo Suo, Xunda Shi, Bing Su, Zhiting Zhao GRINM Semiconductor Materials Co. Ltd., Beijing Received: Oct. 16th, 2019; accepted: Oct. 30th, 2019; published: Nov. 6th, 2019 Abstract The thesis describes the principle how single silicon crystal grows, and why the resistivity samples of single silicon crystal is different from chemical analysis samples, which can not completely ho-mogeneity, discusses the factors which affect the homogeneity of the resistivity samples of single sil-icon crystal in preparation processes, for example, the different RRV causes by the different donors or acceptors, by the different crystal orientation, by the different CZ, FZ and inclusion processes. It also analyzes the testing principle, studies on how the testing environment, sample surface state which can disturb the calibration of the resistivity samples of single silicon crystal, discusses how to avoid these factors as far as possible, finally gets the fine resistivity samples of single silicon crystal. Keywords Standard Sample, Silicon Wafer, Homogenization 硅单晶电阻率标准样品均匀性的研究 刘卓,王雅楠,刘云霞,索思卓,史训达,苏冰,赵志婷 有研半导体材料有限公司,北京 收稿日期:2019年10月16日;录用日期:2019年10月30日;发布日期:2019年11月6日 摘要 简述硅单晶生长的原理,阐述硅单晶电阻率样品不同于化学分析样品,不可能完全均匀的原因;探讨在制备的过程中,影响硅单晶样品电阻率均匀性的因素,诸如,不同的掺杂晶体带来的电阻率均匀性差异、

接触电阻计算 -

接触电阻计算 - 第十四章触头 电路的通断和转换是通过电器中的执行部件,主要是其触头来实现的。触头是有触点电器的执行元件,又是电器中最薄弱的环节,其工作的优劣直接影响到电器的性能。 本章就触头在不同工作状态下出现的主要问题,如接触电阻、振动等,进行一定的分析,找出减少其危害的一些实用方法并对触头的一些基本参数作一介绍。 第一节概述 一、触头的分类 触头作为电器的执行机构,是非常重要的部件,它对电器的工作性能、总体结构、尺寸有着决定性的影响。触头的工作性能和质量直接影响到电器可靠性。触头在正常工作情况下经常要受到机械撞击、电弧等的有害作用,很容易损坏,故它又是有触头电器的一个薄弱环节。 触头可按以下方法分类: 1(按触头工作情况可分为有载开闭和无载开闭两种。前者在触头开断或闭合过程中,允许触头中有电流通过,后者在触头开断或闭合过程中,不允许触头中有电流通过,而在闭合后才允许触头中通过电流,如转换开关等。无载开闭触头,由于触头开断时无载,故无电弧产生,对触头的工作十分有利。 2(按开断点数目可分为单断点式和双断点式触头。 3(接触头正常工作位置可分为常开触头和常闭触头。 4(按结构形状可分为指形触头和桥式触头等。 5(按触头的接触方式可分为面接触、线接触和点接触3种。 二、触头接触面形式

触头接触面形式分为点接触、线接触和面接触3种,如图14—1所示。 图14—1 触头的接触式 (a)点接触;(b)线接触;(c)面接触。 1(点接触 点接触触头是指两个导体只在一点或者很小的面积上发生接触的触头(如球面对球面,球面对平面)。它用于20 A以下的小电流电器,如继电器的触头,接触器和自动开关的联锁触头等。由于接触面积小,保证其工作可靠性所需的接触互压力也较小。 2(线接触 线接触是指两个导体沿着线或较窄的面积发生接触的触头(如圆柱对圆柱、圆柱对平面)。其接触面积和接触压力均适中,常用于几十安至几百安电流的中等容量的电器,如接触器、自动开关及高压开关电器的触头。 触头实现电联接,一般采用触头弹簧压紧,压力较小,并考虑到装配检修的方便和工作可靠,多采用点接触或线接触的形式。在近代高压断路器和低压自动开关中,有的采用多个线接触和点接触并联使用,以减小接触电阻,使得工作可靠,制造检修方便。 3(面接触 面接触头是指两个导体有着较广表面发生接触的触头(如平面对平面)。其接触面积和触头压力均较大,多用于大电流的电器,例如大容量的接触器和断路器的主触头。

接触电阻

一、作用原理 在显微镜下观察接触件的表面,尽管镀层十分光滑,则仍能观察到5-10微米的凸起部分。因此一对接触件的接触,并不是整个接触面(线)的接触,而是散布在接触面上一些点的接触,实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分:一是真正金属与金属直接接触部分,即金属间无过渡电阻的接触微点,亦称接触斑点。它是由接触压力或热作用破坏界面膜后形成的,部分约占实际接触面积的5-10%;二是通过接触界面污染薄膜后相互接触的部分,因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于其表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,接触电阻(R c)由以下两部分组成: 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)形成的电阻,将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析,表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。所以确切地说,也可把膜层电阻称为界面电阻或表面电阻。 二、影响因素 接触电阻主要受接触件材料、接触压力、接触形式、表面状态、温度、使用电压和电流等因素影响。 1) 接触件材料 构成电接触的金属材料的性质直接影响接触电阻的大小,这些性质包括金属材料的电阻率ρ、布氏硬度H B、化学性能以及金属化合物的机械强

各类材料和铜合金的电阻率和电阻温度系数参数

各类材料和铜合金的电阻率和电阻温度系数参数

————————————————————————————————作者:————————————————————————————————日期: 2

铜的电阻率温度系数 1、简介 铜的电阻率温度系数是多少呢?铜的电阻率温度系数定义是什么呢?我们先来纠正下“铜的电阻率温度系数”这个词。铜的电阻率温度系数其实正确的叫“铜的电阻温度系数”。下面介绍到的铜的电阻率温度系数就是指铜的电阻温度系数。铜的电阻率温度系数的定义:英文全称叫做temperature coefficient of resistance,简称就是TCR,表示的是电阻当温度改变1℃时,电阻值的相对变化。铜的电阻率温度系数单位为ppm/℃,就是10E(-6)/℃。铜的电阻率温度系数大家可能很少接触到的。没关系,今天我们就为大家介绍下“铜的电阻率温度系数”的有关知识。 2、铜的电阻率温度系数: 2.1、定义式如下:TCR=dR/R.dT; 2.2、实际应用时,通常采用平均电阻温度系数,定义式如下: TCR(平均)=(R2-R1)/(R1×(T2-T1))=(R2-R1)/(R1×ΔT) 其中R1--温度为t1时的电阻值,Ω; R2--温度为t2时的电阻值,Ω。 表2.1 铜的电阻率温度系数 温度电阻温度系数温度电阻温度系数温度电阻温度系数温度电阻温度系数温度电阻温度系数℃铜K℃铜K℃铜K℃铜K℃铜K 10 1.0409 15 1.0200 20 1.0000 25 0.9807 30 0.9622 10.1 1.0405 15.1 1.0196 20.1 0.9996 25.1 0.9804 30.1 0.9618 10.2 1.0400 15.2 1.0192 20.2 0.9992 25.2 0.9800 30.2 0.9615 10.3 1.0396 15.3 1.0188 20.3 0.9988 25.3 0.9796 30.3 0.9611 10.4 1.0392 15.4 1.0184 20.4 0.9984 25.4 0.9792 30.4 0.9607 10.5 1.0388 15.5 1.0180 20.5 0.9980 25.5 0.9788 30.5 0.9604 10.6 1.0384 15.6 1.0176 20.6 0.9976 25.6 0.9785 30.6 0.9600 10.7 1.0379 15.7 1.0172 20.7 0.9973 25.7 0.9781 30.7 0.9597 10.8 1.0375 15.8 1.0168 20.8 0.9969 25.8 0.9777 30.8 0.9593 10.9 1.0371 15.9 1.0164 20.9 0.9965 25.9 0.9773 30.9 0.9589 11 1.0367 16 1.0160 21 0.9961 26 0.9770 31 0.9586 11.1 1.0362 16.1 1.0156 21.1 0.9957 26.1 0.9766 31.1 0.9582 >11.2 1.0358 16.2 1.0152 21.2 0.9953 26.2 0.9762 31.2 0.9578 11.3 1.0354 16.3 1.0148 21.3 0.9949 26.3 0.9758 31.3 0.9575 11.4 1.0350 16.4 1.0143 21.4 0.9945 26.4 0.9755 31.4 0.9571 11.5 1.0346 16.5 1.0139 21.5 0.9941 26.5 0.9751 31.5 0.9568 11.6 1.0341 16..6 1.0135 21.6 0.9938 26.6 0.9747 31.6 0.9564 11.7 1.0337 16.7 1.0131 21.7 0.9934 26.7 0.9743 31.7 0.9560 11.8 1.0333 16.8 1.0127 21.8 0.9930 26.8 0.9740 31.8 0.9557 11.9 1.0329 16.9 1.0123 21.9 0.9926 26.9 0.9736 31.9 0.9553 12 1.0325 17 1.0119 22 0.9922 27 0.9732 32 0.9550 12.1 1.0320 17.1 1.0115 22.1 0.9918 27.1 0.9729 32.1 0.9546 12.2 1.0316 17.2 1.0111 22.2 0.9914 27.2 0.9725 32.2 0.9543

相关文档
最新文档