用Buck-Boost变换器实现PFC和半桥驱动输出

用Buck-Boost变换器实现PFC和半桥驱动输出
用Buck-Boost变换器实现PFC和半桥驱动输出

Buck-Boost变换器的设计与仿真

1 概述 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。本文将对Buck/Boost升降压斩波电路进行详细的分析。

V E U L C U O V i 1 i 2i L R VD L V E U L C U O V i 1 i 2 i L R VD L V E U L C U O V i 1 i 2 i L R VD L 2 主电路拓扑和控制方式 2.1 Buck/Boost 主电路的构成 Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。 图2-1 Buck/Boost 主电路结构图 电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。 (a )V 导通 (b )V 关断,VD 续流 图2-2 Buck/Boost 不同模态等效电路

半桥电路的工作原理及注意问题

半桥电路的工作原理及注意问题 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。首先我们先来了解一下半桥电路的基本拓扑: 半桥电路的基本拓扑电路图 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。半桥电路概念的引入及其工作原理电路的工作过程大致如下:参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。Q1 关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。半桥电路中应该注意的几点问题偏磁问题原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效

BuckBoost电路建模及分析

题目:BuckdBoost电路建模及分析 摘要:作为研究开关电源的基础,DCTC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而BucMoost电路作为DCTC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck^oost电路进行了稳态分析和小信号分析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式,并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公式;接着推导了状态空间模型,以在M ATLAB中进行仿真;而最后仿真得到的电感电流、输出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一致。 关键词:BuckHBoost;稳态分析;小信号分析;MATLAB仿真

1 ?概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC4)C变换器。 作为研究开关电源的基础,DCTC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DCTC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压THE (BuckdBoos 泌],如图1-1所示。其中BucMoost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) B uck型电路结构 (b) Boost型电路结构 (c) B uckHB oost型电路结构 图1-1 DCTC变换器的三种电路结构

半桥设计经典

摘要:介绍了IR2110的内部结构和特点,高压侧悬浮驱动的原理和自举元件的设计。针对IR2110的不足提出了几种扩展应用的方案,并给出了应用实例。 关键词:悬浮驱动;栅电荷;自举;绝缘门极 1引言 在功率变换装置中,根据主电路的结构,其功率开关器件一般采用直接驱动和隔离驱动两种方式。采用隔离驱动方式时需要将多路驱动电路、控制电路、主电路互相隔离,以免引起灾难性的后果。隔离驱动可分为电磁隔离和光电隔离两种方式。 光电隔离具有体积小,结构简单等优点,但存在共模抑制能力差,传输速度慢的缺点。快速光耦的速度也仅几十kHz。 电磁隔离用脉冲变压器作为隔离元件,具有响应速度快(脉冲的前沿和后沿),原副边的绝缘强度高,dv/dt 共模干扰抑制能力强。但信号的最大传输宽度受磁饱和特性的限制,因而信号的顶部不易传输。而且最大占空比被限制在50%。而且信号的最小宽度又受磁化电流所限。脉冲变压器体积大,笨重,加工复杂。 凡是隔离驱动方式,每路驱动都要一组辅助电源,若是三相桥式变换器,则需要六组,而且还要互相悬浮,增加了电路的复杂性。随着驱动技术的不断成熟,已有多种集成厚膜驱动器推出。如EXB840/841、 EXB850/851、M57959L/AL、M57962L/AL、HR065等等,它们均采用的是光耦隔离,仍受上述缺点的限制。 美国IR公司生产的IR2110驱动器。它兼有光耦隔离(体积小)和电磁隔离(速度快)的优点,是中小功率变换装置中驱动器件的首选品种。 2IR2110内部结构和特点 IR2110采用HVIC和闩锁抗干扰CMOS制造工艺,DIP14脚封装。具有独立的低端和高端输入通道;悬浮电源采用自举电路,其高端工作电压可达500V,dv/dt=±50V/ns,15V下静态功耗仅116mW;输出的电源端(脚3,即功率器件的栅极驱动电压)电压范围10~20V;逻辑电源电压范围(脚9)5~15V,可方便地与TTL,CMOS电平相匹配,而且逻辑电源地和功率地之间允许有±5V的偏移量;工作频率高,可达500kHz;开通、关断延迟小,分别为120ns和94ns;图腾柱输出峰值电流为2A。 IR2110的内部功能框图如图1所示。由三个部分组成:逻辑输入,电平平移及输出保护。如上所述IR2110的特点,可以为装置的设计带来许多方便。尤其是高端悬浮自举电源的成功设计,可以大大减少驱

半桥驱动电路的作用

半桥驱动电路的作用: 半桥驱动电路的作用主要是通过功率管产生交流电触发信号,从而产生大电流进一步驱动电机。与单片机驱动不同的是,单片机驱动能力有限,一般仅作为驱动信号。 半桥驱动电路工作原理: 半桥电路的基本拓扑电路图 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。 电路的工作过程大致如下: 参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。 Q1关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。 Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。 应注意的几点问题 偏磁问题 原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。

如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效率,使晶体管失控,甚至烧毁。 在变压器原边串联一个电容的工作波形图 解决办法:在变压器原边线圈中加一个串联电容C3,则与不平衡的伏秒值成正比的直流偏压将被次电容滤掉,这样在晶体管导通期间,就会平衡电压的伏秒值,达到消除偏磁的目的。 用作桥臂的两个电容选用问题: 从半桥电路结构上看,选用桥臂上的两个电容C1、C2时需要考虑电容的均压问题,尽量选用C1=C2的电容,那么当某一开关管导通时,绕组上的电压只有电源电压的一半,达到均压效果,一般情况下,还要在两个电容两端各并联一个电阻(原理图中的R1和R2)并且R1=R2进一步满足要求,此时在选择阻值和功率时需要注意降额。此时,电容C1、C2的作用就是用来自动平衡每个开关管的伏秒值,(与C3的区别:C3是滤去影响伏秒平衡的直流分量)。 直通问题 所谓直通,就是Q1、Q2在某一时刻同时导通的现象,此时会构成短路。 解决措施 可以对驱动脉冲宽度的最大值加以限制,使导通角度不会产生直通。 还可以从拓扑上解决问题,才用交叉耦合封闭电路,使一管子导通时,另一管子驱动在封闭状态,直到前一个管子关断,封闭才取消,后管才有导通的可能,这种自动封锁对存储时间、参数分布有自动适应的优点,而且对占空比可以满度使用的。

Buck变换器工作原理介绍

Buck 变换器工作原理介绍 2.2.1 Buck 变换器的基本工作原理 Buck 变换器又称为降压变换器,串联稳压开关电源和三端开关型降压稳压电源。其基本的原理结构图如图2.2所示。 G a b c WM V G d 图2.2 Buck 变换器的基本原理图 由上图可知,Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设[1]: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series inductance ,ESL )等于零; c 、输出电压中的纹波电压和输出电压相比非常小,可以忽略不计。 d 、采样网络R1和R2的阻抗很大,从而使得流经它们的电流可以忽略不计。 在以上假设的基础上,下面我们对Buck 变换器的基本原理进行分析。 如图2.2所示,当开关元件M1导通时,电压V1与输出电压Vdc 相等,晶体管D1处于反向截至状态,电流01=D I 。电流11L M I I =流经电感L1,电流线性增加。经过电容C1滤波后,产生输出电流O I 和输出电压O V 。采样网络R1和R2对输出电压O V 进行采样得到电压信号S V ,并与参考电压ref V 比较放大得到信号。

Buck-Boost变换器

目录 摘要........................................................................ I 1 Buck/Boost变换器分析.. (1) 基本电路构成 (1) 基本工作原理 (1) 工作波形 (2) 2 Buck/Boost变换器基本关系 (3) 3 主要参数计算与选择 (5) 输入电压 (5) 负载电阻 (5) 占空比α (5) { 电感L (5) 输出滤波电容C计算 (6) 4 理论输入、输出电压表达式关系 (7) 5 仿真电路与仿真结果分析 (8) buck/boost仿真电路图 (8) 线性稳压电源仿真 (8) 稳压电源波形图 (9) 升压时输出电压与电流波形 (10) 降压时输出电压与电流波形 (11) 总结 (13) 参考文献 (14) )

摘要 随着世界的需求与电力电子的发展,高频开关电源凭借其低功耗等优点,得到了在计算机、通信和航天等领域的广泛应用。其中功率变换电路对组成开关电源起重要作用。功率变换电路是开关电源的核心部分,针对整流以后不同的直流电压功率变换电路有很多种拓扑结构,比如:Buck变换器拓扑、Boost变换器拓扑、Buck/Boost变换器拓扑、正激(反激)变换器拓扑......Buck/Boost变换器作为其中重要的一种,在开关电源的设计中当然也得到了很好的应用。本课程设计即是基于Simulink对Buck/Boost变换器进行设计与仿真,并且将仿真得到的输入输出电压关系式与理论推导进行比较,从而验证其可行性。 关键字:电力电子开关电源 Simulink Buck/Boost变换器

BUCK 变换器轻载时三种工作模式原理及应用

BUCK 变换器轻载时三种工作模式原理及应用 Adlsong 摘要摘要::降压型Buck 变换器在轻载有三种工作模式:突发模式、跳脉冲模式和强迫连续模式。文中详细的阐述了这三种模式的工作原理, 同时介绍了这三种模式的优点及缺点。 通过滞洄比较器监控输出电压的突发模式开关管工作的时间短,效率高,纹波最大。强迫连续模式电感的电流双向流动,效率最低,纹波最小。跳脉冲模式工作DCM 模式并跳去一些脉冲,效率和纹波介于上述两种模式之间。同时本文给出3.3V 到2.5V 的Buck 变换器电感,输入电容和输出电容的计算和选取方法。 关键词关键词::突发模式 跳脉冲模式 强迫连续模式 轻载 Abstract: Buck conveter has three modes at light output load: burst mode, pulse skip mode and force continuous mode. The principles of three modes are discussed in detail in this paper. The advantages and disadvantages of three modes are presented and also compared at the same time. The longest off time duration, highest efficiency and highest ouput ripple voltage are featured for burst mode detecting output votage via hysteresis comparator. The least efficiency and least ouput ripple voltage is featured for force continuous mode with positive and negative current through the inductor. The efficiency and ouput ripple voltage of pulse skip mode with skipping some swithching pulse is between that of two modes above. The methods to calculate the inductance, input

Buck-Boost变换器原理(过程啊)

Buck变换器原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳压器。 1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 2.工作原理 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流I o,两端输出电压V o,极性上正下负。当i s>I o时,电容在充电状态。 这时二极管D1承受反向电压;经时间D1T s后(,t on为S在a位时间,T s是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流i L不变。负载R两端电压仍是上正下负。在i L0,开关打开时,i s=0,故i s是脉动的,但输出电流I o,在L、D1、C作用下却是连续的,平稳的。 图2Buck变换器电路工作过程

Boost变换器 Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。 1.线路组成 线路由开关S、电感L、电容C组成,如图1所示,完成把电压V s升压到V o的功能。 图1 2.工作原理 当开关S在位置a时,如图2(a)所示电流i L流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。此时,电容C放电,R上流过电流I o,R两端为输出电压V o,极性上正下负。由于开关管导通,二极管阳极接V s负极,二极管承受反向电压,所以电容不能通过开关管放电。开关S转换到位置b时,构成电路如2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持i L不变。这样线圈L磁能转化成的电压V L与电源V s串联,以高于V o电压向电容C、负载R供电。高于V o时,电容有充电电流;等于V o时,充电电流为零;当V o有降压趋势时,电容向负载R放电,维持V o不变。 图2Boost变换器电路工作过程 由于V L+V s向负载R供电时,V o高于V s,故称它为升压变换器。工作中输入电流i s=i L是连续的。但流经二极管D1电流确实脉动的。由于有C的存在,负载R上仍有稳定、连续的负载电流I o。

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

BUCK变换器de控制技术的研究.

BUCK 变换器的控制技术的研究 一、实验目的 1、理解开环、电压单闭环和电压电流双闭环控制策略的原理,完成系统闭环控制调试; 2、建立变换器的模型,通过仿真和实验掌握电压和电流调节器的参数设计方法; 3、验证BUCK变换器的输入输出波形特性,PWM波形,及输入输出数量关系,加深对BUCK变换器连续和断续工作模态下的工作原理及特性的理解。 二、实验内容 熟悉SG3525的原理及使用方法,理解PWM波产生过程;研究BUCK变换器开环、电压闭环、电压电流双闭环状态下电路各器件,包括功率管、二极管、电感电压电流工作情况,输入输出电量关系,控制电路参数对变换器的性能的影响。观察电压纹波,观察不同电感、频率和负载对电流连续点的影响。理解BUCK 变换器闭环控制过程,掌握闭环性能指标。 变换器的基本要求如下: 输入电压:20~30V 输出电压:15V(输出电压闭环控制时) 输出负载电流:0.1~1A 工作频率:50kHz 输出纹波电压:≤100m V 三、实验仪器

6 电压表 2 7 电流表 2 8 负载 1 四、实验原理 1)BUCK主电路原理图(图1) 图1.BUCK主电路原理图 2)控制电路SG3525内部结构框图() 图2.SG3525内部结构框图 五、实验步骤 1、将BUCK变换器挂箱的所有开关关闭后再接线。 2、控制电路接20V直流电压,调节电位器RW1,用示波器观察并记录占空比为某一定值时SG3525 各管脚波形及驱动电路输出波形。注意观察SG3525 的9脚、5脚波形和输出波形之间的关系,理解SG3525 芯片PWM 波产生过程。调节RW2观测PWM波频率的变化,通过测得的PWM波计算PWM波频率。 3、控制电路接20V直流电压,主电路接6-30V可调直流电压,可控制开关S4

buckboost变换器

本科毕业设计(论文) 摘要 在很多需要DC-DC变换的系统,往往需要研制一种宽电压输入范围的DC/DC 变换器电源。在充分考虑不同DC/DC变换器拓扑特点的基础上,本文选用了Buck-Boost作为系统的主电路拓扑。 本文介绍了Buck-Boost电路的工作原理,建立了理想Buck-Boost模型,对整个电路进行了主电路参数设计,并在此基础上进行了电压电流闭环参数设计的研究,实现了控制理论中零极点补偿法在电力电子中的应用,。接着,本文在protel 中进行了原理图和PCB图的设计,在设计的硬件电路上进行了测试实验。 为了使系统能够在宽电压输入范围内稳定正常工作,本文实现了提出的闭环参数设计方法,指出了该方法的优点,并通过实验验证了该方法的正确性。 关键词:Buck-Boost;DC/DC变换器

本科毕业设计(论文) 毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

Buck变换器实现及其调速系统设计与调试

运动控制系统 课程设计 题目:Buck变换器实现及其调速系统设计与调试 院系: 班级: 姓名: 学号: 指导老师: 日期:

摘要 (3) 第一章概述 (3) 第二章设计任务及要求 (4) 2.1实验目的 (4) 2.2实验内容 (4) 2.3设计要求 (4) 2.4课程设计基本要求 (5) 第三章BUCK变换器的工作原理和各种模型 (6) 3.1B UCK变换器介绍 (6) 3.2B UCK变换器电路拓扑 (6) 3.3PWM控制的基本原理 (7) 第四章MATLAB仿真模型的建立 (9) 4.1MATLA仿真软件介绍 (9) 4.2B UCK电路模型的搭建 (9) 4.3B UCK变换器在电机拖动控制系统中的设计与仿真 (12) 4.3.1直流电机的数学模型 (12) 4.3.2系统在开环情况下的仿真 (13) 4.3.3 系统在闭环情况下的仿真 (14) 第五章总结与体会 (18)

变压调速是直流调速系统的主要方法,调节电枢供电电压从而改变电机的转速。即需要有一个可控直流源,常用的为直流斩波或者脉宽调制器,其通过电力电子开关控制及电容、电感的充放电及二极管的续流组成直流斩波电路(DC),实现输出电压可控,即升压(BOOST)、降压(BUCK)。本实验主要针对降压斩波电路(BUCK)进行实验分析。实验采用MATLAB作为仿真软件,利用PWM 波驱动降压斩波电路为直流电动机提供驱动电压,并通过调节PWM波的占空比来调节电动机的启动电压使达到调节电动机转速的电路设计。 关键词:S-Function;PWM调制;Buck变换器;闭环控制;直流电动机 第一章概述 直流变换技术(亦称直流斩波技术,DC-DC),作为电力电子技术领域非常活跃的一个分支,在近几年里,得到了充分的发展。随着电动牵引技术的发展,特别是电子信息类产品的大量涌现,直流变换技术已经广泛应用于生产,生活的各个领域。由于其有良好的可操作性,被大量应用到电机的调速系统中,很好的解决了电动机调速的不可控性。 BUCK电路作为一种最基本的DC-DC变换电路,由于其简单、实用性在各种电源产品中均得到广泛的应用。其电路主要器件有电力电子开关(IGBT或MOSFET)、电感、电容、续流二极管。通过对开关的调节控制电压,其一般采用软开关控制方法,即采用脉宽调制技术(PWM),通过改变占空比来调节输出电压的大小。其与直流调速系统组成的脉宽调制变换器—直流电机调速系统,简称直流脉宽调速系统,即PWM直流调速系统。存在:1)主电路简单、功率器件少;2)开关频率高、电流容易连续、谐波小;3)低速性能好、稳态精度高;4)低速性能好,稳态精度高,动态抗干扰能力强等优点。 使用MATLAB等仿真分析,再做实物研究,已经逐渐成为电力电子技术研究的主要方法。 本次课程设计使用MATLAB友好的工作平台和编辑环境进行模型编辑工作,运用它的s函数编辑一个简单的脉冲发生器,要求它的占空可调;运用数学处理功能来处理仿真时的实时数据,利用传递函数构造直流电机转速的数学模型,运用它广泛的模块集合工具箱里的Simulink进行电路模型搭建和系统仿真,控制电路的占空比从而控制输出电压的大小,进而调节电机的转速,同时采用负反馈的控制方式,调节转速在一个恒定值。

2--Buck直流变换器的工作原理及动态建模

2--Buck直流变换器的工作原理及动态建模

2 Buck直流变换器的工作原理及动态建模 2.1 DC/DC变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流 电压称之为DC/DC变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的 动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC变换器和非隔离型DC/DC变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck)型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk型,此外还有Sepic型和Zeta型变换器。 2.2 二电平Buck直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图2.1所示: 图2.1 Buck电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作

如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。 根据晶体管的开关特性,在管子的基极加入开关信号,就能控制它的导通和截至,对于NPN 晶体管,当基极加入正向信号时,将产生积极电流b i ,基极正向电压电压升高,b i 也随之升高,b i 达到一定数值后,集电极电流c i 达到最大值,其后继续增加b i ,b i 基本上保持不变,这种现象称为饱和。在饱和状态下,晶体管的集射极电压很小,可以忽略不计。因此晶体管的饱和状态相当于开关的接通状态。当基极加入反向偏压时,晶体管截至,集电极电流c i 接近于零,而晶体管的集射极电压接近于电源电压。晶体管的这种状态相当于开关的断开状态,通常称为截至状态,或称为关断状态。 2.3 Buck 变换器的工作模式 5【】8【】27【】29【】 由Buck 变换器的工作原理可以看出,电感可以工作在电流连续的方式下,也可能工作在电流

2buck直流变换器的工作原理及动态建模

DC/DC 变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。 二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图所示: 图 Buck 电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。 根据晶体管的开关特性,在管子的基极加入开关信号,就能控制它的导通和截至,对于NPN 晶体管,当基极加入正向信号时,将产生积极电流b i ,基极正向电压电压升高,b i 也随之升高,b i 达到一定数值后,集电极电流c i 达到最大值,其后继续增加b i ,b i 基本上保持不变,这种现象称为饱和。在饱和状态下,晶体管的集射极电压很小,可以忽略不计。因此晶体管的饱和状态相当于开关的接通状态。当基极加入反向偏压时,晶体管截至,集电极电流 c i 接近于零,而晶体管的集射极电压接近于电源电压。晶体管的这种状态相当于开关的断开 状态,通常称为截至状态,或称为关断状态。

MOSFET半桥驱动电路要点

半桥驱动电路要点 作者:万代半导体元件(上海)有限公司高级应用工程师葛小荣张龙来源:电子设计应用2009年第10期引言 MOSFET凭开关速度快、导通电阻低等优点在开关电源及电机驱动等应用中得到了广泛应用。要想使MOSFET在应用中充分发挥其性能,就必须设计一个适合应用的最优驱动电路和参数。在应用中MOSFET一般工作在桥式拓扑结构模式下,如图1所示。由于下桥MOSFET驱动电压的参考点为地,较容易设计驱动电路,而上桥的驱动电压是跟随相线电压浮动的,因此如何很好地驱动上桥MOSFET成了设计能否成功的关键。半桥驱动芯片由于其易于设计驱动电路、外围元器件少、驱动能力强、可靠性高等优点在MOSFET驱动电路中得到广泛应用。 桥式结构拓扑分析 图1所示为驱动三相直流无刷电机的桥式电路,其中L PCB、L S、L D为直流母线和相线的引线电感,电机为三相Y型直流无刷电机,其工作原理如下。 图1 桥式拓扑电路 直流无刷电机通过桥式电路实现电子换相,电机工作模式为三相六状态,MOSFET导通顺序为 Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。 系统通过调节上桥MOSFET的PWM占空比来实现速度调节。 Q1、Q5导通时,电流(I on)由VDD经Q1、电机线圈、Q5流至地线,电机AB相通电。 Q1关闭、Q5导通时,电流经过Q5,Q4续流(I F),电机线圈中的电流基本维持不变。 Q1再次开通时,由于Q3体二极管的电荷恢复过程,体二极管不能很快关断,因此体二极管中会有反向恢复电流(I rr)流过。由于I rr的变化很快,因此在I rr回路中产生很高的di/dt。

半桥驱动电路工作原理 图2所示为典型的半桥驱动电路。 图2 半桥驱动电路原理 半桥驱动电路的关键是如何实现上桥的驱动。图2中C1为自举电容,D1为快恢复二极管。PWM在上桥调制。当 Q1关断时,A点电位由于Q2的续流而回零,此时C1通过VCC及D1进行充电。当输入信号Hin开通时,上桥的驱动由C1供电。由于C1的电压不变,VB随VS的升高而浮动,所以C1称为自举电容。每个PWM周期,电路都给C1充电,维持其电压基本保持不变。D1的作用是当Q1关断时为C1充电提供正向电流通道,当Q1开通时,阻止电流反向流入控制电压VCC。D2的作用是为使上桥能够快速关断,减少开关损耗,缩短MOSFET关断时的不稳定过程。D3的作用是避免上桥快速开通时下桥的栅极电压耦合上升(Cdv/dt)而导致上下桥穿通的现象。 自举电容的计算及注意事项 影响自举电容取值的因素 影响自举电容取值的因素包括:上桥MOSFET的栅极电荷Q G、上桥驱动电路的静态电流I QBS、驱动IC中电平转换电路的电荷要求Q LS、自举电容的漏电流I CBS(leak)。 计算自举电容值 自举电容必须在每个开关周期内能够提供以上这些电荷,才能保持其电压基本不变,否则V BS将会有很大的电压纹波,并且可能会低于欠压值V BSUV,使上桥无输出并停止工作。 电容的最小容量可根据以下公式算出: 其中,V F为自举二极管正向压降,V LS为下桥器件压降或上桥负载压降,f为工作频率。 应用实例

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取

性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A 开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 1=4×10-6s 开关周期:T S= s f 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283

输出电压:V O =24V 输出电流I O =5A 纹波电流:Δi L =0.25A 纹波电压:ΔV L =100mV 电感量计算:由Δi L = 2L v -V o max -in DT S 得: L=L o max -in i 2v -V ΔD min T S=25 .022453?-×0.4528×4×10-6=1.05×10-4H 电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1 .0825 .0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d ) 1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++=)(

半桥电路的运行原理及注意问题

半桥电路的运行原理及注意问题 [导读] 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 关键词:偏磁现象半桥电路 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 首先我们先来了解一下半桥电路的基本拓扑。 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。 半桥电路的基本拓扑电路图 半桥电路概念的引入及其工作原理 电路的工作过程大致如下:

参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。 Q1关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。 Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。 半桥电路中应该注意的几点问题 偏磁问题 原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。 如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效率,使晶体管失控,甚至烧毁。 在变压器原边串联一个电容的工作波形图

ir2103 半桥驱动器

Half-Bridge Driver Features ? Floating channel designed for bootstrap operation ? Fully operational to +600V ? Tolerant to negative transient voltage ? dV/dt immune ? Gate drive supply range from 10 to 20V ? Undervoltage lockout ? 3.3V, 5V and 15V logic compatible ? Cross-conduction prevention logic ? Matched propagation delay for both channels ? Internal set deadtime ? High side output in phase with HIN input ? Low side output out of phase with LIN input Description The IR2103(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Ordering Information Product Summary Package Options