Pattern generation for walking and searching movements of a stick insect leg. I. Coordinati

Pattern generation for walking and searching movements of a stick insect leg. I. Coordinati
Pattern generation for walking and searching movements of a stick insect leg. I. Coordinati

You might find this additional information useful...38 articles, 21 of which you can access free at:

This article cites

https://www.360docs.net/doc/1c4777909.html,/cgi/content/full/85/1/354#BIBL 5 other HighWire hosted articles:

This article has been cited by [PDF] [Full Text] [Abstract], January 1, 2001; 85 (1): 341-353. J Neurophysiol H. Fischer, J. Schmidt, R. Haas and A. Buschges

Coordination of Motor Activity Pattern Generation for Walking and Searching Movements of a Stick Insect Leg. I.

[PDF] [Abstract], March 1, 2003; 22 (3-4): 151-167. The International Journal of Robotics Research V. Durr, A. F. Krause, J. Schmitz and H. Cruse

Neuroethological Concepts and their Transfer to Walking Machines

[PDF] [Full Text] [Abstract], July 2, 2003; 23 (13): 5953-5962. J. Neurosci.B. Mulloney

Swimmeret Motor Neurons During Fictive Locomotion, Graded Synaptic Currents Drive Bursts of Impulses in

[PDF] [Full Text] [Abstract], March 1, 2005; 93 (3): 1255-1265. J Neurophysiol B. Ch. Ludwar, M. L. Goritz and J. Schmidt

Intersegmental Coordination of Walking Movements in Stick Insects

[PDF] [Full Text] [Abstract], October 1, 2005; 94 (4): 2772-2784. J Neurophysiol B. Ch. Ludwar, S. Westmark, A. Buschges and J. Schmidt

Insect Front-Leg Walking Modulation of Membrane Potential in Mesothoracic Moto- and Interneurons During Stick on the following topics:

https://www.360docs.net/doc/1c4777909.html,/lists/artbytopic.dtl can be found at Medline items on this article's topics Entomology .. Phasmida (Order) Physiology .. Motor Neurons Physiology .. Membrane Potential including high-resolution figures, can be found at:

Updated information and services https://www.360docs.net/doc/1c4777909.html,/cgi/content/full/85/1/354 can be found at:

Journal of Neurophysiology about Additional material and information https://www.360docs.net/doc/1c4777909.html,/publications/jn This information is current as of January 31, 2008 .

https://www.360docs.net/doc/1c4777909.html,/.American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright ? 2005 by the publishes original articles on the function of the nervous system. It is published 12 times a year Journal of Neurophysiology on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

Pattern Generation for Walking and Searching Movements of a Stick Insect Leg.II.Control of Motoneuronal Activity

JOACHIM SCHMIDT,HANNO FISCHER,AND ANSGAR BU¨SCHGES

Zoologisches Institut,Universita¨t zu Ko¨ln,50923Cologne,Germany

Received10July2000;accepted in?nal form28September2000

Schmidt,Joachim,Hanno Fischer,and Ansgar Bu¨schges.Pattern generation for walking and searching movements of a stick insect leg. II.Control of motoneuronal activity.J Neurophysiol85:354–361, 2001.In the stick insect,Cuniculina impigra,intracellular recordings from mesothoracic motoneurons that control?exion and extension of the tibia and depression and levation of the trochantero-femur were made while the leg performed walking-like movements on a tread-band or stereotyped rhythmic searching movements.We were inter-ested in how synaptic input and intrinsic properties contribute to form the activity pattern of motoneurons during rhythmic leg movements without sensory feedback from other legs.During searching and walking,motoneurons expressed a rhythmic bursting pattern that was formed by a depolarizing input followed by a hyperpolarizing input in the inter-burst interval.This basic pattern was similar in all fast, semi-fast,and slow motoneurons that were recorded.Hyperpolariza-tions were in synchrony with activity in the antagonistic motoneurons. De-and hyperpolarizations were associated with a decrease in input resistance.All motoneurons showed spike frequency adaptation when depolarized by current injection to a membrane potential similar to that observed during walking.In the hyperpolarizing phase of fast ?exor motoneurons,the initial maximum hyperpolarization was fol-lowed by a sag in potential toward more depolarized values.Consis-tent with this observation,only fast?exor motoneurons developed a depolarizing sag potential when hyperpolarized by injection of con-stant negative current.

I N T R O D U C T I O N

In a walking animal,the coordinated activity of muscles that control movements of different leg joints depends on the pre-cise timing of the activity of motoneurons that innervate these muscles(recent reviews:Orlovsky et al.1999;Pearson1993). The timing and magnitude of motor activity during walking is known to result from interaction of sensory signals and the output of central rhythm generating networks(recent reviews: Bu¨schges and El Manira1998;Clarac1991;Duysens et al. 2000;Pearson1995).The complete structure of central walk-ing rhythm generating networks is not known in any animal (Orlovsky et al.1999),although in insects some interneurons have been identi?ed that are part of premotor networks in-volved in postural control and locomotion(see Ba¨ssler and Bu¨schges1998;Burrows1996).However,not only is the information about central premotor elements fragmentary,but there is little information about the membrane potential changes in motoneurons during walking,which would show the pattern of synaptic inputs(cockroach:Pearson and Fourtner 1975;Tryba and Ritzmann2000;stick insect:Godden and Graham1984:locust:Wolf1990,1992).In addition,there is only sparse data on the intrinsic properties of insect motoneu-rons that contribute to forming their activity pattern(David and Pitman1996;Hancox and Pitman1991,1993;Mills and Pit-man1999;Ramirez and Pearson1991).

The membrane potential of leg motoneurons has been stud-ied in preparations of the cat,the rat,and the locust in which walking-like motor activity has been induced by electrical stimulation of higher locomotor regions(Shefchyk and Jordan 1985)or by application of drugs(Cazalets et al.1996;Ryck-ebusch and Laurent1993).Under these conditions,rhythmic activity of motoneurons results from alternating excitatory and inhibitory synaptic input.These data are consistent with the observation in the cockroach that phasic inhibition and phasic depolarization contribute to activity of a coxal motoneuron and an extensor tibiae motoneuron during walking(Tryba and Ritzman2000)Application of the cholinergic agonist pilo-carpine onto stick insect ganglia activates central neuronal networks that generate alternating rhythmic activity in antag-onistic leg motoneurons(Bu¨schges et al.1995).However, under these conditions,rhythmic activity in mesothoracic ?exor and extensor motoneurons appears to be based on tonic excitation and cyclic hyperpolarizing synaptic input(Bu¨schges 1998).It is the objective here to study the intracellular activity pattern in,and the role of synaptic inputs to,stick insect motoneurons in a semi-intact walking preparation that is suit-able for long-term intracellular recordings(see companion paper,Fischer et al.2001).

Along with synaptic inputs,the activity pattern of motoneu-rons is also sculpted by their intrinsic membrane properties. Spike frequency adaptation(SFA)and depolarizing sag poten-tials and plateau potentials affect the activity pattern of mo-toneurons in different systems(SFA:lamprey:El Manira et al. 1994;phrenic motoneurons of cat:Jodkowski et al.1988; hypoglossal motoneurons of rat:Sawczuk et al.1995;depo-larizing sag potentials:stomatogatric nervous system:Kiehn and Harris-Warrick1992;hypoglossal and facial motoneurons of rat:Bayliss et al.1994;Magarin?os-Ascone et al.1999; plateau potentials:for review,see Hultborn1999;Kiehn1991). Plateau potentials in insect motoneurons have been shown in cockroach leg motoneurons(Hancox and Pitman1991,1993)

Address for reprint requests:J.Schmidt,Zoologisches Institut,Universita¨t zu Ko¨ln,Weyertal119,D-50923Cologne,Germany(E-mail:Joachim. Schmidt@uni-koeln.de).

The costs of publication of this article were defrayed in part by the payment of page charges.The article must therefore be hereby marked‘‘advertisement’’in accordance with18U.S.C.Section1734solely to indicate this fact.

3540022-3077/01$5.00Copyright?2001The American Physiological Society https://www.360docs.net/doc/1c4777909.html, on January 31, 2008 https://www.360docs.net/doc/1c4777909.html, Downloaded from

and locust ?ight motoneurons (Ramirez and Pearson 1991),but it is not known whether insect leg motoneurons exhibit SFA and depolarizing sag potentials.We have looked for both properties in stick insect motoneurons because they might affect the motoneuronal activity pattern during walking.SFA would decrease spike frequency during depolarizations and depolarizing sag potentials could counteract membrane hyper-polarizations.

In the companion paper (Fischer et al.2001),we have introduced a preparation in which after amputation of all legs but one middle leg,the remaining leg performs walking move-ments on a treadband or stereotyped rhythmic searching move-ments when ground contact is absent.We made intracellular recordings from mesothoracic motoneurons of the coxa-tro-chanteral joint and the femur-tibial joint and investigated the overall synaptic drive underlying patterning of motoneuronal activity in the locomotor cycle.We found that in all motoneu-rons recorded rhythmic activity during walking and searching movements was due to alternating inhibitory and excitatory synaptic inputs.When studying cellular properties we found that slow,semi-fast,and fast motoneurons exhibited marked spike frequency adaptation.In addition,fast ?exor tibiae mo-toneurons were found to develop a depolarizing sag potential when hyperpolarized by injection of constant current.

M E T H O D S

All experiments were carried out on adult female stick insects,Cuniculina impigra Redthenbacher (syn.Baculum impigrum Brunner)that were raised at the Zoological Institut,University of Cologne.The experiments were performed at room temperature of 20–22°C under dimmed light conditions.

The experimental setup and the methods of preparation are de-scribed in detail in the accompanying paper (Fischer et al.2001).In short,the animals were mounted on a platform using dental wax.All legs but one middle leg were amputated between trochanter and coxa.The stumps were glued to the platform to prevent movements and the coxa of the remaining leg was glued to the body wall to prevent pro-and retraction movements.After opening the thoracic cavity,the mesothoracic ganglion was placed on a platform,and all nerve roots on the side of the leg stump and the nerves nl2and nl5were crushed.The activity of motoneurons was recorded intracellularly from their neuropilar arborizations in the ipsilateral hemi-ganglion with micro-electrodes (1mm OD,0.78mm,Science Products,Hofheim,Ger-many)that had resistances of 15–25M ?and were ?lled with a solution of 3MKAc/0.05M KCl.An NPI-10L ampli?er (npi elec-tronic GmbH,Tamm,Germany)was used in bridge or discontinuous current-clamp mode.Monopolar hook electrodes were used for extra-cellular recording from nerve roots.Electromyographic recordings were obtained by inserting two 50-?m copper wires into the respec-tive muscles of the leg segments.Motoneurons were identi?ed either by a one-to-one relationship of their action potentials with muscle potentials in EMG recordings and/or by induction of leg movements on injection of depolarizing current.Each spike in a fast motoneuron evoked a distinct fast movement.Individual spikes in semi-fast mo-toneurons evoked movements that were much smaller and hardly detectable by eye.However,a spike train in semi-fast motoneurons evoked a smooth movement that was clearly faster than movements evoked by spike trains in slow motoneurons.A single spike in a slow motoneuron was never able to evoke a movement of a joint.

For data processing,see Fischer et al.(2001).For creating x,y data plots,we used PlotIT for Windows (Scienti?c Programming Enter-prises,Haslett,MI).PlotIT was used for smoothing the y values in x,y data using a smoothing factor of 0.6.Measurements are given as

means ?SE.We used a modi?ed t -test (Dixon and Massey 1969)to compare data sets and samples were regarded signi?cantly different for P ?0.05.

R E S U L T S

Activity pattern of motoneurons during walking and searching movements

Electromyographic recordings (EMG)from leg muscles have shown that the motoneurons of the coxa-trochanteral joint and the femur-tibial joint generate bursts of action potentials when the middle leg performs walking-like movements on

a

FIG .

1.Rhythmic activity of a fast extensor tibiae motoneuron during walking and searching movements of the leg.A :the middle leg of a stick insect walks on a treadband in the transverse plane,i.e.,no pro-and retraction is possible.Swing phase is de?ned as fast extensor tibiae motoneuron (FETi)activity (see Fischer et al.2001).The intracellular recording of FETi shows burst activity during 3consecutive steps.In this and subsequent ?gures,arrowheads indicate time of tactile stimulation that elicited the sequence of leg movements.B :during searching movements,FETi activity is less vigorous but also organized in bursts.C :when depolarized by intracellular current injection,the membrane potential of FETi in the interburst interval was more negative than the new resting potential.

355

PATTERNING OF MOTONEURON ACTIVITY on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

treadband or performs searching-like movements.For a dis-cussion of some differences between these walking-and searching-like movements of the single middle leg and walking and searching leg movements in intact animals that result from the constrains of the single leg preparation,see companion paper by Fischer et al.(2001).For the sake of readability,we will refer to walking-and searching-like movements further on as walking and searching.

The intracellular recording of the fast extensor tibiae mo-toneuron (FETi)gives an example of the basic features of the typical rhythmic motoneuronal pattern.During walking,FETi (n ?5)generated bursts of action potentials (Fig.1A ).Be-

tween bursts,FETi repolarized and the membrane potential settled at ?67mV,1mV more negative than its potential at rest.Each burst in FETi indicated the swing phase of a walking cycle (Fischer et al.2001).A similar rhythmic activity pattern was generated in FETi during searching movements of the leg (Fig.1B ).Spike frequency was generally lower and cycle period was faster during searching than during walking.During searching,FETi did not hyperpolarize below its potential at rest between bursts.However,when FETi was held at a more depolarized membrane potential (?40mV)by current injec-tion during searching,the membrane hyperpolarized below the new resting potential (Fig.1C ),indicating that FETi not only repolarized due to decreasing depolarizing input but also re-ceived inhibitory synaptic input in the inter-burst interval.During walking,extensor motoneurons also appear to re-ceive inhibitory input.Bursting of SETi activity during walk-ing was formed by depolarizations and hyperpolarizations around the potential at rest (n ?5;Fig.2).It was a general pattern for all motoneurons that the hyperpolarization was in synchrony with burst activity in the antagonistic motoneurons.Starting from a potential at rest of ?50mV,SETi hyperpolar-ized by about 4mV during ?exor activity (stance phase)and generated bursts of action potentials during swing phase.The walking sequence shown started with a hyperpolarization of SETi because the walking cycle started with a stance phase.Flexor motoneurons expressed the same basic activity pat-tern during walking and searching as extensor motoneurons as is shown in Fig.3.The membrane of a slow ?exor

motoneuron

FIG .

2.Alternation of inhibition and excitation in slow motoneurons during

walking.The membrane potential of a slow extensor motoneuron (SETi)is hyperpolarized below the resting potential during ?exor activity (Flex/Ext EMG),indicating the stance phase of leg

movement.

FIG .3.Rhythmic activity of ?exor motoneu-rons during walking and searching.A :during walk-ing,the membrane potential of a slow ?exor mo-toneuron (sFlex)is hyperpolarized below resting potential during extensor activity (Flex/Ext EMG),indicating swing phase of the walking cycle.Burst activity in the ?exor motoneuron indicates the stance phase of the leg movement.Injection of negative current pulses (CM,current monitor)into the slow ?exor motoneuron reveals that the input resistance is decreased during swing phase (exten-sor activity)as compared with rest.1,onset of hyperpolarizing input.B :during spontaneous searching,a semi-fast ?exor motoneuron (sfFlex)was rhythmically depolarized and hyperpolarized.8,potential change during injection of negative current pulses.The input resistance was reduced during the depolarizing phase.

356

J.SCHMIDT,H.FISCHER,AND A.BU

¨SCHGES on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

(sFlex,Fig.3A )hyperpolarized some 4mV below the resting membrane potential of ?50mV in the interburst interval in synchrony with activity in extensor motoneurons.The walking sequence shown started with a hyperpolarization of sFlex be-cause the sequence started with a swing phase.In this prepa-ration,the rhythm paused for about a second after each swing-stance cycle.The pause was characterized by a repolarization of the membrane to resting potential and an increase in input resistance.A sudden decrease in input resistance and further hyperpolarization indicated the onset of inhibitory synaptic input (see 1).

During walking and searching (Fig.3B ),the hyperpolarizing phase in all motoneurons tested was associated with a decrease in input resistance.The mean input resistance of 6.5?0.91M ?[n ?7,5slow and 2fast motoneurons (MNs)]at rest was reduced to 3.1?0.61M ?in the inhibitory phase of a walking or searching cycle.The depolarizing phase during walking and searching is also associated with a decrease in input resistance (Fig.3B ).During searching,a semi-fast ?exor motoneuron was rhythmically depolarized by 2–3mV associated with a de-crease in input resistance of about 40%.

Depolarizations and hyperpolarizations around the resting potential also formed the activity pattern of depressor and levator trochanteris motoneurons during searching (Fig.4).A fast depressor trochanteris motoneuron (fDprTr)generated bursts of action potentials during the down stroke of the leg and repolarized back to its resting potential between bursts.When depolarized by current injection,fDprTr hyperpolarized below the new resting potential between bursts (Fig.4A ).These hyperpolarizations were not due to K currents activated by a preceding depolarization because the sequence started with a hyperpolarization of fDprTr.When the membrane potential

was held more negative than the resting potential of ?65mV,the membrane did not reach the new resting potential between bursts indicating a reversal potential of ?65mV for the inter-burst hyperpolarization (Fig.4A ).The fLevTr motoneuron in Fig.4B usually did not reach spike threshold when depolarized and did not hyperpolarize below its resting potential of ?66mV during leg depression.Again,when depolarized by current injection the membrane hyperpolarized below the new resting potential between depolarizations,indicating hyperpolarizing synaptic input during depression of the leg.

Only 8%of the fast motoneurons (n ?14)that were re-corded while the animal performed searching movements hy-perpolarized below the resting potential between bursts.When depolarized by current injection,however,all neurons hyper-polarized below the new resting potential.A far greater per-centage of slow motoneurons,42%,hyperpolarized below rest during searching movements (n ?26).Of those slow motoneu-rons that were held at a more positive membrane potential by current injection (n ?7),all but one hyperpolarized below the new resting potential.A similar picture emerged for semi-fast motoneurons.The mean resting potential of the neurons that hyperpolarized below rest was ?49?2.0mV (n ?17),whereas the resting potential of neurons that did not hyperpo-larize below the resting potential during searching was ?58?1.2mV (n ?45)and thus signi?cantly more negative.These data suggest that a hyperpolarization below rest was more often observed in slow and semi-fast motoneurons because the mean resting potential of those was signi?cantly more positive,?51?1.0mV (n ?47)and ?52?1.6mV (n ?27),respectively,than that of fast motoneurons,which was ?62?1.2mV (n ?35;see also Table 1).

Our data suggest that in all fast,semi-fast,and slow exten-sor,?exor,depressor trochanteris,and levator trochanteris mo-toneurons that were recorded,the activity pattern during searching and walking appeared to be formed by depolarizing and hyperpolarizing synaptic input.Rhythmic activity in mo-toneurons during walking and searching appears to be based on the same mechanisms;the only difference was that

spike

FIG .4.Alternation of excitation and inhibition in fast depressor and levator trochanteris motoneurons during searching.A :the intracellular recording of a fast depressor trochanteris motoneuron (fDprTr)shows bursts of action potentials during spontaneous searching movements of the leg.When the cell is held hyperpolarized by constant injection of negative current,the membrane potential does not reach baseline in the interburst interval.When the cell is depolarized by constant injection of positive current,the membrane potential is hyperpolarized below baseline.B :a fast levator trochanteris motoneuron (fLevTr)mainly exhibits subthreshold depolarizations during searching movements of the leg.When the cell is depolarized by constant injection of positive current,the membrane poten-tial is hyperpolarized below rest between depolarizations.Two spikes were clipped.

TABLE

1.Intrinsic properties of motoneurons

V m

SFA Depol.Sag Potential FETi ?63?1.1(8)yes (4)no (4)SETi ?52?1.1(15)yes (10)no (8)fFlex ?61?2.3(14)yes (6)yes (6)sfFlex ?51?2.1(18)yes (11)no (9)sFlex ?47?2.4(10)yes (3)no (6)fDprTr ?65?1.2(4)yes (1)no (1)sDprTr ?53?1.6(18)yes (10)no (9)fLevTr ?63?2.6(9)yes (4)no (4)sfLevTr ?54?2.6(9)yes (3)no (2)sLevTr ?50?6.6(4)

yes (1)

no (1)

Resting membrane potential (V m )of motoneurons that control movements of the femoro-tibial and the coxa-trochanteral joint.Number in parentheses gives total number of respective cells record.SFA:spike frequency adaptation.Numbers in parentheses give number of cells tested.All cells tested exhibited SFA.Depol.sag potential:depolarizing sag potential.Numbers in parentheses give numbers of cells tested.Only fFlex neurons developed depolarizing sag potentials.Abbreviations for motoneurons:FETi,fast extensor tibiae;SETi,slow extensor tibiae;fFlex,fast ?exor;sfFlex,semi-fast ?exor;sFlex,slow ?exor;fDprTr,fast depressor trochanteris;sDprTr,slow depressor trochan-teris;fLevTr,fast levator trochanteris;sfLev Tr,semi-fast levator trochanteris;sLevTr,slow levator trochanteris.

357

PATTERNING OF MOTONEURON ACTIVITY on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

activity during searching was usually less strong and cycle period was faster than during walking (see also Fischer et al.2001).

Spike frequency adaptation

The activity pattern of neurons is not only determined by their synaptic input but also by intrinsic cellular mechanisms,one of which is spike frequency adaptation (SFA).All mo-toneurons that were tested exhibited SFA (Table 1).Figure 5A shows the adaptation of the instantaneous spike frequency in nine different motoneurons that assumed an initial frequency of 100?15Hz on onset of a depolarizing current pulse (2–5nA).The spike frequency reached a steady state about 500ms after stimulus onset.Differences in SFA between different types of motoneurons were not apparent,and the steady-state spiking rate within one type was quite large.For example,in two different slow ?exor tibiae motoneurons that were depolarized by current injection of 3nA to a holding potential of ?44and ?41mV,respectively,the initial instantaneous spike fre-quency was 102Hz in both cells and adapted to a steady-state frequency of 47?1.4and 26?1.2Hz,respectively (Fig.5A ).The magnitude of adaptation depended on the membrane potential,as shown for a slow ?exor motoneuron in Fig.5,B and C .A current pulse of 2nA for 2s depolarized the membrane from ?56to ?49mV and initially evoked an instantaneous spike frequency of 43Hz that was reduced by 42%when reaching a steady state of 25Hz after about 500ms.When the membrane was depolarized to a potential of ?44mV,the instantaneous frequency was reduced by 51%when reaching a steady state,and a reduction by 65%was observed when the membrane was depolarized to a membrane potential of ?39mV.

During the stance phase of a step cycle (Fig.5D ),the same neuron depolarized to a membrane potential of ?44mV and generated spikes with a slightly higher maximum instantaneous frequency,which was 125Hz.Similar examples could be shown for other motoneurons,indicating that SFA is likely

to

FIG .

5.Leg motoneurons exhibit spike frequency

adaptation.A :smoothed curve ?ts of spike frequency over time,based on data from 3slow ?exor motoneu-rons (sFlex MN),1fast ?exor (fFlex MN),2slow extensor tibiae (SETi),1fast extensor MN (FETi),1slow depressor trochanteris MN (sDprTr),and 1fast levator trochanteris MN (fLevTr).The motoneurons were depolarized to give an initial frequency of 100?15Hz.B :a slow ?exor motoneuron was depolarized by current pulses of 2s duration.The spike frequency over time is plotted in C.The data points are overlaid by smoothed curve ?ts (same smoothing factor as in A ).D :maximum spike fre-quency and membrane potential in the same slow ?exor motoneuron shown in B during the stance phase of a step is similar to spike frequency and membrane potential during injection of 3-nA current.

358

J.SCHMIDT,H.FISCHER,AND A.BU

¨SCHGES on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

contribute to determining spike frequency in the excitatory phase during walking activity.Restorative depolarizing sag

Figure 6shows rhythmic activity in a fast ?exor motoneuron (fFlex)during walking.fFlex received hyperpolarizing input during extensor activity (Fig.6,A and B ).The membrane was initially hyperpolarized by 4–5mV at the onset of extensor activity and slowly repolarized by 3–4mV until extensor activity stopped (Fig.6B ).A similar decline of hyperpolariza-tion during swing phase was observed in two other fFlex motoneurons but not in any other motoneuron.In a variety of systems,there are neurons that when hyperpolarized by con-stant current injection reveal a restorative sag in membrane potential that depolarizes the cells (Pape 1996).We tested the leg motoneurons for such a sag potential by injecting negative current pulses (?1to ?4nA)of 1–2s.Only the fast ?exor motoneurons (n ?6)of all the motoneurons that were recorded exhibited a depolarizing sag potential when hyperpolarized (Fig.7,Table 1).The depolarizing sag in the inhibitory phase of fast ?exor motoneurons during walking is consistent with this observation.

D I S C U S S I O N

Walking movements of a single middle leg on the treadband consisted of stance and swing phases in the transversal plane with successive steps sometimes separated by short pauses.The coordination pattern of leg movements in the step cycle was somewhat different from those observed during straight walking of intact animals (for detailed discussion,see compan-ion paper,Fischer et al.2001)but similar to those used for forward walking movements of front legs in the intact stick insect (Ba ¨ssler 1986),and it resembled the coordination pattern in the middle leg during curve walking (Jander 1982;Rixe and Dean 1995).

Alternating excitatory and inhibitory synaptic drive sculpts rhythmic locomotor activity of leg motoneurons

During walking and searching movements of a leg,rhythmic activity patterns in motoneurons innervating muscles of the coxa-trochanteral joint and the femoro-tibial joint control the movements of these joints.We found that the rhythmic burst-ing pattern in these motoneurons is based on alternating depo-larizing and hyperpolarizing synaptic inputs to the motoneu-rons associated with an increase in input resistance.This ?nding was true for all fast,semi-fast,and slow motoneurons that were recorded (Table 1).During walking,leg motoneurons always received hyperpolarizing synaptic input in synchrony with activity in the antagonistic motoneuron pool.Our ?ndings substantiate previous data from Godden and Graham (1984),who observed termination of bursts by strong hyperpolariza-tion in coxal motoneurons recorded in a semi-intact six-legged preparation of the stick insect that walked on a tread wheel.The depolarizing input that we observed during walking was not described probably because Godden and Graham (1984)could not obtain a stable threshold for spike initiation in their recordings.Similar to the stick insect,extensor and depressor activity in the cockroach during walking appears to be pat-terned by inhibitory and excitatory synaptic input (Tryba and Ritzmann 2000).Therefore in both,stick insect and cockroach,the active and the inactive phase of leg motoneurons during walking is under control of premotor neurons.

We do not know how the alternation of inhibitory and excitatory input to motoneurons and switching between antag-onists is controlled during walking.It is quite conceivable that signals from proprioceptors of the leg play an important role,such as the femoral chordotonal organ (fCO),which measures parameters of movement of the femoro-tibial joint or force sensors in the cuticle,like campaniform sensilla in the trochan-ter and femur.For example,when the stick insect locomotor system is active,?exion signals from the fCO inhibit extensor motoneurons and activate ?exor motoneurons (Ba ¨ssler

1988).

FIG .6.Depolarizing sag potential in a fast ?exor motoneuron during walk-ing.A :a fFlex generated bursts of action potentials during stance phase and

was hyperpolarized during swing phase of the leg.B :enlargement from A.fFlex was hyperpolarized throughout extensor (FETi)activity.Spikes were clipped.The hyperpolarization declined steadily until spike activity

started.

FIG .

7.Hyperpolarizing pulses of 1-to 2-s duration were injected into a fast extensor tibiae motoneuron (A ),a slow ?exor motoneuron (B ),and a fast ?exor motoneu-ron (C ).Only the fast ?exor motoneuron exhibited a restorative depolarizing sag potential during hyperpolar-ization.

359

PATTERNING OF MOTONEURON ACTIVITY

on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

At a rather ?exed position of the femoro-tibial joint,the in?u-ence of fCO signals on tibial motoneuron activity is reversed as

extensor motoneurons are excited and ?exor motoneurons are inhibited (Ba ¨ssler 1988).The switch from inhibition to exci-tation in extensor motoneurons and from excitation to inhibi-tion in ?exor motoneurons is very similar to the activity switch in these motoneurons at the transition from stance to swing.Thus signals from the fCO may contribute to the control of synaptic input to ?exor and extensor motoneurons during walking.

In a variety of isolated nerve systems of different species,it is possible to pharmacologically evoke rhythmic activity patterns in motoneurons that resemble activity patterns during locomotion.Some of these preparations show motor activity that is also based on alternating excitatory and inhibitory synaptic input to motoneu-rons,for example,swimming in lamprey (Russel and Walle ′n 1983)and tadpole (Soffe and Roberts 1982)and ?ctive walking in rat (Cazalets et al.1996)and locust (Ryckebusch and Laurent 1993).In the stick insect,application of the muscarinic agonist pilocarpine evokes alternating activity of antagonistic motoneu-rons (Bu ¨schges et al.1995).In such a preparation,rhythmic activity in extensor and ?exor motoneurons appeared to be based on tonic depolarization and cyclic hyperpolarizing synaptic input to the motoneurons (Bu ¨schges 1998).The apparent lack of rhyth-mic depolarizing input in this preparation is in contrast to the motoneuronal activity patterns observed during real walking or searching movements of the leg.Membrane properties of motoneurons

The resting membrane potential of fast motoneurons was on average ?62mV and thus about 10mV more negative than that of semi-fast and slow motoneurons.In the light of numer-ous functional and physiological differences between fast and slow motoneurons (Burrows 1996),the difference in resting membrane potential is likely to contribute to differences in excitability,for example during sensory input.Elongation of the femoral chordotonal organ excites slow and fast extensor tibiae motoneurons in nonactive stick insects (Ba ¨ssler 1983).Suprathreshold activation of the fast extensor tibiae motoneu-ron occurs at high stimulus velocities,whereas the slow exten-sor tibiae motoneuron responds over a wider range of stimulus velocities.Similar observations have been made in the locust (Field and Burrows 1982).Burrows (1996)suggested that sensory neurons coding different velocities make different connections with members of a motor pool,e.g.,with the fast motor neurons receiving greater inputs from neurons coding higher velocities.In addition,the more negative resting mem-brane potential of fast motoneurons might contribute to the different responses of slow and fast motoneurons to input from the femoral chordotonal organ.Depolarizing input from the same source will most probably evoke more spikes in slow motoneurons than in fast motoneurons due to their lower spike threshold.

All motoneurons tested exhibited SFA when depolarized by current injection.Differences among slow,fast,or semi-fast motoneurons were not apparent.SFA was found to be effective at membrane potentials and spike frequencies that occur during walking and is therefore likely to affect the activity pattern of motoneurons during their phase of activity in the locomotor cycle.SFA has also been found in a variety of vertebrate motoneurons (Del Negro et al.1999;El Manira et al.1994;

Magarin ?os-Ascone et al.1999;Sawczuk et al.1995),although the functional implication of SFA in stick insect motoneurons is not yet apparent.As a general function of SFA,the preven-tion of excessive discharge is discussed by Sawczuk et al.(1995).In the lamprey locomotor network,a calcium-depen-dent potassium current that causes SFA plays a critical role in burst termination (El Manira et al.1994).In any case,SFA is likely to shape the ?nal output of the motoneurons during burst activity within the locomotor cycle.

During walking,fast ?exor motoneurons were hyperpolar-ized in the swing phase of the leg movement.After the max-imum initial hyperpolarization,the membrane potential de-clined steadily until burst activity started.A similar behavior was never observed in any of the other neurons.Consistent with this observation is that fast ?exor motoneurons expressed a depolarizing sag potential when hyperpolarized by intracel-lular current injection.However,we cannot exclude decreasing hyperpolarizing input to fFlex that contributes to the depolar-izing sag.The depolarizing sag potential that develops during hyperpolarization in swing phase would support a fast transi-tion to depolarization in the subsequent stance phase.

The authors thank Drs.U.Ba ¨ssler and R.A.DiCaprio for helpful comments on the manuscript.

This project was supported by the Deutsche Forschungsgemeinschaft (Bu857/2and 857/6).

Present address of H.Fischer:School of Biology,Div.of Biomedical Sciences,Bute Medical Bldg.,University of St.Andrews,Fife KY169TS,Scotland,UK.REFERENCES

B ¨ASSLER

U.Neural Basis of Elementary Behavior in Stick Insects.Berlin:Springer,1983.B ¨ASSLER U.Afferent control of walking movements in the stick insect Cuni-culina impigra .I.Decerebrated animals.J Comp Physiol [A]158:345–349,1986.B ¨ASSLER U.Functional principles of pattern generation for walking movements of stick insect forelegs:the role of the femoral chordotonal organ afferences.J Exp Biol 136:125–147,1988.B ¨ASSLER U AND B ¨USCHGES A.Pattern generation for stick insect walking movements—multisensory control of a locomotor program.Brain Res Rev 27:65–88,1998.

B AYLISS DA,V IANA F,B ELLINGHAM MC,AND B ERGER AJ.Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro.J Neurophysiol 71:119–128,1994.B URROWS M.The Neurobiology of an Insect Brain .Oxford,UK:Oxford Univ.Press,1996.B ¨USCHGES A.Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.J Neurobiol 27:488–512,1995.B ¨USCHGES A.Inhibitory synaptic drive patterns motoneuronal activity in rhyth-mic preparations of isolated thoracic ganglia in the stick insect.Brain Res 783:262–271,1998.B ¨USCHGES A AND E L M ANIRA A.Sensory pathways and their modulation in the control of locomotion.Curr Opin Neurobiol 8:733–739,1998.B ¨USCHGES A,K ITTMANN R,AND S CHMITZ J.Identi?ed nonspiking interneurons in leg re?exes and during walking in the stick insect.J Comp Physiol [A]174:685–700,1994.B ¨USCHGES A,S CHMITZ J,AND K ITTMANN R.Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine.J Exp Biol 198:435–456,1995.

C AZALETS J-R,B ORDE M,AN

D C LARAC F.The synaptic drive from the spinal locomotor network to motoneurons in the newborn rat.J Neurosci 16:298–306,1996.

C LARAC F.How do sensory and motor signals interact during locomotion?In:Motor Control:Concepts and Issues ,edited by Humphrey DR and Freund H-J.New York:Wiley,1991,p.199–221.

D AVID JA AND P ITMAN RM.Cyclic-AMP regulation of calcium-dependent K ?

channels in an insect central neurone.Neurosci Lett 203:151–154,1996.

360

J.SCHMIDT,H.FISCHER,AND A.BU

¨SCHGES on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

D EL N EGRO CA,H SIAO C-F,AND C HANDLER SH.Outward currents in?uencing bursting dynamics in guinea pig trigeminal motoneurons.J Neurophysiol 81:1478–1485,1999.

D IXON WJ AND M ASSEY FJ J R .Introduction to Statistical Analysis (3rd ed.).New York:McGraw-Hill,1969.

D UYSENS J,C LARAC F,AND C RUS

E H.Load-regulating mechanisms in gait and posture:comparative aspects.Physiol Rev 80:83–133,2000.

E L M ANIRA A,T EGN ′E

R J,AND G RILLNER S.Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.J Neurophysiol 72:1852–1861,1994.

F IELD LH AND B URROWS M.Re?ex effects of the femoral chordotonal organ upon leg motor neurones of the locust.J Exp Biol 101:265–285,1982.

F ISCHER H,S CHMIDT J,H AAS R,AND B ¨USCHGES A.Pattern generation for

walking and searching movements of a stick insect leg.I.Coordination of motor activity.J Neurophysiol 85:341–353,2001.

G ODDEN D AND G RAHAM D.A preparation of the stick insect Carausius morosus for recording intracellularly from identi?ed neurones during walk-ing.Physiol Entomol 9:275–286,1984.

H ANCOX JC AND P ITMAN RM.Plateau potentials drive axonal impulse bursts in insect motoneurons.Proc R Soc Lond B Biol Sci 244:33–39,1991.

H ANCOX JC AND P ITMAN RM.Plateau potentials in an insect motoneuron can be driven by synaptic stimulation.J Exp Biol 176:307–310,1993.

H ULTBORN H.Plateau potentials and their role in regulating motoneuronal ?ring.Prog Brain Res 123:39–48,1999.

J ANDER JP.Untersuchungen zum Mechanismus und zur zentralnerv ¨o

sen Steuerung des Kurvenlaufs bei Stabheuschrecken (Carausius morosus )(PhD thesis).Cologne,Germany:Univ.of Cologne,1982.

J ODKOWSKI JS,V IANA F,D ICK TE,AND B ERGER AJ.Repetitive ?ring properties of phrenic motoneurons in the cat.J Neurophysiol 60:687–702,1988.K IEHN O.Plateau potentials and active integration in the “?nal common pathway”for motor behavior.Trends Neurosci 14:68–73,1991.

K IEHN O AND H ARRIS -W ARRICK RM.Serotonergic modulation of a hyperpo-larization activated inward current and a calcium-dependent outward current in a crustacean motoneuron.J Neurophysiol 68:496–508,1992.

M AGARI ?NOS

-A SCONE C,N ′U ?NEZ A ′,AND D ELGADO -G ARCI ′A JM.Different dis-charge properties of rat facial nucleus motoneurons.Neuroscience 94:879–886,1999.

M ILLS JD AND P ITMAN RM.Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneu-ronsoma.J Neurophysiol 81:2253–2266,1999.

O RLOVSKY GN,D ELIAGINA TG,AND G RILLNER S.Neural Control of Locomo-tion .Oxford,UK:Oxford Univ.Press,1999.

P APE HC.Queer current and pacemaker:the hyperpolarization-activated cation current in neurons.Annu Rev Physiol 58:299–327,1996.

P EARSON https://www.360docs.net/doc/1c4777909.html,mon principles of motor control in vertebrates and inver-tebrates .Annu Rev Neurosci 16:265–297,1993.

P EARSON KG.Proprioceptive regulation of locomotion.Curr Opin Neurobiol 5:786–791,1995.

P EARSON KG AND F OURTNER CR.Nonspiking interneurons in walking system of the cockroach.J Neurophysiol 38:33–52,1975.

P OON M,F RIESEN WO,AND S TENT GS.Neural control of swimming in the medicinal leech.V.Connexions between the oscillatory interneurones and the motor neurons.J Exp Biol 75:45–63,1978.

R AMIREZ JM AND P EARSON KG.Octopamine induces bursting and plateau potentials in insect neurones.Brain Res 549:332–337,1991.

R IXE A AND D EAN J.Mechanisms of curve walking in the insect Carausius

morosus.Proc 23rd G ¨o

ttingen Neurobiol Conf 217,edited by Elsner N and Menzel R.1995.

R USSEL DF AND W ALLEN P.On the control of myotomal motoneurones during “?ctive swimming”in the lamprey spinal cord in vitro.Acta Physiol Scand 117:161–170,1983.

R YCKEBUSCH S AND L AURENT G.Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine.J Neurophysiol 69:1583–1595,1993.

S AWCZUK A,P OWERS RK,AND B INDER MD.Spike frequency adaptation in hypoglossal motoneurons of the rat.J Neurophysiol 73:1799–1819,1995.S HEFCHYK SJ AND J ORDAN LM.Excitatory and inhibitory postsynaptic poten-tials in ?-motoneurons produced during ?ctive locomotion by stimulation of the mesencephalic locomtor region.J Neurophysiol 53:1345–1355,1985.S OFFE SR AND R OBERTS A.Activity of myotomal motoneurones during ?ctive swimming in frog embryos.J Neurophysiol 48:1274–1278,1982.

T RYBA AK AND R ITZMANN RE.Multi-joint coordinartion during walking and foothold searching in Blaberus cockroach .J Neurophysiol 83:3337–3350,2000.

W OLF H.Activity patterns of inhibitory motoneurones and their impact on leg movement in tethered walking locust.J Exp Biol 152:281–304,1990.

W OLF H.Re?ex modulation in locusts walking on a treadwheel—intracellular recordings from motoneurons.J Comp Physiol 170:443–462,1992.

361

PATTERNING OF MOTONEURON ACTIVITY

on January 31, 2008

https://www.360docs.net/doc/1c4777909.html, Downloaded from

施工质量控制的内容和方法

22104030施工质量控制的内容和方法 复习要点 1.施工质量控制的基本环节和一般方法 (1)施工质量控制的基本环节包括事前、事中和事后质量控制。 (2)施工质量控制的依据分为共同性依据和专门技术法规性依据。 (3)施工质量控制的一般方法包括质量文件审核和现场质量检查。现场质量检查的内容包括开工前的检查;工序交接检查;隐蔽工程的检查;停工后复工的检查;分项、分部工程完工后的检查以及成品保护的检查。检查的方法主要有目测法、实测法和试验法。试验法又分为理化试验和无损检测。 2.施工准备阶段的质量控制 (1)施工质量控制的准备工作包括工程项目划分与编号以及技术准备的质量控制。 (2)现场施工准备的质量控制包括工程定位和标高基准的控制以及施工平面布置的控制。 (3)材料的质量控制要把好采购订货关、进场检验关以及存储和使用关。 (4)施工机械设备的质量控制包括机械设备的选型、主要性能参数指标的确定以及使用操作要求。 3.施工过程的质量控制 (1)技术交底书应由施工项目技术人员编制,并经项目技术负责人批准实施。交底的形式有:书面、口头、会议、挂牌、样板、示范操作等。 (2)项目开工前应编制测量控制方案,经项目技术负责人批准后实施。 (3)施工过程中的计量工作包括施工生产时的投料计量、施工测量、监测计量以及对项目、产品或过程的测试、检验、分析计量等。其主要任务是统一计量单位制度,组织量值传递,保证量值统一。 (4)工序施工质量控制主要包括工序施工条件质量控制和工序施工质量效果控制。 (5)特殊过程是指该施工过程或工序的施工质量不易或不能通过其后的检验和试验而得到充分验证,或万一发生质量事故则难以挽救的施工过程。其质量控制除按一般过程质量控制的规定执行外,还应由专业技术人员编制作业指导书,经项目技术负责人审批后执行。(6)成品保护的措施一般包括防护、包裹、覆盖、封闭等方法。 4.工程施工质量验收的规定和方法 (1)工程施工质量验收的内容包括施工过程的工程质量验收和施工项目竣工质量验收。(2)施工过程的工程质量验收,是在施工过程中、在施工单位自行质量检查评定的基础上,参与建设活动的有关单位共同对检验批、分项、分部、单位工程的质量进行抽样复验,根据相关标准以书面形式对工程质量达到合格与否做出确认。 (3)施工项目竣工验收工作可分为验收的准备、初步验收(预验收)和正式验收。 一单项选择题

12种巧记字形的方法

巧记字形方法多 主持人:收音机前的同学们,大家晚上好,欢迎收听龙广97频道的《名师学堂》节目,我是主持人小清。 我们在今天的节目现场还请来了奋斗小学二年级的各位同学们,欢迎你们。 首先我有一个问题问问现场的小同学们,你们都喜欢看书吗?(喜欢)(不喜欢) 书上的汉字你们都认识吗?(有的人是有的不认识) 不认识的字你们怎么才能认识呢?(问老师、问妈妈) 老师和妈妈是怎么教你们认字的?(现场随机提问) 那你们觉得书上不认识的字好学吗?(不好学,告诉好多遍都记不住) 你们喜不喜欢学那些不认识的字呀?(不喜欢,太枯燥了,不好玩) 那你们想不想让那些不认识的字变得好学好玩呢?(想) 特别想吗?大点声告诉我!(特别想) 好,今天呀,我就给你们请来了一位特别有本事的老师,这位老师能把字变成好听的歌,你们想不想听?(想听) 好,那现在《名师学堂》开讲了——上课铃声—— 有请哈尔滨市桥南小学赵家财老师(背景介绍:赵家财老师…… 主:赵老师你好 赵:主持人好,同学们好! 同:老师好! 主:赵老师,听说您在教孩子们识字方面有一个独门功夫! 赵:谈不上什么独门功夫,只是在多年的教学当中,针对孩子们识字困难,自己爱琢磨,总结出来一些小方法,让孩子们喜欢上识字。 主:今天现场有好多同学都表达了自己不愿意识字的心情,您能让他们从今天开始就喜欢识字吗? 赵:我试试看吧! 主:好,那下边的时间就交给您了。 (赵老师和现场的同学们进行互动) 好的,同学们好!很高兴参加《名师学堂》这个节目,希望我讲的一些识字方法,对大家有一些帮助。 学习汉字我们不但要读准字音、理解字义,更要记住字形。记住字形是汉字学习的重点和难点。如果字形记不住,就会导致提笔忘字,写错别字等现象,影响阅读和表达,甚至会闹出笑话: 下面我先来讲一个关于写错别字的笑话。 有个同学在日记中写道:“今天下着小雨,我忘了带命,突然,我看见老师给我送命来了。”看完这句话,我笑得肚子都快疼起来了,原来他把“伞”写成“命”了。 我还听过这样一个笑话。一个中学生放暑假,去农村体验生活,住在房东老大娘家,老大娘十分关心他。有一天他给父母写了一封信:“爸爸妈妈,我现在住在房东老大狼家,和老大狼住在一起,每天早上她都把我咬醒……”父母看了他的信大惊失色,忙叫道:“快救救我儿子,他每天都跟狼在一起啊……”原来他把娘写成了狼,把叫写成了咬。 如果字形记不住,不但会闹出笑话,更为严重的是:一个错字还能导致一场战争的失败。我再给大家讲一个真实的故事。

激励学生学习积极性的方法

激励学生学习积极性的方法 兴趣激励法:俗话说的好,兴趣是最好的老师,如果学生本身对学习感兴趣,那么它往往会获得出色的学习成绩。为了让学生对学习课程产生兴趣,家长和老师必须加以正确引导,使学生自发的对学习产生兴趣。 好奇心激励法:好奇心是个体遇到新奇事物或处在新的外界条件下所产生的注意、操作、提问的心理倾向,尤其是在学生时期,好奇心更是旺盛,如果能够激发学生对学习的好奇心的话,能够极大的提高学习的积极性。 鼓励激励法:人是需要鼓励的动物,当我们受到鼓励的时候会极大的提高我们的自信心和继续下去的动力,学生更是需要鼓励,当他们受到肯定的时候,会极大的提高学习的动力,作为家长和老师不要吝啬你们鼓励话语,你们的一句话可能会影响学生的一生。 目的激励法:俗话说的好,有目标才会有动力,如果学生连自己学习的目的是什么都不知道的话,很难会有坚持下去,作为家长和老师应该用正确的方法引导孩子找到一个适合自己的学习目标,有了这个目标就会激发孩子“勇往直前”。 竞赛激励法:有竞争才会有进步,有竞争才会有动力,人都是攀比动物,有了比较会有进步,有了比较才会有动力,可以不时地举行一些竞赛,使得孩子们知道自己的情况,了解自己的差距,找到自己的目标,从而为之奋斗。 奖品激励法:如果有了奖品的激励很大程度上能够提升学生学习

的积极性,当然小编一贯不主张进行奖励教育,这很容易养成学生的得失之心,不利于良好性格的养成,当然如果执行得当的话还是能够起到很好的效果。 更换教学法:这主要是针对老师所说的,如果一味的重复同样的教学模式,难免会使的学生产生疲惫,从而失去兴趣,如果能够经常的变更教学方法,使得学生不知道下一次你又会有什么教学模式从而使他对你产生兴趣,会极大提高学习的积极性。

更好激励学生的八种方法-教育文档

更好激励学生的八种方法 现在的孩子们大多都是独生子女,备受家人瞩目和爱护,他们有着自己独特的性格和思想。很多孩子习惯被宠爱被赞扬,却经受不起挫折和打击,当面对竞争失败后容易抱怨,当遇到学习成绩下降后容易放弃,当面对困境时更容易变得脆弱敏感。这个时候,作为教师就要适时地出现在学生的身边,做他们的心灵导师,激励困境中的学生们战胜困难,激励落后的学生们走出阴霾,激励失败的学生们找回自信,为他们的成长保驾护航。如何更好地激励学生,成为每位教师必须具备的素养。 什么是激励呢激励是指激发人的动机和内驱力,朝着期望目标前进的心理过程,旨在调动人的积极性、主动性和创造性。激励活动以人的内在需要为基础。教育工作者必须了解学生的活动动机,特别是要了解学生的学习动机和行为道德的动机,把培养和激发学生的学习动机作为一项重要任务来抓,提高教育和教学质量的同时又能实现对学生心理健康的科学引导。下面笔者浅谈一下激励学生的八种方法。 一、设定目标 通过设置适当的学习目标,诱发学生的积极动机。事实证明,在一个班级里的优等生,知道自己的学习成绩在同班学生之上,所以他所建立的学习目标较高;中等生居于中间的地位,则往往采用中庸之道,安于现状;至于学困生,则常表现出对自己没有

信心,对学习不抱希望,得过且过,安于现状,不求上进的心理。对学困生,教师的工作应该先设立低层次的目标,使他们有取得成功的希望,然后循序渐进,逐步提高,只有这样才能培养和提高他们的成就动机,改变他们对学习的消极态度,提高学习兴趣。反之,如果急于求成,要求过高,不顾层次差别而采取一刀切的做法,必将挫伤相当数量学生的积极性。 二、充分信任 教师对学生充分尊重和信任,可以激发学生的学习积极性。此法对于学困生较为实用,效果明显。大多数学困生都有一种自卑感,认为自己成绩差,老师和同学都看不起自己,有沉重的思想负担,因而对学生失去了应有的积极性,乃至产生厌学情绪,导致成绩很难提高。 三、真心关怀 教师在思想、学习和生活上给学生以关怀,调动学生为实现目标奋发学习的积极性。学生在得到教师的关心、赞许或鼓励时,就会感到温暖和振奋,使学习产生强大的动力;相反,当学生遇到困难或受到挫折时,得不到教师应有的关怀和帮助,甚至还受到冷嘲热讽时,其积极性会受到严重挫伤,影响学习兴趣。 四、情感真挚 师生之间应建立起友爱合作的感情,彼此融洽相处,以诚相待。学生把教师当成自己的知心朋友,就会热爱学习,自觉学习。如果师生间缺乏这种友好合作的关系,缺乏互相间的感情交流,

全面质量管理的常用方法一

全面质量管理的常用方法一 【本讲重点】 排列图 因果分析法 对策表方法 分层法 相关图法 排列图法 什么是排列图 排列图又叫巴雷特图,或主次分析图,它首先是由意大利经济学家巴雷特(Pareto)用于经济分析,后来由美国质量管理专家朱兰(J.M.Juran)将它应用于全面质量管理之中,成为全面质量管理常用的质量分析方法之一。 排列图中有两个纵坐标,一个横坐标,若干个柱状图和一条自左向右逐步上升的折线。左边的纵坐标为频数,右边的纵坐标为频率或称累积占有率。一般说来,横坐标为影响产品质量的各种问题或项目,纵坐标表示影响程度,折线为累计曲线。 排列图法的应用实际上是建立在ABC分析法基础之上的,它将现场中作为问题的废品、缺陷、毛病、事故等,按其现象或者原因进行分类,选取数据,根据废品数量和损失金额多少排列顺序,然后用柱形图表示其大小。因此,排列图法的核心目标是帮助我们找到影响生产质量问题的主要因素。例如,可以将积累出现的频率百分比累加达到70%的因素成为A类因素,它是影响质量的主要因素。 排列图的绘制步骤 排列图能够从任何众多的项目中找出最重要的问题,能清楚地看到问题的大小顺序,能了解该项目在全

体中所占的重要程度,具有较强的说服力,被广泛应用于确定改革的主要目标和效果、调查产生缺陷及故障的原因。因此,企业管理人员必须掌握排列图的绘制,并将其应用到质量过程中去。 一般说来,绘制排列图的步骤如图7-1所示,即:确定调查事项,收集数据,按内容或原因对数据分类,然后进行合计、整理数据,计算累积数,计算累积占有率,作出柱形图,画出累积曲线,填写有关事项。 图7-1 排列图的绘制步骤 排列图的应用实例 某化工机械厂为从事尿素合成的公司生产尿素合成塔,尿素合成塔在生产过程中需要承受一定的压力,上面共有成千上万个焊缝和焊点。由于该厂所生产的十五台尿素合成塔均不同程度地出现了焊缝缺陷,由此对返修所需工时的数据统计如表7-1所示。 表7-1 焊缝缺陷返修工时统计表 序号项目返修工时fi 频率 pi/% 累计频率 fi/% 类别 1焊缝气孔14860.460.4A 2夹渣5120.881.2A 3焊缝成型差208.289.4B 4焊道凹陷15 6.195.5B 5其他11 4.5100C 合计245100 缝成型差、焊道凹陷及其他缺陷,前三个要素累加起来达到了89.4%。根据这些统计数据绘制出如图7-2所示的排列图:横坐标是所列举问题的分类,纵坐标是各类缺陷百分率的频数。

班主任激励学生的14种方法

班主任激励学生的14种方法 德国教育家第斯多惠曾说:“教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。”可见,班主任除不断激励自己外,更重要的是激励学生,充分发挥学生的积极性、主动性和创造性,营造出一种“海阔凭鱼跃,天高任鸟飞”的育人氛围。因此,掌握和运用激励学生的14种方法是非常必要的。 1、物质激励法。物质激励是最简单的方法,就是将一个学生的实际表现和物质奖励直观对接,给予适当的奖励,包括奖品、奖学金。尽管它不是调动学生积极性和创造力的最有效的武器,但对受奖者本人也会起到鼓励、鞭策的作用。 在班级管理中,班主任须恰当运用此法,防止走极端。既不能认为“精神至上”,否定物质的作用,也不能标榜“物质至尊”,以免学生陷入“向钱看”的误区。 2、情感激励法。唐代诗人白居易有言:“感人心者,莫先乎情。”心理学家也认为,任何人都有渴求各种情感的需求。所以,班主任以饱满的热情、诚挚的真情来以情育情、以情感情,学生必然会亲其师而信其道。班主任只有对学生在学习上帮助、生活上关心、心理上疏导,才能切实培养他们的学习生活能力和合作精神,增强他们对班集体的归属感。 3、兴趣激励法。孔子云:“知之者不如好知者,好之者不如乐之者。”因此,在思想教育中,班主任要注意结合社会生活中新颖有趣的事例进行说理,以符合学生求新好奇的心理特点,激发他们思考的兴趣,促使他们在实践中成长。同时,班主任要善于发现和挖掘每个学生身上积极健康的特长和爱好,并加以正确的引导与鼓励,以令其潜力最大限度地发挥。 4、信任激励法。信任是增强学生自信心的催化剂,它有助于师生之间的和谐共振,有利于班级凝聚力的形成。 班主任对学生的信任在“用人不疑”上,更体现在对学生的放手使用上。也只有班主任在基础上的放手使用,才能充分发挥学生的主观能动性和创造性。 5、目标激励法。目标作为一种诱因,具有引导和激励的作用。班主任只有不断启发学生树立高标准,才能真正增强其奋发向上的内在动力。所以,班主任要帮助学生确立适当的人生目标,形成其健康向上的动机,以达到调动其积极性的目的。

巧妙识别病句的12种方法

巧妙识别病句的12种方法: 病句,是指那些语言表达有误的句子,即不符合现代汉语的表达规则,或违反了客观事理的句子,前者是就语法方面而言的,后者是就逻辑方面而言的。中学生需要掌握的常见病句类型有六种,即语序不当、搭配不当、成分残缺或赘余、结构混乱、表意不明和不合逻辑。虽说这六种类型的病句都能考到,但在实际考试中,有几种常见的病句出错的方式出现的频率是非常高的,因此值得大家特别注意。而这些错误,我们可以通过标识来识别。 一.发现借宾短语开头的句子,看是否缺少主语。 在一个句子中,当介词或介词结构位于句首时,我们就应该仔细的分析这个句子的主谓宾等成分,如果没有主语,就属于介词结构在居首导致无主语的错误类型。这种类型的病句往往通过去掉居首介词来达到改正的目的。 例句: 1.通过阅读徐迟的《黄山记》,使我受到一次深刻的美感教育。(介 词位于居首,淹没主语,应删掉“通过”) 2.南北朝时期,由于北方民族的大融合和工商业经济的发展,为 隋朝统一全国创造了条件。(“由于”开头,导致句子无主语,应去掉“由于”) 二.发现句中有并列结构,看是否符合逻辑、是否语序错位、是否搭配得当。 这里所说的并列结构,主要是指动词并列、名词并列以及形容词

并列等。出现了并列结构,我们可以从是否符合逻辑、是否语序错位、是否搭配得当这三个方面去考虑。 例句: 1.我们的报刊、杂志、电视和一切出版物,更有责任做出表率。 (此句中“报刊、杂志”就属于“出版物”,这句话属于并列 名词搭配错误) 2.我们要认真讨论并听取王校长的发言。(逻辑语序不当,应是 先“听取”后“讨论”) 3.要办好一个企业,仍旧需要充分发挥个人的才智,集体的力量 和集思广益的效果。 (搭配不当,谓语“发挥”与宾语“集思广益的效果”不能搭 配) 三.发现具有两面意思的词语,如“是否”“能否”“优劣” “好坏”“成败”等,看前后是否对应。 一个句子如果出现这些词语,就应分析是否存在两面与一面不搭配的现象。 修改这类病句有两种方法,要么去掉句中的“能否”“是否”等词语,要么在句中的另一部分再加上“能否”或“是否”等词语。 例句: 1.一个关系到能否顺利择业的实际问题摆在他们的面前:必须会 使用电脑,必须会驾车,外语必须达到四级以上。(两面对一 面,前半部分包含了“能顺利择业”和“不能顺利择业”两个

激励教育的方法

龙源期刊网 https://www.360docs.net/doc/1c4777909.html, 激励教育的方法 作者:王冬梦 来源:《读天下》2018年第08期 摘要:激励教育是根据教育规律通过对人们现实生活中典型思想和行为进行奖励和惩罚引导人们朝着预期目标发展的教育活动。它具有全面性、差异性、能动性等特征,包括目标激励、榜样激励、强化激励、信任激励、行为激励等方法。本文浅谈在激励教育方面自己的一些做法与思考,以促进初中生积极健康地成长。 关键词:激励教育;心理健康;积极 本人从2016年开始加入我校朱红老师组织的“积极心理健康教育——激励教育”课题研究,我将这一课题研究融入教育教学中,通过这一年多的实践,收获颇多。从2016年9月到2017年6月,我担任了九(8)班的班主任,下面我结合班级管理的案例,就如何做好学生的心理转化工作进行分析,谈谈在激励教育方面自己的一些做法与思考,以促进初中生积极健康地成长。 万紫如,一个拥有好听名字的女孩。但命运对她却是不公的,在她三岁的时候,由于一次发烧,导致她的听力出现问题,必须戴上助听器。从此,她成了别人眼里的“另类”,身体的缺陷让她产生了严重的自卑心理。但万紫如需要同伴的接纳和关心,她本人更应该对自己有信心。在平时课堂上,我会有意多走到她身边,拍拍她的肩;有时,认真看看她的作业。我是想让她明白,作为老师我乐意接受她,更让班里学生明白,我们还有一个万紫如的存在,她是我们当中的一员。在临近毕业晚会时,万紫如突然跟我说:“老师,我想报名参加节目。”我说:“那你想参加什么节目?”这时旁边有一个男同学说:“老师,万紫如的拉丁舞跳得很好,跳起来很漂亮。”此时,万紫如露出了一个害羞的表情,她说:“老师,你觉得我可以跳好吗?”我说:“老师相信你可以的,加油!”这时我从她的表情中,看到了一种自信,我由衷地为她感到高兴。 德国教育家第斯多惠告诉我们:教学的艺术不在于传授本领,而在于激励、唤醒和鼓舞。教师发自肺腑的激励对于学生来说,犹如甘霖滋润心田,帮助他们形成乐观向上的性格特征。教师发自肺腑的激励对学生来说终生难忘,比任何教育都有价值,既能增强师生的亲切感与信任感,又能增强学生学习的信心与勇气。教师的激励是最有效的“催化剂”,它可以使学生在微笑中找到自己的不足,在关怀中汲取前进的动力。正如人们所说的那样“好孩子是夸出来的”。 由于学生是富有个性的,他们的生活背景不同,因此,我们要尊重学生差异,采用多种激励方法,促进学生在各自的人生道路上获得发展。那么激励的方法有哪些呢? 一、情感激励法

心理咨询的12种方法与案例分析

心理咨询的12种方法: 一、聆听法:聆听法是指咨询者认真、耐心地倾听来访者诉说的技巧,包括耳闻与目睹。耳闻即用耳听,目睹即观察来访者的体态语言,从而听出来访者的心声。咨询者在与来访者的交谈中,主要是听,而不是说;咨询者与来访者之间不是师生关系,而是朋友关系。咨询者对来访者要平等相处,热情接待。要做到这一点必须会听。交谈时咨询者与来访者需保持适当的距离,这个距离是一种心理距离,这应因人而异,因时而异。听来访者讲话时,咨询者既不能一直盯着人家,也不能一直不看人家。在听的过程中,咨询者要不时有简短的鼓励对方讲下去的反应,如“嗯”,“是这样吗?”等等,表示自己是在关注他的讲话。在听对方的讲话时,咨询者自己的情感和体态语言也要与对方相适应。如对方高兴,咨询者要表示喜悦;对方悲伤,咨询者要表示沉重。在聆听时,咨询者的身体要微微前倾,并不时适当地点头。总之,聆听法的关键是用心去听。 二、移情法:移情(Empathy)的意思是能体验他人的精神世界,就好像是自己的精神世界一样,来理解和分担来访者的各种精神负荷。如一个来访者谈到自己在班里当众受辱一事时说:“我当时气极了,真想拿马刀把他捅死,我也不想活了。”咨询者则可以说:“在当时的情况下,你的这种心情是可以理解的,你是不是感到这件事对你的伤害太大了?” 三、认知法:认知法又称ABCDE理论,它是指发生了事件A,由于有B的想法,便产生了心理障碍的后果C。如果通过心理咨询,将B的想法改为为D(新的想法),就会有E这个新的后果,C这个心理障碍就消除了。这种改变认知结构的方法,就是认知法。这个方法也可以称为“说明开导”法,接近于日常的个别思想教育。 四、移置法:移置法是指一个人的一种奋斗目标惨遭失败,心理上受到了严重伤害,如能将其奋斗目标加以转移,从而改变其痛苦的方法。如孔子仕途生涯屡遭失败而作《春秋》,司马迁受宫刑而著《史记》,张海迪高位截瘫而刻苦自学等等。如来访者因高考落第而痛不欲生,咨询者就可移置其奋斗目标,可以建议其去考中专、职校或从业,若一定想上大学,不如考电视大学、职工大学,不是照样可以进大学,何必非考上普通全日制的大学呢? 五、暗示法:暗示是一种常见的、奇妙的心理现象,人们可以通过它把病治好,也可以因为它而无病生起病来。这就是积极暗示和消极暗示。暗示法指咨询者通过自己的语言或行为,让来访者接受积极的暗示,治好心病的方法。暗示法对增强自信心,克服考试焦虑、比赛怯场、自卑心理等有很好的作用,其关键是来访者要相信这种暗示,否则收效甚微。 六、松驰法:松驰法是指在暗示的作用下,使人的全身肌肉从头到脚逐步放松的方法,顺序为几句语言表达的公式:①我非常安静;②我的右(左)手或脚感到很沉重;③我的左(右)手或脚感到很暖和;④我的心跳得很平稳、有力;⑤我的呼吸非常轻松;⑥我有腹腔感到很暖和;⑦我的前额凉丝丝的很舒服。这个公式最早是由德国精神病学家舒尔茨提出的,以后各国心理学家根据这个公式,编制了放松训练的指导和暗示语,制成录音带让来访者进行松驰。一般一次20分钟左右,一个疗程为10天。经过训练后,来访者掌握了这套松驰技术,会迅速使自己的肌肉松驰下来,血压会降低,心率会放慢。除了这种方法以外,也可以用深呼吸或冥想的方法使人放松。冥想就是让来访者回忆起自己经历过的最愉快的一件事的经过,越具体形象越好。运用松驰法要有一个安静的环境。放松前,人要坐或躺得舒服,注意力集中,排除杂念,呼吸平稳,入静。此法对因紧张而引起的各种焦虑以及恐慌,尤为有效,还可改善人的记忆力,提高学习能力。这个方法通常与系统脱敏法结合起来使用。 七、系统脱敏法:系统脱敏法是指有步骤地、由弱到强地逐步适应某种引起过敏反应的刺激源的方法。如克服考试焦虑,可将引起学生过敏刺激的过程,分解成若干阶段;①考试当天走出家门;②离学校还有100米;③离校还有50米;④离校还有10米;⑤跨进校门;⑥进入走廊;⑦走进教室;⑧入座;⑨考试铃响;⑩拿到试卷。依次做好10张卡片,编好号。系统脱敏时,先拿出第一张卡(考试当天走出家门),想象当时的情景,心理有些紧张,就接着做松驰练习,放松全身肌肉。放松后,再拿起这张卡片,如再紧张,再进行放松,直到不紧张了,才做下面一张卡片,依次类推。直到10张卡片都做完了,考试焦虑也就消除了。这个过程不是一天两天的事,一般一天最多做一张卡片,不可心急。做后面的卡片要重做前面的卡片,一直做到想象考试的情境时不于紧张为止。 八、厌恶法:厌恶法是使外界刺激与来访者的变态行为之间,建立起密切的条件反射,这主要用于治疗那种有社会危害性的心理障碍,如性变态。咨询者可指导来访者,当自己一有“坏”念头时,就用像皮筋弹痛自己的大拇指,使“坏”念头与手指的疼痛建立起条件反射:一有“坏”念头,就感到手痛,以此来戒除恶习。这种方法,一定要在来访者本人有克服这个心理障碍的迫切愿望时,才能进行。 九、疏泄法:疏泄法是指将沉郁在人体内的种种不愉快感受,如悲伤的情绪等排出体外的心理过程。疏泄法有以下几种:一是让其痛哭一场。现代医学研究成果表明,哭不仅可以减轻心理的悲痛情绪,还有利于人的生理健康。有人碰到悲伤器不起来,可建议他看悲伤的小说或影视节目,帮助他把眼泪排泄出来。二是向知心好友诉说自己的烦恼或悲痛。第三,可向报刊或自己信任的有关机构写信,以疏泄自己心中的不快。咨询室也是一种很好的疏泄场所。 十、领悟法:领悟法又称认知领悟疗法,是中国式的精神分析方法,由钟友彬等创立。钟友彬认为,成年人产生神经症的根源不在现在,而在于幼年时无意识的创伤体验,如父母离异、缺少母爱、各种躯体病痛和灾难、体罚、严重的情绪刺激、

激励中学生的四个有效方法

让激励与新课改同行——激励中学生的四个有效方法[复制链接] 摘要】在我们的教学实践中,要提高课堂效率,就必须提高学生的学习积极性,怎么调动学生的积极性呢?我想,最能给孩子前进动力的是“形成一个激励机制”新课改背景下,如果学校教师能把激励机制用好,那么就可以有助于新课改的顺利实施。 【关键词】榜样激励情感激励赏识激励荣誉激励 看过这样一个故事:两只青蛙掉到一个坑里,因为坑很深,上面的青蛙们就对它们喊:“别跳了,坑太深了。一只青蛙果然没跳,趴在坑底,太阳出来时被晒死了。另一只青蛙却一直跳个不停。外面的青蛙越喊,它跳得越欢,最后一跃出了坑。青蛙们问它为什么能跳出来?这只青蛙回答:“我误会了。因为我的耳朵有点听不清,以为你们这么多人给我加油呢!” 在我们的教学实践中,要提高课堂效率,就必须提高学生的学习积极性,怎么调动学生的积极性呢?我想,最能给孩子前进动力的是“形成一个激励机制”。 新课改背景下,如果学校教师能把激励机制用好,那么就可以有助于新课改的顺利实施。因此,我们在平时的教育教学中应该正确运用好激励机制。下面介绍几种我认为较为适用的激励方法。 一、榜样典型激励法 人们常说,榜样的力量是无穷的。绝大多数学生都是力求上进而不甘落后的。如果有了榜样,学生就会有努力的方向和赶超的目标,从榜样成功的事业中得到激励。榜样有现实生活中的榜样,也有名著名篇中的榜样。我们看到一种现象:学生在校三年,没有榜样,没有励志名言,只是把娱乐明星作为偶像,只把恶心的发嗲的语言作为交流的语言。那只能说明学生在校三年中,我们没有很好引导学生看书,没有很好地引导学生看影视剧,没有把一些名人的人格魅力展示给学生,因此,教师还是有责任的。因为学生来到学校就是来受到教育的,就是来给学校、教师塑造的。为此,我们将在今后的三年中,逐步引导学生接触名人名著名篇。比如电影:《想飞的钢琴少年》《贝多芬》《面对巨人》《卡特教练》《黑暗中的舞者》《女生向前翻》《光荣之路》《一球成名》《肖申克的救赎》《亚历山大大帝》《刘亦菲的少女世界》《卓别林的新生》等等。 二、情感激励法 情感是影响人们行为最直接的因素之一,任何人都有渴望各种情感的需求。这就要求教师要多关心学生生活,关心群学生的精神生活和心理健康,提高学生的情绪控制力和心理调节力,努力营造一种相互信任、相互关心、相互体谅、相互支持、团结融洽的班级氛围。其次我们还可以用主题班会的方式来完成情感激励。在高一我们将要开展如下主题班会:“不要忘记开出梦想的花”“如何培养意志力”“经受挫折的考验”“享受健康的网络生活”“我对幸福的理解”“我信我可以”“正确看对学习压力”“谈毅力”“培养专注力的方法”等等。 三、赏识激励 人需要赏识,作为课堂主体的学生更不例外。他们常常把教师的赏识看成是对自己的评价,当他们得到赏识时,就觉得自己有进步,能学好,有发展前途,以为自己在教师心目中是好学生,因而产生自身增值感,增强学习的内部动力。诺贝尔化学奖获得者瓦拉赫,在被多数教师判为“不可造就之才”以后,另一位教师从他的“笨拙”之中找到了他的办事认真谨慎的性格特征并予以赞赏,让瓦拉赫学化学,终于使他成了“前程远大的高才生”,获得了诺贝尔化学奖。这就是“瓦拉赫效应”,它启示我们教师要在学生的课堂行为表现中多发现可以肯定的东西,对学生的答案或方法,正确的加以赞赏,这是“锦上添花”;错误的也可以从思维方式、答题方式或态度上加以肯定,这是“雪中送炭”。至于答错的内容,教师可以用多

21种提高思维能力的方法

21种提高思维能力的方法 大脑就是一台三磅重的超级计算机。它是身体运行的命令和控制中心。它几乎涉及你所做的每一件事。你的大脑决定你如何思考,如何感觉,如何行动,以及如何与他人相处。你的大脑甚至决定你是哪一类的人。它决定了你有多善解人意;你有多友善或是有多粗鲁。它决定了你思维有多敏捷,这还涉及到你工作完成的如何以及你的家庭。你的大脑还影响你的情感活动,以及你如何对待异性。 大脑比我们可以想象到的任何计算机都要复杂。你的大脑里一千亿个神经细胞,每一个细胞都与其他许多细胞有联系,你知道吗?事实上,大脑内部的联系比宇宙中的星星还要多!无论是在工作,休息还是恋爱中,要做到最好的自己的本质上就是要优化你的大脑。 显然,你做的所有事,你所有的感觉和思想,你与人相处的每一处细微差别,其中心就是你的大脑。它既是一个带动你复杂生命的超级计算机,也是一个为你的灵魂提供住所的温柔器官。而当你跑步、举重或者做瑜伽以保持良好身体状态时,你忽略了你的大脑以及相信它给它做它的工作的机会。 无论你的什么年纪,精神锻炼都带给大脑普遍积极的影响。所以,这儿有22条方法提升你的脑力。 1.驱动你的大脑细胞 研究表明得到足够运动的人,其大脑也更好。加州拉由拉市的萨克生物研究学院的科学家发现,与整天坐那儿在网络聊天室里讨论指环王的老鼠相比,只要觉得想要跑步就在转轮上跑动的成年老鼠的海马得到的新细胞是他们的两倍,海马是大脑控制学习和记忆的部分。研究者们也不能确定为什么更活跃的啮齿动物的大脑会有这种反应,但可以知道的是这种自愿的运动可以减压,因此而更有益。这意味着找到了享受运动,而不是强迫自己去运动的方法,会让你更聪明,也更有幸福感。 所以,做点运动,选择一个训练项目比如马拉松,三项全能或者“趣味赛跑”,或者找个伴儿一起让运动变得有趣。 2.锻炼你的思维 让你的大脑细胞活跃起来并不只是物理运动。就像那些出租车司机和玩儿钢琴的人,你可以通过使用大脑里各种各样的区域来建立它们。杜克大学神经生物学教授罗伦斯·C·凯兹,也是《让你大脑New一下》(Keep Your Brain Alive)的合著者,找到使用大脑退化部分的简单途径不仅有助于维护神经细胞,也有助于细胞上的树突和轴突接收传递信息。凯兹说就像一次新的举重练习帮助建立未充分使用的肌肉,用新奇的方式思考和观察世界有助于改善大脑不活跃部分的功能。 体验新的味觉和嗅觉;用你平时不用的那只手做事;找些新的路开车上班;到新的地方去旅行;进行艺术创作;读读陀思妥耶夫斯基的小说;为泰德·肯尼迪和拉什·林宝写一篇兄弟喜剧——基本上,做一切可以让你的大脑跳出常轨的事。 3.多问为什么 我们的大脑与好奇心联系在一起。随着我们长大变“成熟”,许多人开始抑制或否认自己天生的好奇心。让你充满好奇心吧!问问自己为什么会发生这些事情。问问知道的人们。锻炼好奇心最好的方式就是问“为什么?”让一天至少问十个“为什么”成为你的习惯吧。你的大脑会变的愉快,你也会惊讶地发现你的生活工作中有那么多的机遇和解决方案。 4.笑 科学家告诉我们笑有益健康;它可以促进体内释放内啡肽及其它有积极力量的化学物质。事实上我并不需要科学家来告诉我们笑会带来良好感觉。笑可以帮助我们减压,还可以打破旧有模式。因此笑可以看做是对大脑的快速充电。多多大笑吧!

全面质量管理的基本方法

第二章全面质量管理的基本方法 第一节PDCA循环法 一、计划-执行-检查-总结 制定计划(方针、目标) 执行(组织力量去实施) 检查(对计划执行的情况进行检查) 总结(总结成功的经验,形成标准,或找出失败原因重新制定计划) PDCA循环法的特点: 1. 四个顺序不能颠倒,相互衔接 2. 大环套小环,小环保大环,互相促进 3. 不停地转动,不断地提高 4. 关键在于做好总结这一阶段 二、解决和改进质量问题的八个步骤 1. 找出存在的问题 2. 分析产生问题的原因 3. 找出影响大的原因 4. 制定措施计划 5. 执行措施计划 6. 检查计划执行情况 7. 总结经验进行处理 8. 提出尚未解决的问题 第二节质量管理的数理统计方法 一、质量管理数理统计方法的特点和应用条件 1. 特点 (1)抽样检查 (2)伴随生产过程进行 (3)可靠直观 2. 质量管理数理统计方法的优点 (1)防止废次品产生(防患于未然) (2)积累资料,为挖掘提高产品质量的潜力创造了可能 (3)为制定合理的技术标准和工艺规程提供可靠数据 (4)减少了检验工作量,提高了检验的准确性与效率,节省了开支 3. 质量管理数理统计方法的应用条件 (1)必须具备相对稳定的生产过程(完备的工艺文件、操作规程,严格的工艺纪律、岗位责任制,完好状态的设备等) (2)培训人员,掌握方法,明确意义 (3)领导重视,创造条件给予支持 (4)各职能部门互相配合,齐心协力 二、质量管理数理统计方法的基本原理 随机现象和随机事件 频数、频率和概率 概率的几个性质 产品质量变异和产生变异的原因:

1. 偶然性原因(随机误差) 对质量波动影响小,特点是大小、方向都不一定,不能事先确定它的数值。 2. 系统性原因(条件误差) 对质量波动影响大,特点是有规律、容易识别,可以避免。 随机误差与条件误差是相对的,在一定条件下,前者可变为后者。 观察和研究质量变异,掌握质量变异的规律是质量控制的重要内容。对影响质量波动的因素应严格控制。 三、质量管理中的数据 母体(总体N )–提供数据的原始集团 子样(样品n)–从母体中抽出来的一部分样品(n ≥1) 抽样- 从母体中随机抽取子样的活动 1. 数据的收集过程 (1)工序控制半成品→子样→数据 (2)产品检验产品→子样→数据 (3)子样的抽取方法 ①随机抽样(抽签法、随机表法) 机会均等,子样代表性强,多用于产品验收 ②按工艺过程、时间顺序抽样 等间距抽取若干件样品 2. 数据的种类 (1)计量值数据 连续性数据,可以是小数,如:长度、重量 (2)计数值数据 非连续性数据,不能是小数 ①计件数据(不合格数) (统计分析方法和控制图) 生产过程质量数据信息质量控制 分析整理

浅析教师教学过程中激励教育的几种运用方式

浅析教师教学过程中激励教育的几种运用方式 摘要:在教育提倡人性化的今天,激励教育在广大教师教学过程中被广泛运用,并且效果很好。本文分析了激励教育的基本概念,并且阐述了激励教育的几种方式,如榜样激励、成功激励、前景激励和情感激励。最后得出:激励教育重在立志。激励不只是一种教育手段,更是一种教育理念。通过激励教育可以让学生树立正确的理想与抱负,明确自己的人生目标和规划,并积极主动地参与到教学 活动中来。 关键词:教师教学激励教育方式 众所周知,在学校教育中,激励和惩戒是其中两个最重要的教育 方法。目前,教育大都倡导人性化,提倡“赏识、激励”,这是对传统的“严师出高徒”教育方式的矫正。赏识与激励可以让学生学会尊重、感激;惩戒、惩罚则会让学生有更多的责任感和使命感。在教学中,以宽容的心态审视学生,有助于发觉他们的闪光点,诱发他们的情感,培养他们的自信心。因此,基于这种理念,“赏识、激励”被教师们广泛采用。 1 激励教育的概念 激励教育是一种有效的心理教育方式、是一种教育自觉的理念,它可以使我们有目的、有计划地对学生心理施加直接或间接的影响,提高学生心理健康水平,激发学生的求知欲,发展每个学生个性。它可以成功地培养学生良好的心理素质提高学生学习的自觉性和效 率性。激励教育也是创造一种积极的教育的时空环境和情感体验,

激发学生的主体动力和内在潜能,培养形成学生自主学习、自我教育的学习内部动力机制,促使他们的思想道德品质、文化科学知识和个性特长等获得全面发展,成为现代社会生活的主人。德国教育学家第斯多惠曾说过:“教学的艺术不仅在于传授本领,而更重要的是善于激励、唤醒和鼓舞。”作为从教16年的老师和班主任,我深有同感。在实际教学过程中发现,激励教育对学生起着越来越重要的作用。 2 激励教育的几种运用方式 在教学过程中,激励教育可以激发学生的学习兴趣,提高学生学习的效率,增强学生自主学习的能力,因此,激励教育是一种必要的教育方式。通过自身16年的教学,将激励教育的几种运用方式总结如下。 2.1 榜样激励 我们每个人的心理其实都有自己的榜样,尤其是小时候,对榜样会非常崇拜,在我教的很多学生中都有崇拜伟大人物的心理倾向,他们崇敬的对象有生活在自己周围的人物如父母、老师;也有历史的和生活环境以外的人物。他们对心目中所崇敬的人物会毫不怀疑地接受和仿效,并且作为学习的榜样。人们常说,榜样的力量是无穷的。我每教一个班,就会从总体上确定几类榜样,然后从多方面细致观察每一个学生。比如到校守时的,劳动积极的,学习习惯良好的,一经看准,我就把这些榜样树立起来,让同学们学习身边的这些榜样,向榜样们看齐。因此,全班同学也就有了多方面的比、学、赶、

质量控制的主要手段和措施

质量控制的主要手段和措施 靠质量树信誉,靠信誉拓市场,靠市场增效益,靠效益求发展,是一个企业生存和发展的生命链条。就建筑服务业而言,高质量的把项目服务好,共同与建筑企业把质量做好,是企业管理的价值所在,也是重点要做的事情。 现在的市场是一个以质量为核心的竞争市场,因此,严格执行质量控制手段与措施是确保各相关方实现共赢的保证。 一、工程质量控制的目标 围绕着业主单位制定的工程质量等级目标要求,我公司监理人员将首先组织施工单位做好图纸会审及现场勘察工作,充分熟悉了解工程图纸及外部施工环境的特点和要点,根据实际情况制定切实可行的施工控制方案;督导施工单位按照要求组建施工项目管理机构及质量保证体系并确保其正常有效工作;通过监理单位人员的工作,对施工投入、施工过程、产品结果进行全过程控制,并对参与施工的人员资质、材料和设备质量、施工机械和机具状态、施工方案和方法、施工环境实施全面监控。 工程质量控制目标为:工程质量达到国家验收合格标准要求。 二、工程质量控制原则 第一,以国家施工及验收规范、工程质量验评标准及《工程建设规范强制性条文》、设计图纸等为依据,督促承包单位全面实现工程项目合同约定的质量目标。 第二,对工程项目施工全过程实施质量控制中,以质量预控为重点。 第三,对工程项目的人员、物料、技术、方法、环境等因素进行全面质量监控,监督承包单位的质量保证体系落实到位。 第四,严格落实承包单位执行有关材料试验制度和设备检验制度,做到不合格的建筑材料、构配机件及设备不会在工程上使用。

第五,坚持本工序质量不合格或未进行验收的,不签字确认,下一道工序不得施工。 三、质量控制的方法 (一)施工准备阶段质量控制 在依照批准的《监理规划(细则)》完善项目监理机构自身组织机构及人员配备的前提下展开工作。 1.监理项目部在施工前的准备工作 (1)建立或完善监理项目部的质量监控体系,做好监控准备工作,使之能适应准备开工的施工项目质量监控的需要。 (2)在施工前由监理项目部组织业主、设计单位及施工单位等有关人员进行设计交底和图纸会审。 (3)开工前熟悉和掌握质量控制的技术依据,如设计图纸、有关资料、规范、标准、编制质量控制方案等。 (4)编制质量控制方案,明确质量控制方法、要点。 2.核查施工单位在施工前的准备工作 项目监理部必须做好施工单位人员资质审查与控制工作,重点是施工的组织者、管理者的资质与管理水平,以及重点岗位、特殊专业工种和关键的施工工艺或新技术、新工艺、新材料等应用方面操作者的素质和能力。 1)检查工程施工单位主要技术负责、管理人员资格、到位情况。 2)审查施工单位承担任务的施工队伍及人员的技术资质与条件是否符合要求。经过专业监理工程师审查认可方可上岗施工,对于不合格人员,专业监理工程师有权要求施工单位予以撤换。

7种分析问题的思维方法

很多麻烦,问题我们一时解决不了,现在我觉得是因为自己没有使用一些专业的,系统性的思维方法,等你熟练使用这些方法解决自己常遇到的问题,那时候心情棒棒哒。下面是作者总结的几个我们常见的,能够很快上手的一些思维方法,至于具体怎么使用,可以百度参见一些案例,很快就会掌握,且受益终身的。希望能给你带去一些启发,也感谢您的阅读哈~ SWOT分析法 它是用来确定企业自身的竞争优势、竞争劣势、机会和威胁,从而将公司的战略与公司内部资源、外部环境有机地结合起来的一种科学的分析方法。对于优势和弱势是内部环境的分析,机会和威胁是对于外部环境的分析。这个模型可以用于多种方面,任何和商品,贸易,竞争有关系的都适用,而人也是一种商品。这个模型可以帮助你理清现状。 5w2h分析法

它广泛用于企业管理和技术活动,对于决策和执行性的活动措施也非常有帮助,也有助于弥补考虑问题的疏漏。提出疑问于发现问题和解决问题是极其重要的。创造力高的人,都具有善于提问题的能力,众所周知。提出一个好的问题,就意味着问题解决了一半。提问题的技巧高,可以发挥人的想象力。连续以几个“为什么”来自问,以追求其根本原因。很多问题都是系统性的,是牵一发而动全身,真正影响大局的不是表面的问题,这种方式可以找到问题根源。选定的项目、工序或操作,都可以从这几个方面去思考。 鱼骨图分析法 又名因果分析法,是一种发现问题“根本原因”的分析方法,现代工商管理教育如MBA、EMBA等将其划分为问题型、原因型及对策型鱼骨分析等几类先进技术分析。问题的特性总是受到一些因素的影响,通过头

脑风暴找出这些因素,并将它们与特性值一起,按相互关联性整理而成的层次分明、条理清楚,因其形状如鱼骨,所以叫鱼骨图。鱼骨图原本用于质量管理。 6顶思考帽法 它提供了“平行思维”的工具,避免将时间浪费在互相争执上。强调的是“能够成为什么”,而非“本身是什么”,是寻求一条向前发展的路,而不是争论谁对谁错。运用德博诺的六顶思考帽,将会使混乱的思考变得更清晰,使团体中无意义的争论变成集思广益的创造,使每个人变得富有创造性。但人不能同时戴2顶帽子,所以采用这种方法可以让你好几种情绪中进行平行思考。人的思维是通过提问来引导的,一个人是积极还是消极,取决于他给自己提的问题。同样的下雨天,消极的人在统计

课堂激励方法

课堂激励方法 课堂激励二十二法 1、团队竞赛法 将本班学生划为若干学习,学习之间的课堂学习竞赛活动来合作学习的激励方法。 2、对手竞赛法 为班级的每位同学安排一名知识基础和学习能力的竞赛对手。对手赛活动来学生学习热情的激励方法。 3、物质激励法 对某项成绩或某项规定动作的学生奖给食物、学习用品或纪念品以对学生的的激励方法。 4、语言激励法 对成绩或某种努力的学生用恰当的语言赞赏以让学生快感的激励方法。 5、握手法 在课前以握手的欢迎学生教室或在课中以此对学生的性鼓励来融洽师生情感,学生情感期待的激励方法。 6、亲抚法 在课堂上以亲切和欣赏的抚拍学生脑袋和肩背以学生的课堂快乐指数和对教师的信任度的激励方法。 7、手语法 以竖大拇指等姿体语言来赞赏学生的某种和学习的激励方法。 8、鼓掌法 全班同学对学生的精彩以鼓掌方法激励的方法。 9、标识法 以某种物品或图标搁置在优胜者课桌上或悬挂在优胜者身体上以对优胜者激励的方法。

10、记分法 对学生的某些学习环节评分或每天的评分,累进,以持续对学生的课堂激励的方法。 11、示范法 让学生将的解题思路或操作技巧向同学演示,其它同学他的作法模仿,以者的自豪感的激励方法。 12、展示法 将学生的优秀作业、试卷、资料、笔记、用品、作品在全班展示,以让学生快感的激励方法。 13、赠言法 教师在学生的书本上签字或赠言,以对学生的品德、习惯、方法、肯定的激励方法。 14、命名法 教师学生的特长或特点以激励意义的头衔,如“未来作家”、“数学天才”等命名的激励方法。 15、游戏法 做游戏来活跃课堂,学生课堂意识的激励方法。 16、静默法 让全体学生闭目、身体放松、将想象在圆圈等简单图形上,并(如5分钟)以清除学生杂念,课堂常规程式从而降低学生疲劳、学生注意力的激励方法。 17、故事法 以师生讲故事来课堂变式,激活学生课堂热情的激励方法。 18、呼喊法 全班大声、整齐呼喊誓言、班训或其它可以调动高昂情绪的短语以课堂沉闷气氛和低落士气的激励方法。

相关文档
最新文档