命题点7 二次函数的实际应用

命题点7   二次函数的实际应用
命题点7   二次函数的实际应用

命题点7 二次函数的实际应用

1.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2

2.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t= .

3.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线

21

y (x 80)16400

=-

-+,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴. 若OA =10米,则桥面离水面的高度AC 为 .

4.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元。为了合理定价,先投放在某饰品店进行试销,试销发现,该徽章销售单价为100元时,每天的销售量是50件,且销售单价每降低一元,每天就可多售出5件。

(1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?

(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价;若没有,请说明理由。

5.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:

其中a 为常数,且3≤a ≤5.

(1) 若产销甲、 乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式; (2)分别求出产销两种产品的最大年利润;

(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.

6.如图隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用c bx x y ++-

=2

6

1表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为

2

17

m 。 (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?

7.如图1,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线214

3105

y x x =

-+的绳子. (1)求绳子最低点离地面的距离;

(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长; (3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为

1

4

.设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,但2≤k ≤2.5时,求m 的取值范围.

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

二次函数与实际问题

实际问题与二次函数 一、利用函数求图形面积的最值问题 一、 围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为 米),面积为y (平方米),求y 关 于x 的函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0180<x<x >x >∴? ??- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为( 250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 2521)250(2+-=-=中,a=2 1-<0,∴y 有最大值, 即当25)21(2252=-?-=-=a b x 时,2625)2 1(42504422max =-?-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2 625平方米。 3、 围成正方形的面积最值 例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. (1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x ) cm

二次函数在实际中的应用

二次函数在实际中的应用 法国著名数学家的卡尔说过:“我们所解决的每一个问题,将成为一种模式,用于解决其它问题”.本文用二次函数的模式,解答生产、生活、体育等实际中的问题,达到触类旁通的目的. 一、借助二次函数解答桥梁问题 例1、(2006吉林省)如图1,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m . ⑴ 建立如图所示的直角坐标系,求此抛物线的解析式; ⑵ 现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 解:(1)设抛物线的解析式为2y ax =,桥拱最高点O 到水面CD 的距离为h 米,则D (5,h -),B (10,3h --). ∴25100 3.a h a h =-??=--?,解得1251a h ?=-???=? ,∴抛物线的解析式为2125y x =-. (2)水位由CD 处涨到点O 的时间为:1÷0.25 = 4(小时), 货车按原来速度行驶的路程为:40×1+40×4 = 200<280, ∴货车按原来速度行驶不能安全通过此桥,设货车速度提高到x 千米/小时, 当4401280x +?=时,解得60x = , ∴要使货车安全通过此桥,货车的速度应超过60千米小时. 二、应用二次函数剖析撞车问题 例2、(2006苏州市)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”,如图2. 已知汽车的刹车距离s(单位:m)与车速v(单位:m /s)之同有如下关系:s=tv+kv 2其中t 为司机的反应时间(单位:s),k 为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=O.7s 图1

实际问题与二次函数-详解与练习(含答案)

. 初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题 一、围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的 函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 分析:关键是用含x 的代数式表示出矩形的长与宽。 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0 180 <x<x >x >∴?? ?- (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(218 2=-?-=- =a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回扣问题实际时,一定注意不要遗漏了单位。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠 墙。问如何围,才能使养鸡场的面积最大? 分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(2 50x -)(米), 根据题意,得:x x x x y 252 1 )250( 2+-=-=; 又∵500,02 500 <x<>x x >∴??? ??- ∵x x x x y 2521)250( 2+-=-=中,a=2 1 -<0,∴y 有最大值, 即当25) 2 1(2252=-?- =-=a b x 时,2625) 2 1(42504422max =-?-=-=a b ac y

实际问题与二次函数典型l例题

1. 某商品的售价为每件60 元,进价为每件40元,每星期可卖出300件,该商场一星期卖这种商品的利润为元。 2、我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件. 该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查: 如调整价格,每降价1元,每星期可多卖出20件. 请问同学们,该如何定价,才能使一星期获得的利润最大? 3、某种商品每件的进价为30元,在某段时间内若以每件x元出售(按部门规定,单价不超过每件70元),可以卖出(100- x)件,应如何定价才能使利润最大? 4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。 (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润ω(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查,在进价不变的情况下,若每千克涨价1元,销量将减少10千克 (1)该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 6、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). (1)由已知图象上的三点坐标,求累积利润s(万元)与销售时Array间t(月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数实际问题专题练习

二次函数实际应用问题 1、(1)该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg ; (2)由题意,得:14250402)10950)(5 5()10950(202 ++-=----=x x x x x y (3)14450)10(22 +--=x y ,又201≤≤x 且x 为整数,所以,当101≤≤x 时,y 随x 的增大而增大,当2010≤≤x 时,y 随x 的增大而减小;因此,当10=x 时,y 取得最大值,为14450元。 2、解:(1)由题意,得:w = (x -20)·y =(x -20)·(10500x -+)21070010000x x =-+- 352b x a =-=.答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:2 10700100002000x x -+-=,解这个方程得:x 1 = 30,x 2 = 40. 答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. (3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得:20(10500)P x =-+20010000x =-+ ∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600. 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元. 法二:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<,∴y 随x 的增大而减小.∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600?=(元). 3、解:(1)4月份y 与x 满足的函数关系式为0.2 1.8y x =+. 把1x =, 2.8y =和2x =, 2.4y =分别代入2120y x bx c =-++,得1 2.8,20 142 2.4.20b c b c ?-++=????-?++=?? 解得 0.25, 3.1. b c =-??=?∴5月份y 与x 满足的函数关系式为20.050.25 3.1y x x =--+. (2)设4月份第x 周销售一千克此种蔬菜的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元.11 (0.2 1.8)( 1.2)4 W x x =+-+0.050.6x =-+.∵0.050-<,∴1W 随x 的增大而减小.∴当1x =时, 10.050.60.55W =-+=最大.221 (0.050.25 3.1)(2)5 W x x x =--+--+20.050.05 1.1x x =--+. ∵对称轴为0.05 0.52(0.05) x -=- =-?-,且0.050-<,∴当0.5x >-时,y 随x 的增大而减小. ∴当1x =时,21W =最大.所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;

二次函数与实际问题-利润问题

课题:人教版第二十六章第一节《实际问题与二次函数》 教学目标: 1、知识与技能: 能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数求出实际问题中的最大(小)值,发展学生解决问题的能力。 2、过程与方法: 经历探索商品销售中最大利润问题的过程,进一步认识如何利用二次函数的有关知识解决实际问题,增强学生数学应用能力。 3、情感态度与价值观: 提高学生解决问题的能力,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。 教学重点与难点: 1、重点: 让学生通过解决问题,掌握如何应用二次函数来解决经济中最大(小)值问题。 2、难点: 如何分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的。 教学过程: 一、创设情境: 请同学们考虑下列问题: 已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 学生根据相应的数量关系列出方程。 设每件涨价x元 (60+x -40)×(300-10x)=6090 (从实际生活入手,创设问题情境,提高学生兴趣,激发求知欲望。) 二、探索新知,进入新课 1、商场的服装,经常出现涨价、降价,这其中有何奥妙呢?商家的利润否是随涨价而增多,降价而减少呢? 2、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。如何定价才能使利润最大? 教师展示问题, (1)、本题中的变量是什么? (2)、如何表示赚的钱呢? 学生分组讨论,利用函数模型解决问题 设每件涨价x元,由此商品 ①每件的利润为:(60+x -40)元 ②每星期的销售量为:(300-10x)件 ③所获利润是:(60+x -40)×(300-10x)元 若设所获得利润为y元,则有y=(60-40+x)(300-10x),即 y=-10x2+100x+6000。

浅谈二次函数在实际生活中的应用

龙源期刊网 https://www.360docs.net/doc/125497102.html, 浅谈二次函数在实际生活中的应用 作者:刘昌义 来源:《学习与科普》2019年第11期 摘要:随着社会的快速发展,人们的生活水平不断提升,生活质量的要求也不断提高, 这样一来,对各种资源的需求量也不断增大。而资源的总数是有限的,如何将优先的资源通过合理的运用来满足更多人的实际需要,这就需要用到数学中所学到的二次函数知识。二次函数在实际生活中的应用,是利用所学知识解决实际生活问题的体现。二次函数的实际应用过程,也是数学思想在生活实际中得到合理运用的过程。 关键词:二次函数;实际生活;实际应用 二次函数不管是作为一种数学计算工具还是作为初中数学学习过程中的知识组成部分,都具有非常重要的作用。二次函数贯穿了初中数学的整体学习过程,从最简单的图像方程画图计算再到复杂的二次函数实际应用,无一不体现出了它的重要性。同时二次函数也作为中考的重要考察内容,其难度相对其他数学知识更高,连贯性也更强,如果初中阶段的二次函数没有学好,势必会影响到后续的函数学习。除此之外,通过教学研究,笔者发现很多学生在二次函数的学习中暴漏出来一个问题:当题目与现实生活综合到一起时,很多学生往往后无从下手,这体现出学生对其所学知识的实际应用能力较差。所以我们需要通过对二次函数在实际生活中应用方向的研究,来找到培养学生利用二次函数解决生活实际问题能力的方法。 一、二次函数在桥梁建筑方面的应用 在日常生活中所见到的桥类建筑大多为拱形,拱形的桥梁结构相对于直桥更加稳固,且可以给桥下的水面提供较大的通行空间,以供船只通过。从拱形桥的形状看上去跟抛物线类似,其在设计之中就应用了二次函数的相关性质。除此之外,在很多公共建筑的设计上也应用了二次函数的原理,如花坛、喷泉和国家体育馆鸟巢的设计。通过这类实际应用体现出二次函数已经融入了我们的生活之中。 二、二次函数在经济生活中的实际应用 二次函數作为一种数学工具被广泛的应用到统计之中,其在经济生活之中的作用往往集中在投资调查、销售定价、销售情况统计、市场调查、消费住宿等方面。在这些经济活动中,无论其表现形式如何,最终的目的都是为了做到利益最大化。在这些项目中二次函数都是作为统计工具,根据实际经济情况建立相应的函数关系式,使用函数关系式对市场进行调查、统计和预测,从而保证拿到最大利润。 (1)投资调查

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值? 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式?当x为多长时,花园面积最大?

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多? 设销售单价为x元,(0<x≤13.5)元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)所获利润可以表示为__________________; (4)当销售单价是________元时,可以获得最大利润,最大利润是__________。 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________. (4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

实际问题与二次函数练习题及答案

12999数学网 https://www.360docs.net/doc/125497102.html, 26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

知识点20 二次函数在实际生活中应用

知识点20 二次函数在实际生活中应用 一、选择题 9.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( ) A.y = 26 675 x 2 B.y =26675 - x 2 C.y = 13 1350 x 2 D.y =13 1350 - x 2 第9题图 【答案】B 【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675- ,∴二次函数表达式为y =26675 -x 2 ,故选B. 三、解答题 22.(2019年浙江省绍兴市,第22题,12分 ).有一块形状如图的五边形余料ABCDE ,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由. 【解题过程】

24.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p = t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣ (t ﹣h )2 +0.4刻画. (1)求h 的值. (2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m (天) 5 10 15 ①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m . (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用). 【解题过程】(1)把(25,0.3)的坐标代入21 ()0.4160 p t h =- -+,得h =29或h =21. ∵h >25,∴h =29. (2)①由表格可知m 是p 的一次函数,∴m=100p-20.

实际问题与二次函数(1)教学设计

《实际问题与二次函数》教学设计 【教学目标】 1.通过对实际问题情景的分析,能够建立二次函数的数学模型,并利用二次函数的知识求解;能根据具体问题的实际意义检验结果是否合理. 2.经历利用二次函数解决实际问题的过程,学会用数学的思想方法去观察、研究和解决日常生活中所遇到问题,体验数学建模的思想. 3.通过将二次函数的有关的知识灵活用于实际,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感. 【教学重点】 重点:探究利用二次函数的图象和性质解决实际问题的方法. 难点:如何将实际问题转化为二次函数的问题. 【教法学法】 1.教学方法 遵循“教师的主导作用与学生主体地位相统一的教学规律”,采用导学自主的教学模式,体现学生为主体的课前预习和小组合作学习. 2.教学手段 利用多媒体辅助教学,分散教学难点,增大教学容量,提高课堂教学效果. 3.学法指导 引导学生运用数形结合、转化、数学建模等重要数学思想方法,力求

使学生多思、多说、多练以达到最佳的双边活动效果. 【教学过程】 (一)创设情景,引入新课 以旅游为主线,将新乡市和谐公园修建喷泉时遇到的问题抛出,巧妙引出课题:《实际问题与二次函数》. 设计意图: 运用生活中常见的场景创设问题情境,目的是激发学生的兴趣和求知欲望,为新课的探究做好铺垫. (二)知识链接,复习提问 1.二次函数常见的形式有哪几种? 2.二次函数的顶点坐标是_____,对称轴是______. 当a>0时,图像开口向____,函数有最____值,等于________; 当a<0时,图像开口向____,函数有最____值,等于________. 3.二次函数的图像 向上平移k(k>0)个单位得到解析式________, 向下平移k(k>0)个单位得到解析式________; 向左平移h(h>0)个单位得到解析式________, 向右平移h(h>0)个单位得到解析式________. 设计意图: 在已有知识的基础上提出新问题,能为学生营造一个主动观察、思考、探索的氛围,提高学生的学习兴趣. (三)分组展示,探索新知

实际问题与二次函数练习题及答案

26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

中考数学习题精选:二次函数在实际生活中应用(含参考答案)

中考数学习题精选:一、选择题 1、(2018北京房山区第一学期检测)小明以二次函数 2 248 y x x =-+的图象为灵感为 “2017北京·房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿, 若AB=4,DE=3,则杯子的高CE为 A.14 B.11 C.6 D. 3 答案:B 2、(2018北京怀柔区第一学期期末)网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB的高度).中网比赛中,某运动员退出场地在距球网 14米的D点处接球,设计打出直线 ..穿越球,使球落在对方底线上C处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为 A. 1.65米 B. 1.75米 C.1.85米 D. 1.95米 答案:D 3、(2018北京丰台区第一学期期末)在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG = 2BE. 如果 设BE的长为x(单位:m),绿地AEFG的面积为y(单位: m2),那么y与x的函数的表达式为;当 BE AEFG的面积最大. E D G F H A C B 第 6题图 C

答案:2 2864(08)y x x x =-++<<(可不化为一般式),2 4、(2018北京密云区初三(上)期末)学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m ,设矩形的一边长为x m ,矩形的面积为y m 2.则函数y 的表达式为______________,该矩形植物园的最大面积是_______________ m 2. 答案:(4)y x x =- ,4 5、(2018北京顺义区初三上学期期末)如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 . 答案:2 20S a a =-+ 6、(2018年北京昌平区第一学期期末质量抽测)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面 的最大距离是5m . (1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图), 你选择的方案是_____(填方案一,方案二,或方案三),则B 点坐标是______, 求出你所选方案中的抛物线的表达式; (2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度. 解:方案1:(1)点B 的坐标为(5,0) (1) 分 设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:1 5 a =- y 方案 2 方案 3 方案 1

实际问题与二次函数

实际问题与二次函数(1) 学习目标: 1.会将生活中的实际问题转化为数学问题。 2.能体验二次函数在生活中的应用。 学习重难点: 重点:体会二次函数最值的应用及数形结合思想。 难点:理在转化、建模中,体验解决问题的方法。 学习过程: 一,创设情景,明确目标 请同学们观察以下两个题: 1.抛物线2)1(2 ++-=x y 中,当x =___________时,y 有_______值是__________. 2.抛物线15.0y 2+-=x x 中,当x =___________时,y 有_______值是__________. 3,某商品现在的售价是每件60元,每星期可卖出300件,已知商品的进价为每件40元,那么一周的利润是多少元? 二,自主学习,指向目标 自学导读 自学课本,思考回答下列问题 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢? 解:(1)设每件涨价x 元,则每星期少卖_________件,实际卖出_________件, 设商品的利润为y 元.则y 与x 的关系式为: (2)设每件降价x 元,则每星期多卖_________件,实际卖出__________件. 设商品的利润为y 元.则y 与x 的关系式为: 自我评价 1.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大? 三,合作探究,达成目标 探究主体1: 抛物线对称轴及顶点坐标 例1用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少时,场地的面积S 最大?

相关文档
最新文档