触媒蓄热式焚化技术介绍——张丰堂

蓄热式加热炉传热基本知识

蓄热式加热炉传热基础知识 一传热的基本方式 钢坯加热是通过炉内热交换过程进行的。只要有温度差存在 热量,热量总是由高温向低温传递,这种热量传递过程称为传热。传热是一种复杂的物理现象,根据其物理本质的不同,把传热过程分为三种基本方式:传导、对流和辐射。 1传导传热 没有质点相对位移情况下,物体内部或直接接触的不同物体因为温度差,将热量由高温部分依次传递给低温部分的现象,称为传导传热。 传导传热快慢主要影响因素有: (1)材料的导热系数。各种材料的导热系数都由实验测定。气体、液体和固体三种比较来看,气体的导热系统一般比较小(仅为 0.006—0.58W/(m·℃)),液体的导热系数一般比气体大(在 0.09—0.7W/(m?℃)之间),固体的导热系数一般比较大,其 中以金属的导热系数最大(在2.8--419W/(m?℃)之间,纯银的导热系数最高)。而且随着温度的变化,物体导热系数也随着变化。 (2)温度差。温度差越大,传导传热也越强烈,另外温差越大,传热不可逆损失越大。 2对流传热 依靠对流的各部分发生相对位移,把热量由一处传递到另一处的

现象,称为对流传热。

对流传热主要因素不仅有物体的温度差,而且与下列因素有关:(1)流体流动的情况。 (2)流体流动的性质。 (3)流体的物理性质。 (4)工体表面的形状、大小和位置。 3 辐射传热 依靠物体表面。对外界发蛇的电磁波(辐射能)来传递热量,当辐射能投射到另一物体时,能被另一物体吸收又变成热能。这种依靠电磁波来传递热能的过程叫辐射传热,辐射是一切物体固有的特征,辐射传热不需要任何中间介质或物体的直接接触,在真空中同样可以传播。 辐射传热主要影响因素: | (1)辐射传热量的大小与辐射体的温度的4次方成正比,因此,提高炉温对加热速度有决定性意义。蓄热式加热炉燃烧温度比常温燃烧高许多,因此烟气的辐射传热效果远远好于常温燃烧。 (2)辐射传热量的大小与辐射体的黑度成正比,因此,提高加热炉内壁和火焰黑度对提高加热速度和节能降耗有重要意义。 二蓄热式加热炉炉内综合传热 在加热炉的炉膛内,热的交换过程是辐射、对流和传导同时存在,我们把这种传热方式叫做炉内综合传热。

CFD网格及其生成方法概述

CFD网格及其生成方法概述 作者:王福军 网格是CFD模型的几何表达形式,也是模拟与分析的载体。网格质量对CFD计算精度和计算效率有重要影响。对于复杂的CFD问题,网格生成极为耗时,且极易出错,生成网格所需时间常常大于实际CFD计算的时间。因此,有必要对网格生成方式给以足够的关注。 1 网格类型 网格(grid)分为结构网格和非结构网格两大类。结构网格即网格中节点排列有序、邻点间的关系明确,如图1所示。对一于复杂的儿何区域,结构网格是分块构造的,这就形成了块结构网格(block-structured grids)。图2是块结构网格实例。 图1 结构网格实例 图2 块结构网格实例 与结构网格不同,在非结构网格(unstructured grid)中,节点的位置无法用一个固定的法则予以有序地命名。图3是非结构网格示例。这种网格虽然生成过程比较复杂,但却有着极好的适应性,尤其对具有复杂边界的流场计算问题特别有效。非结构网格一般通过专门的

程序或软件来生成。 图3 非结构网格实例 2 网格单元的分类 单元(cell)是构成网格的基本元素。在结构网格中,常用的ZD网格单元是四边形单元,3D网格单元是六面体单元。而在非结构网格中,常用的2D网格单元还有三角形单元,3D 网格单元还有四面体单元和五面体单元,其中五面体单元还可分为棱锥形(或楔形)和金字塔形单元等。图4和图5分别示出了常用的2D和3D网格单元。 图4 常用的2D网格单元 图5 常用的3D网格单元

3 单连域与多连域网格 网格区域(cell zone)分为单连域和多连域两类。所谓单连域是指求解区域边界线内不包含有非求解区域的情形。单连域内的任何封闭曲线都能连续地收缩至点而不越过其边界。如果在求解区域内包含有非求解区域,则称该求解区域为多连域。所有的绕流流动,都属于典型的多连域问题,如机翼的绕流,水轮机或水泵内单个叶片或一组叶片的绕流等。图2及图3均是多连域的例子。 对于绕流问题的多连域内的网格,有O型和C型两种。O型网格像一个变形的圆,一圈一圈地包围着翼型,最外层网格线上可以取来流的条件,如图6所示。C型网格则像一个变形的C字,围在翼型的外面,如图7所示。这两种网格部属于结构网格。 图6 O型网格 图7 C型网格 4 生成网格的过程

大数据研究的科学价值

李国杰 中国科学院计算技术研究所 大数据研究的科学价值 近年来,“大数据”已经成为科技界和企业界关注的热点。2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。美国政府认为大数据是“未来的新石油”,将“大数据研究”上升为国家意志,对未来的科技与经济发展必将带来深远影响。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分,对数据的占有和控制也将成为国家间和企业间新的争夺焦点。 与大数据的经济价值相比,大数据研究的科学价值似乎还没有引起足够的重视。本文试图对基于大数据的科学研究(包括自然科学、工程科学和社会科学)谈几点粗浅的认识,希望引起有关领域科技人员的争鸣。 推动大数据的动力主要是企业经济效益 数据是与自然资源、人力资源一样重要的战略资源,隐含巨大的经济价值,已引起科技界和和企业界的高度重视。如果有效地组织和使用大数据,将对经济发展产生巨大的推动作用,孕育出前所未有的机遇。奥莱利(O ’Reilly )公司断言:“数据是下一个‘Intel inside ’,未来属于将数据转换成产品的公司和人们。” 基因组学、蛋白组学、天体物理学和脑科学等都是以数据为中心的学科。这些领域的基础研究 关键词:大数据 数据科学 第四范式 产生的数据越来越多,例如,用电子显微镜重建大脑中的突触网络,1立方毫米大脑的图像数据就超过1PB 。但是,近年来大数据的飙升主要还是来自人们的日常生活,特别是互联网公司的服务。据IDC 公司统计,2011年全球被创建和被复制的数据总量为1.8ZB (1021),其中75%来自于个人(主要是图片、视频和音乐),远远超过人类有史以来所有印刷材料的数据总量(200PB )。谷歌公司通过大规模集群和MapReduce 软件,每个月处理的数据量超过400PB ;百度每天大约要处理几十PB 数据;Facebook 注册用户超过10亿,每月上传的照片超过10亿张,每天生成300TB 以上的日志数据;淘宝网会员超过3.7亿,在线商品超过8.8亿,每天交易数千万笔,产生约20TB 数据;雅虎的总存储容量超过100PB 。传感网和物联网的蓬勃发展是大数据的又一推动力,各个城市的视频监控每时每刻都在采集巨量的流媒体数据。工业设备的监控也是大数据的重要来源。例如,劳斯莱斯公司对全世界数以万计的飞机引擎进行实时监控,每年传送PB 量级的数据。 数据为王的大数据时代已经到来,战略需求也发生了重大转变:企业关注的重点转向数据,计算机行业正在转变为真正的信息行业,从追求计算速度转变为大数据处理能力,软件也将从编程为主转变为以数据为中心。采用大数据处理方法,生物制药、新材料研制生产的流程会发生革命性的变化,可以通过数据处理能力极高的计算机并行处理,同时进行大批量的仿真、比较和筛选,大大提高科研

【精品】滴灌贴片设备发展历程

滴灌贴片设备发展历程 滴灌贴片设备发展历程,现在可分为三个阶段(下面配合照片讲解): 第一代:是以能出来产品为目的(现在市场上大部分厂家,处于这个水平)。 第一代筛选,采用旋转盘,外加一个皮 带输送,没有旋转锅,筛选轨道短.(照 片).它是利用阻挡头挑选滴头,(照片)准确率低,速度慢,筛选速度在350个左右,产量低。 第一代输送装置,采用上下两条皮带输送(照 片),由于皮带轮的挤压,片子容易变形,给 输送带来困难。同时由于下皮带阻断了滴头 前进轨道,造成间断式轨道(照片),滴头前进 中经历轨道--—皮带——轨道的过程,故障 率高,产品质量不稳定. 第一代打孔机,是利用直角风钻打孔(照片),切下来的废销,不宜清扫,污染环境. 风钻易坏,保养费用高。 第一代卷曲机,采用中心轴式卷曲,利用皮带传

动(照片)

,结构复杂,卷曲平整度差。另外需要张力调节杆,调节张力,占用空间大 第二代:考虑的重点在如何提高产量上(现在市场上很少一部分厂家,可以达到这个水平). 第二代改进最大的是筛选。它采用旋转盘外加一个旋转锅,利用旋转锅代替皮带输送(照片),筛选轨道被放大无数倍,利用旋转锅沿加防吹装置共同挑选滴头, 准确率高,速度快.筛选速度快大概在500 个左右。 此时的旋转锅和旋转盘用两个电 机,分别控制,(照片)操作难度大,故障率高。 第二代防吹装置,采用的是不锈钢条加工,需要高技术的工人二次安 装调试,麻烦。 不锈钢防吹照片

第二代输送装置没有什么改进,也是采用上下两条皮带输送。由于下皮带阻断了滴头前进轨道,造成间断式轨道(照片),滴头前进中经历轨道---皮带--轨道的过程,加上两个皮带的挤压,片子容易变形,给输送带来困难,故障率高. 第二代打孔机,依然是利用利用风钻打孔,不过风钻改用了直连式(照片),外加伺服控制行走装置,切下来的废销,依然不宜清扫,污染环境。风钻易坏,保养费用依然高。 第二代卷曲机采用直连电机卷曲,结构简化了,但此时的直连电机采用的是变频技术,比较笨重。排线也是采用的变频技术,技术相对落后。另外需要张力调节杆,调节张力,占用空间依然大。 第三代:考虑的重点是,设备在长期稳定运转的情况下,如何用工少,产量高,保养费用低。(富利达独自掌握核心技术) 第三代筛选机改进的重点 一是通过计算机模拟计算,旋转锅和旋转盘采用一个电机控制,故障率低,先进。 二是防吹装置,是利用数控加工中心,直接加工(照片)

国内蓄热式加热炉的对比

国内蓄热式加热炉的对比 国内蓄热式加热炉的对比 https://www.360docs.net/doc/1e5730138.html, 2009.08.05 1前言 众所周知,用蓄热室来预热空气和燃料是一项较早的技术,但由于其换向阀结构复杂、体积庞大、控制系统不可靠、换向时间长、效率比较低,因此没有得到重视,因而换热器技术得到迅速发展。由于二十世纪七十年代的能源危机后,节能工作得到各个国家的重视,加之科学技术的不断进步,出现了结构简单,控制方便,可靠性强的换向系统。因此近十年来蓄热式燃烧技术得到长足发展,各个国家都在研究各种蓄热式烧嘴和高效蓄热式燃烧技术,以及高风温燃烧技术。为此,根据所了解的情况进行对比分析 2国内蓄热式燃烧技术情况 中国自二十世纪八十年代开始有国外译文介绍,八十年代中后期国内热工界也开始研究新型蓄热式技术,建立了专门的陶瓷球蓄热式实验装置。东北大学、北京科技大学、机械部第五设计研究院、冶金部鞍山热能研究院等对此技术都有研究,但是工业应用很少。1998年9月萍乡钢铁有限责任公司首次和大连北岛能源技术有限公司合作采用蓄热式燃烧技术进行轧钢连续式加热炉燃烧纯高炉煤气技术的开发研究,并率先在萍钢棒材公司轧钢加热炉上应用,在国内首次实现了蓄热式技术燃烧高炉煤气在连续式轧钢加热炉上的应用。 此炉作为国内第一座蓄热式轧钢加热炉,尽管在许多方面还不尽人意,但应该说为国内蓄热式燃烧技术应用在冶金行业连续式加热炉开辟了先河;此后,国内有多家公司开展蓄热式燃烧技术的研究和在国内的推广应用,蓄热式燃烧技术逐渐成熟。如北京神雾公司的蓄热式烧嘴加热炉,秦皇岛设计院的蓄热式加热炉等。在蓄热式燃烧技术方面形成了一套较完善的设计思想和方法,蓄热式技术在工业炉上的应用,实现了高产、优质、低耗、少污染和高自

世界水利发展史

世界水利发展史 水利事业的发展与人类文明有着密切的关系。中国的水利事业源远流长(见中国水利史)。古代的埃及、巴比伦和印度的水利事业可上溯到公元前四五千年。美洲的玛雅文明和印加文明的水利遗迹距今也有两三千年以上。埃及和巴比伦的水利技术以后传播到希腊和罗马。文艺复兴以后传遍欧美各国。公元前3世纪的阿基米德对水的浮力理论,和后来文艺复兴时期的达·芬奇对水流理论都作出了贡献。1824年,英国人J.阿斯普丁发明了硅酸盐水泥,从而带动了混凝土结构的发展,使土木工程进入到一个新的发展阶段。19世纪下半叶出现了钢筋混凝土,这进一步推动了轻型混凝土建筑物的发展。19世纪70年代,出现了水电站。进入20世纪以后,许多新兴科学技术已开始在水利工程中得到广泛应用。例如,利用电子计算机对技术经济方案进行评估;用系统分析方法全面安排施工进度和评价区域性水资源;利用光弹模型分析和设计水工结构;利用喷灌、滴灌和渗灌等节省灌溉用水;利用遥感、超声波等手段分析、鉴定大型水利枢纽工程的水文地质及工程地质情况等。在工程建设中,20世纪的水利工程越来越具有大型化、综合化、跨流域、多目标等特点。 灌溉人类很早就利用河水发展灌溉。四大文明古国都出现在大河流域,以灌溉为古代文明的基础。一般来说,早

期的灌溉都是引洪淤灌,以后发展为引水灌溉或建造水库、调洪灌溉。世界灌溉事业近200年来发展很快。1800年左右,全世界有灌溉面积800万公顷。20世纪初提高到4800万公顷。1949年达到9200万公顷,60年代末超过2亿公顷。突出的节水新技术有喷灌、滴灌等。 非洲尼罗河流域早在公元前4000年就利用尼罗河水位变化的规律发展洪水漫灌。公元前2300年前后在法尤姆盆地建造了美利斯水库,通过优素福水渠引来了尼罗河洪水,经调蓄后用于灌溉。这种灌溉方式持续了数千年。19世纪初,埃及引种棉花和甘蔗等经济作物。1826年开始改建旧的引洪漫灌系统,进行常年灌溉。1902年阿斯旺坝建成以后,又由水库引水进行常年灌溉。1970年建成新的阿斯旺高坝,常年灌溉渠道系统得到进一步的发展,使灌溉更有保证,并解决了防洪问题,每年还可发电100亿kW·h。 两河流域美索不达米亚的幼发拉底河和底格里斯河流域的灌溉也可以追溯到公元前4000年左右的巴比伦时期。由于幼发拉底河的高程普遍超过底格里斯河,因而对开挖灌渠十分有利。最早是引洪淤灌,以后发展为坡度平缓的渠道网。约公元前2000年,汉穆拉比时代已有了完整的灌溉渠系。干渠用砖衬砌,用沥青勾缝。当时的灌溉面积达260万公顷以上,养育着1500~2000万人口。干渠兼有通航与防洪的作用。当时颁布的《汉穆拉比法典》还专门对堤防失修、

蓄热式燃烧技术目前存在的几点不足(分享)

蓄热式燃烧技术目前存在的几点不足(分享) 目前,我国的资源和环境问题日益突出,迫切要求高能耗行业全面推行高效、清洁的燃烧技术。蓄热式燃烧技术,又称高温空气燃烧技术,是20世纪90年代在发达国家开始推广的一项新型的燃烧技术,它具有高效烟气余热回收、空气和煤气预热温度高以及低氮氧化物排放的优越性,主要用于钢铁、冶金、机械、建材等工业部门中,并已出现迅猛发展的势头。至今我们已有了自己的一些专利,并且在国内有了相对广泛的应用,取得了相当的经济效益。 关键部件 1 蓄热体 蓄热体是高温空气燃烧技术的关键部件,其主要技术指标如下: (1)蓄热能力:单位体积蓄热体的蓄热量要大,这样可减小蓄热室的体积,需要通过材料的比热CP来衡量。(2)换热速度:材料的导热系数λ可以反映固体内部热量传递的快慢,导热系数大可以迅速地将热量由表面传至中心,充分发挥蓄热室的能力;高温时,材料辐射率可表征气体介质与蜂窝体热交换的强弱。(3)热震稳定性:蓄热体需要在反复加热和冷却的工况下运行,在巨大温差和高频变换的作用下,很容易脆裂、破碎和变形等,导致气流通道堵塞,压力损失加大,甚至无法继续工作。(4)抗氧化和腐蚀性:有些材料在一定的温度和气氛下发生氧化和腐蚀,会堵塞气体通道,增加流通阻力。(5)压力

损失:在气体通过蜂窝体通道时,会产生摩擦阻力损失,在流经两块蜂窝体交界面时因流通面积突变和各个通道之间可能发生交错而产生局部阻力损失;前者对传热有利,后者对传热是不利的,因此应尽力减少局部阻力损失来降低风机的动力消耗。(6)经济性:它是一个重要的指标,一种蜂窝体如果各种性能都好,但成本很高,推广和应 用会受到限制。 2 换向阀 由于必须在一定的时间间隔内实现空气、煤气与烟气的频繁切换,换向阀也成为与余热回收率密切相关的关键部件之一。尽管经换热后的烟气温度很低,对换向阀材料无特殊要求,但必须考虑换向阀的工作寿命和可靠性。因为烟气中含有较多的微小粉尘以及频繁动作,势必对部件造成磨损,这些因素应当在选用换向阀时加以考虑。如果出现阀门密封不严、压力损失过大、体积过大、密封材料不易更换、动作速度慢等问题,会影响系统的使用性能和节能效果。 3 烧嘴 烧嘴的设计原则是不能让空气和煤气混合得太快,这样容易形成局部高温,但也不能混合得太慢,防止煤气在蓄热室出现“二次燃烧”甚至燃烧不充分。为了保证燃料在低氧气氛中燃烧,必须在设计其供给通道时,考虑燃料和空气在空间的扩散、与炉内烟气的混合和射流的角度及深度,而这些参数应根据加热装置尺寸、加热工艺要求、燃料

网格生成技术

I 目录 1 概述 (1) 2 结构网格 (3) 2.1 贴体坐标法 (3) 2.2 块结构化网格 (11) 3 非结构网格 (16) 3.1 概述 (16) 3.2 阵面推进法 (16) 3.3 Delaunay三角划分 (19) 3.4 四叉树(2D)/八叉树(3D)方法 (21) 3.5 阵面推进法和Delaunay三角划分结合算法 (22) 4 其他网格生成技术 (23) 4.1 自适应网格 (23) 4.2 混合网格 (25) 4.3 动网格 (26) 4.4 曲面网格 (27) 4.5 重叠网格 (28) 5 网格生成软件 (29) 5.3 Gambit (29) 5.2 ICEM CFD (30) 5.1 TrueGrid (32) 5.2 Gridgen (34)

1 概述 计算流体力学作为计算机科学、流体力学、偏微分方程数学理论、计算几何、数值分析等学科的交叉融合,它的发展除依赖于这些学科的发展外,更直接表现于对网格生成技术、数值计算方法发展的依赖。 在计算流体力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成是连接几何模型和数值算法的纽带,几何模型只有被划分成一定标准的网格才能对其进行数值求解,所以网格生成对CFD至关重要,直接关系到CFD计算问题的成败。一般而言,网格划分越密,得到的结果就越精确,但耗时也越多。1974年Thompson等提出采用求解椭圆型方程方法生成贴体网格,在网格生成技术的发展中起到了先河作用。随后Steger等又提出采用求解双曲型方程方法生成贴体网格。但直到20世纪80年代中期,相比于计算格式和方法的飞跃发展,网格生成技术未能与之保持同步。从这个时期开始,各国计算流体和工业界都十分重视网格生成技术的研究。上个世纪90年代以来迅速发展的非结构网格和自适应笛卡尔网格等方法,使复杂外形的网格生成技术呈现出了更加繁荣发展的局面。现在网格生成技术已经发展成为CFD的一个重要分支,它也是计算流体动力学近20年来一个取得较大进展的领域。也正是网格生成技术的迅速发展,才实现了流场解的高质量,使工业界能够将CFD的研究成果——求解Euler/NS方程方法应用于型号设计中。 随着CFD在实际工程设计中的深入应用,所面临的几何外形和流场变得越来越复杂,网格生成作为整个计算分析过程中的首要部分,也变得越来越困难,它所需的人力时间已达到一个计算任务全部人力时间的60%左右。在网格生成这一“瓶颈”没有消除之前,快速地对新外形进行流体力学分析,和对新模型的实验结果进行比较分析还无法实现。尽管现在已有一些比较先进的网格生成软件,如ICEM CFD、Gridgen、Gambit等,但是对一个复杂的新外形要生成一套比较合适的网格,需要的时间还是比较长,而对于设计新外形的工程人员来说,一两天是他们可以接受的对新外形进行一次分析的最大周期。要将CFD从专业的研究团体中脱离出来,并且能让工程设计人员应用到实际的设计中去,就必须首先解决网格生成的自动化和即时性问题,R.Consner等人在他们的一篇文章中,详细地讨论了这些方面的问题,并提出:CFD研究人员的关键问题是“你能把整个设计周期缩短多少天?”。而缩短设计周期的主要途径就是缩短网格生成时间和流场计算时间。因此,生成复杂外形网格的

中国农田水利发展史

中国农田水利发展史 摘要: 中国农业自古以来在水的条件方面一直很不理想。中国大部分地区气候受季风影响降雨量年内分配很不均匀往往不能满足农业的需要亟需靠人工灌溉来保证。水是生命之源、生产之要和生态之基。兴水利、除水害,事关人类生存、经济发展以及社会进步,历来是治国安邦的大事。因此中国自远古就开始重视农田水利的兴修。 关键词:中国农业水人工灌溉重视农田水利 Abstract: Chinese agriculture since ancient times in terms of water conditions have been very satisfactory. China climate in most areas affected by the monsoon rainfall is very uneven distribution of the year often can not meet the need to ensure that agriculture needs by artificial irrigation. Water is the Source of Life, production and ecological base. Water conservancy, except water, human survival, economic development and social progress, has always been a country event. So since ancient China began to attach importance to the construction of water conservancy works. Key words: Chinese agriculture, water, artificial irrigation, attention, irrigation and water conservancy 前言: 农田水利基础设施是农业、农村经济的基础性设施,是发展农业的物质基础,在改善农业生产条件、保障农业和农村经济持续稳定增长,提高农民生活水平、保护生态环境等方面具有不可替代的重要地位和作用。从大禹治水至今,我国农田水利事业的发展已有5000多年历史。中国古代因地制宜地创造了多种形式的农田水利工程。有的工程就其规模之大设计的巧妙和高超技术都居于当时世界先进之列。水利是农业的命脉。在中国农业生产的发展与水利有着密切的关系可以说有些地区农业的盛衰与水利的兴废直接有关。几千年来丰富的水利资源滋养了中国农业。同时历史上旱涝灾害频仍也对农业生产造成了严重威胁。因此中国的农业发展史也就是发展农田水利、克服旱涝灾害的斗争史。 正文:中国古代农田水利大体经历了下列发展过程。 一、战国以前与当时的井田制农业相适应布置在井田上的小型灌排渠道——沟洫是这一时期农田水利的代表型式。传说早在公元前2000年左右夏禹治水时已经发明沟洫但限于当时的生产力水平没有得到很大发展。至周代农田沟洫逐渐形成系统并趋完善。据《周礼》的描述当时的沟洫大致可按功用不同和所控制的灌溉面积大小分为浍、洫、沟、遂、畎、列各级分别起着向农田引水、输水、配水、灌水以及从农田排水的作用形成有灌有排的农田水利体制。除了直接从河流中引水的形式外当时还出现了人工蓄水陂池。即在天然湖沼洼地周围用人工修筑的堤防构成的小型蓄水库可以调蓄河水和天然降水提高灌溉能力。西周时京都今西安市西南附近有灌溉作用的池就属这种灌溉型式。东周以后随着铁制农具的开始使用和推广水利工程的规模也逐渐扩大。春秋战国时期中原地区用桔槔来灌溉农田春秋时楚相孙叔敖修建芍陂吴王夫差开凿了连结江淮的运河。如春秋时期公元前613前591年间楚国在今安徽省寿县建成了芍陂当时是由孙叔敖主持修建的并于公元前548年将发展农田水利定为国家的法典。公元前563年郑国也兴建了新的灌排系统。 二、战国至西汉时期这一时期农田水利建设蓬勃兴起。大型渠系工程取代了农田沟洫水利工程技术也得到迅速发展。海河流域方面战国初年魏国邺令西门豹在今河北临漳一带主持兴建了中国最早的大型渠系漳水十二渠。由于漳水含有较多的泥沙带有丰富的有机和无机养分该渠的兴建不仅发展了灌溉而且肥沃了农田改良了土壤。西汉以下数百年间邺县一带成为中国重要的政治经济区域当与漳水十二渠的兴修有关。长江流域方面秦昭王时在秦蜀守李冰的主

蓄热式连续加热炉的基本结构组成

蓄热室连续加热炉的基本结构组成 连续式加热炉由以下几个基本部分组成:炉子基础和钢结构、炉膛与炉衬、燃料燃烧系统、排烟系统、余热利用装置、冷却系统、装出料设备、检测及调节装置、计算机控制系统等。 1炉子基础和钢结构 炉子基础将炉膛、钢结构和被加热钢坯的重量所构成的全部载荷传到地面上。一般采用混凝土基础。 炉子钢结构是由炉顶钢结构、炉墙钢结构和炉底钢结构的一个箱形框架结构,用以保护炉衬和安装烧嘴。水梁、立柱及各种炉子附件的固定主要由型钢和钢板组成。 (1)炉膛与炉衬 炉膛是由炉墙、炉顶和炉底围成的空间,是对钢坯进行加热的 地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的一个关 键技术条件。再加热炉的运行过程中,不仅要求炉衬能够在高 温和载荷条件下保持足够的温度和稳定性,要求炉衬能够耐受 炉气的冲刷和炉渣的侵蚀,而且要求有足够的绝热保温和气密 性能。为此,炉衬通常耐火层、保温层、防护层和钢结构几部 分组成。其中耐火层直接承受炉膛内的高温气流冲刷和炉渣侵 蚀,通常采用各种耐火材料经砌筑、捣打或浇筑而成;保温层 通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条 件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气

密性,保持多孔保温材料形成的保温层免于损坏。钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设备、检测设施、检测仪器、炉门、炉前管道以及检测、操作人员所形成的载荷,提供有关设施的安装框架。

A炉墙 炉墙分为侧墙和端墙,沿炉子长度方向上的炉墙成为侧墙,炉子两端的炉墙。整体捣打、浇注的炉墙尺寸可以根据需要设计。炉墙采用可塑料或浇注料内衬和绝热层组成的复合砌体结构。为了使炉子具有一定的强度和良好的气密性,炉墙外壁为5mm或6mm厚的钢板外壳。 蓄热式连续加热炉的炉墙上除了设有炉门、窥视门、烧嘴孔、测温孔等孔洞,还有蓄热室和高温通道(蓄热式烧嘴的蓄热室一再少嘴里),所以炉墙要能够承受高温。为了防止砌体受损,炉墙应尽可能避免直接承受附加载荷,所以炉门,冷却水管等构件通常都直接安装在钢材上。 B炉顶 加热炉的炉顶按其结构分为拱顶和吊顶两种。现在大多采用可塑料或浇注料内衬和绝热层组成的符合砌体吊顶结构。这种吊顶结构不受炉子跨度的影响且使用寿命长。 C炉底 炉底一般采用砖砌复合结构,高温炉底还要承受炉渣的化学侵蚀。

世界水利发展史

世界水利史-正文 水利事业的发展与人类文明有着密切的关系。中国的水利事业源远流长(见)。古代的埃及、巴比伦和印度的水利事业可上溯到公元前四五千年。美洲的玛雅文明和印加文明的水利遗迹距今也有两三千年以上。埃及和巴比伦的水利技术以后传播到希腊和罗马。文艺复兴以后传遍欧美各国。公元前 3世纪的对水的浮力理论,和后来文艺复兴时期的对水流理论都作出了贡献。1824年,英国人J.阿斯普丁发明了硅酸盐水泥,从而带动了混凝土结构的发展,使土木工程进入到一个新的发展阶段。19世纪下半叶出现了钢筋混凝土,这进一步推动了轻型混凝土建筑物的发展。19世纪70年代,出现了水电站。进入20世纪以后,许多新兴科学技术已开始在水利工程中得到广泛应用。例如,利用电子计算机对技术经济方案进行评估;用系统分析方法全面安排施工进度和评价区域性水资源;利用光弹模型分析和设计水工结构;利用、和渗灌等节省灌溉用水;利用遥感、超声波等手段分析、鉴定大型工程的水文地质及工程地质情况等。在工程建设中,20世纪的水利工程越来越具有大型化、综合化、跨流域、多目标等特点。 灌溉人类很早就利用河水发展。四大文明古国都出现在大河流域,以灌溉为古代文明的基础。一般来说,早期的灌溉都是引洪淤灌,以后发展为引水灌溉或建造水库、调洪灌溉。世界灌溉事业近 200年来发展很快。1800年左右,全世界有灌溉面积800万公顷。20世纪初提高到4800万公顷。1949年达到9200万公顷,60年代末超过 2亿公顷。突出的节水新技术有喷灌、滴灌等。 非洲尼罗河流域早在公元前4000年就利用尼罗河水位变化的规律发展洪水漫灌。公元前2300年前后在法尤姆盆地建造了美利斯水库,通过优素福水渠引来了尼罗河洪水,经调蓄后用于灌溉。这种灌溉方式持续了数千年。19世纪初,埃及引种棉花和甘蔗等经济作物。1826年开始改建旧的引洪漫灌系统,进行常年灌溉。1902年阿斯旺坝建成以后,又由水库引水进行常年灌溉。1970年建成新的阿斯旺高坝,常年灌溉渠道系统得到进一步的发展,使灌溉更有保证,并解决了防洪问题,每年还可发电100亿kW·h。 两河流域美索不达米亚的幼发拉底河和底格里斯河流域的灌溉也可以追溯到公元前4000年左右的巴比伦时期。由于幼发拉底河的高程普遍超过底格里斯河,因而对开挖灌渠十分有利。最早是引洪淤灌,以后发展为坡度平缓的渠道网。约公元前2000年,汉穆拉比时代已有了完整的灌溉渠系。干渠用砖衬砌,用沥青勾缝。当时的灌溉面积达260万公顷以上,养育着1500~2000万人口。干渠兼有通航与防洪的作用。当时颁布的《汉穆拉比法典》还专门对堤防失修、冲毁土地的责任者作出了赔偿损失的具体规定。约公元前1000年兴建的钮姆卢水库可向两岸的渠系供水,有些渠道深达10~16m,宽达120m。公元前600~560年间,新巴比伦的空中花园采用了细密的雨滴灌溉,类似现代的喷灌。 公元前 539年,巴比伦被波斯征服,灌溉系统失修,农业生产受到很大影响。公元初期,波斯的萨珊王朝修四大干渠引幼发拉底河水,灌溉今伊拉克中部地区。629年,两河流域出现大洪水,冲毁纽姆卢水库,不久阿拉伯人征服两河流域地区,着手改进旧渠系,逐步恢复灌溉。1258年,蒙古人占据了两河流域,灌溉系统遭到破坏。直至20世纪,两河流域

分散换向蓄热式加热炉操作规程

王工: 您好,此规程仅供参考,不足之处,敬请指正。 胖子 操作规程 开炉前煤气管道吹扫步骤: 1、将煤气总管蝶阀、盲板阀、蓄热箱前的手动蝶阀处于关闭状态,打开放散阀。 2、将煤气总管的氮气吹扫阀打开,吹扫十至二十分钟。 3、打开盲板阀。 4、关闭氮气吹扫阀。 5、打开煤气总管蝶阀,置换五分钟。 6、关闭放散阀。停炉前煤气管道吹扫步骤:若出现长时间停炉时,需关闭 煤气总管阀门。 1、关闭煤气总管蝶阀和所有蓄热箱前的手动蝶阀,打开煤气放散阀。 2、打开氮气吹扫阀,吹扫十至二十分钟。 3、关闭煤气总管盲板阀。 4、关闭氮气吹扫阀。 5、关闭放散阀。 开炉前的检查: 1、所有空、煤气管道,试压、试漏合格。煤气总管阀门处于关闭状态。 2、所有阀门开启灵活,阀位显示正确。

3、换向阀、助燃风机、引风机单机试车合格并验收。 4、所有加热炉设备调试完毕并验收。 5、安全指示、报警、各设备之间连锁按设计要求调试合格并验收。 6、加热炉砌筑工程验收合格。 7、加热炉自动化仪表系统调试完毕。 8、汽化冷却系统打压调试完毕,工程验收合格。 9、检查煤气三位三通换向阀是否运转灵活,工作是否正常。 10、检查各空气、煤气调节阀、烟气调节阀是否工作正常。 11、检查蓄热箱,启动助燃风机,启动三位三通换向阀换向程序,检查蓄热箱向炉内送煤气状况。检查蓄热箱的所有焊缝连接处是否漏气,如存在漏气及时处理。检查蓄热箱喷口气流是否均匀、通畅,确认蓄热箱工作正常。 12、氮气系统、吹扫放散系统、炉区供电系统等验收合格,煤气管路系统吹扫完毕。 开炉: 首先确定蓄热箱及烧嘴前蝶阀、烟气调节阀、煤气调节阀、空气调节阀是否处于关闭状态,没有处于关闭状态的阀门均要关闭。 1、首先开启助燃风机,调节助燃风机出口蝶阀,使风机运转平稳。 2、打开所有空气的蝶阀对加热炉进行吹扫,直至炉内无可燃气体存在,关闭点火烧嘴前空气调节阀。 3、在加热炉靠近点火烧嘴处,用木柴点燃1~2堆明火。 4、先开点火烧嘴的嘴前空气调节阀,然后再开点火烧嘴的嘴前煤气调节阀,点燃该点火烧嘴。 5、所有点火烧嘴稳定燃烧后,按需要进行烘炉或升温。根据炉温的设定,依次调节各点火烧嘴前空气蝶阀及煤气蝶阀,保证加热炉正常负荷的供给。烟气调

蓄热式燃烧技术(插图)

蓄热式燃烧技术 一、前言 随着经济全球化的不断推进,资源和环境问题日显突出.工业炉做为能源消耗的大户,如何尽快推行高效、环保的节能技术成为重中之重。 蓄热式燃烧技术从根本上提高了加热炉的能源利用率,特别是对低热值燃料(如高炉煤气)的合理利用,既减少了污染物(高炉煤气)的排放,又节约了能源,成为满足当前资源和环境要求的先进技术。另外,蓄热式燃烧技术的采用又强化了加热炉内的炉气循环,均匀炉子的温度场,提高了加热质量,效果也非常显著. 二、发展历史 蓄热式燃烧方式是一种古老的形式,很早就在平炉和高炉上应用。而蓄热式烧嘴则最早是由英国的Hot Work与British Gas公司合作,于上世纪八十年代初研制成功的。当初应用在小型玻璃熔窑上,被称为RCB型烧嘴,英文名称为Regenerative Ceramic Burner。由于它能够使烟气余热利用达到接近极限水平,节能效益巨大,因此在美国、英国等国家得以广泛推广应用。 1984年英国的Avesta Sheffild公司用于不锈钢退火炉加热段的一侧炉墙上,装了9对,其效果是产量由30t/h增加到45t/h,单耗为1.05GJ/t。虽然是单侧供热,带钢温度差仅为±5℃。 1988年英国的Rotherham Engineering Steels公司在产量175 t/h的大方坯步进梁式炉上装了32对RCB烧嘴,取代了原来的全部烧嘴,600℃热装时单耗0.7GJ/t,炉内温度差±5℃。 日本从1985年开始了蓄热燃烧技术的研究。他们没有以陶瓷小球作蓄热体,而是采用了压力损失小、比表面积比小球大4—5倍的陶瓷蜂窝体,减少了蓄热体的体积和重量。 1993年,日本东京煤气公司在引进此项技术后作了改进,将蓄热器和烧嘴组成一体并采用两阶段燃烧以降低NOx值,其生产的蓄热式烧嘴称FDI型。开始用于步进梁式炉,锻造炉,罩式炉以及钢包烘烤器等工业炉上。 日本NKK公司于1996年在230t/h热轧板坯加热炉(福山厂)上全面采用了蓄热式燃烧技术,使用的是以高效蜂窝状陶瓷体作蓄热体的热回收装置和喷出装置一体化的紧凑型蓄热式烧嘴,烧嘴每30s切换一次。投产后,炉内氧浓度降低、NOx大幅度减少,炉内温度均匀,效率提高。 在中国,早期的蓄热式燃烧技术应用于钢铁冶金行业中的炼钢平炉和初轧均热炉上。然而,由于当时所采用的蓄热体单位比表面积小,蓄热室结构庞大,换向阀安全性能差、造价高,高温火焰温度集中,技术复杂等诸多原因,导致了其难以在其他加热炉和热处理炉上使用。 80年代后期,我国开始了陶瓷小球蓄热体蓄热式燃烧技术的研究和应用。当时,结合我国广泛使用低热值燃料,特别是大量高炉煤气被放散的实际情况,我国的热工研究者开发出了适合我国国情的独具特色的蓄热式高温燃烧技术软硬件系统,并逐步应用于均热炉、车底式退火炉、加热炉等各种工业炉窑上。 三、基本原理及特点 1、蓄热式燃烧装置的原理 1.1动漫效果 1.2蓄热式燃烧装置原理见下图1.(a) (b) (c)

并行网格生成技术

并行网格生成技术 分类 基于以下三种网格生成技术:Delaunay 网格前沿法,边细分法。 并行网格生成将原始网格生成问题划分成N个子问题来求解。 子问题的求解可分为以下三种形式: 紧耦合,部分耦合,无耦合。 并行网格生成中的难点在于 1.维持并行算法的稳定性,使得并行算法的结果正确。 2.代码重用:将原始算法移植为并行算法时不需要改动原始算法代码,并且能保证并行算法的正确性。 基于Delaunay的方法 空洞算法: 上述算法并行化后引发如下问题:

图(a)中两个空洞相交,使得产生的三角剖分边相交。 图(b)中两个空洞共享一条边,使得最终产生的剖分可能不满足德劳内空圆准则。 紧耦合算法: Parallel Optimistic Delaunay Meshing Method (PODM) PODM算法对子网格划分没有要求,这个算法通过重新划分子网格边界来保证算法稳定性。如下图(a)所示,空洞扩展到子区域之外时,将通过子区域之间的通信来保证算法的正确性。因此,这个算法是紧耦合的,不具备代码重用性。 图(a)是空洞扩展到子区域之外的情况。 图(b)是并行插入时的同步时间图。 无耦合算法: Parallel Projective Delaunay Meshing (PPDM) PPDM算法的基本思想是预先计算出Delaunay-admissible子区域边界。即,最终生成的Delaunay剖分将包括这个边界。

这样,每个子网格就可以完全独立的计算各自剖分。 因此,这个算法是无耦合并且是可完全代码复用的。 生成Delaunay-admissible子区域边界的基本思想如下: 先生成三维点集的一个凸壳。首先用Inertia Axis分割法将凸壳用平面II分成两个近似相等 的部分。然后搜索所有三角面(如上图),使得存在一个空球,球心在平面II上,球面经过P,Q,R且球内不包含其它任何点。这样,这些三角面就构成了一个Delaunay-admissible边界。 部分耦合算法: Parralel Constrained Delaunay Meshing (PCDM) method

大数据技术和应用中的挑战性科学问题-中国自动化学会控制理论专业

大数据技术和应用中的挑战性科学问题 第89期双清论坛论证报告 大数据是人类进入信息化时代的产物和必然结果。“大数据发展的核心动力来源于人类测量、记录和分析世界的渴望”,而这种渴望又源于人类努力改善自身生存和生活状况的无尽追求。 在人类社会发展进程中,人们观测自然现象、揭示和把握自然规律并进而用于改善自身生存和生活状况的活动从来都没有停止过。人类揭示和运用自然规律是从观测和记录自然现象开始的,而这种观测和记录的结果要么就是数据,要么可以通过某种方法转化为数据。人类把握和运用自然规律的能力越强,社会经济和科学技术就越发展;社会经济和科学技术越发展,人类揭示和运用自然规律的愿望和需求就越强烈,结果是获取和存储的观测数据就会越来越多。伴随着近代传感器、无线通信、计算机与互联网等技术的迅猛发展及在各个领域的广泛应用,人类获取数据的手段和途径越来越多,成本越来越低,速度越来越快,所获数据的种类、层次和尺度也越来越多样化,这就在广度、速度和深度三个方面催生了大数据时代的到来。 一、开展大数据技术和应用研究的意义 粗略地讲,大数据是指在可容忍的时间内无法用现有的信息技术和软硬件工具对其进行传输、存储、计算与应用等的数据集合。与传统意义上的数据概念相比,大数据具有如下几个显著特征:(1)数据

规模(Volume)不断扩大,数据量已从GB(109)、TB(1012)再到PB(1015)字节,甚至已开始以EB(1018)和ZB(1021)字节来计量。“到2013年,世界上存储的数据预计能达到1.2ZB字节。如果把这些数据全部记录在书中,这些书可以覆盖整个美国52次;如果将之存储在只读光盘上,这些光盘可以堆成5堆,每一堆都可以伸到月球上。”(2)数据类型(Variety)繁多,包括结构化、半结构化和非结构化数据,甚至包括非完整和错误数据。现代互联网上半结构化和非结构化数据所占比例已达95%以上。(3)产生和增长速度(Velocity)快。美国国际数据公司(IDC)的研究报告称,到2020年全球的数据获取能力将增加50倍,用于数据存储的服务器将增加10倍。当今世界,各种数据采集和存储设备每时每刻都在获取和存储大量新的数据。这些数据有时以高密度流的形式快速演变,具有很强的时效性,只有快速适时处理才可有效利用。(4)数据价值(Value)大,且可整合与多次利用。对于某一特定的、仅需少量数据的应用而言,大数据呈现出价值密度低的特点,但对于众多潜在的应用而言,大数据整体往往蕴藏着巨大的价值。 大数据时代的到来,撼动了世界的方方面面,从商业、科技、医疗卫生到政府、教育以及社会的其他各个领域。大数据技术和应用一方面对社会、经济和科技的发展带来了重要机遇,另一方面也对数据获取、存储、传输、计算以及应用提出了全新的挑战。开展大数据技术与应用研究,是时代发展的必然要求,具有无可估量的社会经济价值和巨大的科学意义。

蓄热式加热炉

一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。在工业企业中广泛应用,对节能减排工作起着重要的促进作用。 二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。它分为预热段、加热段和均热段三个主体。其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。是一种新型的高效、节能的加热炉。参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。可以说它是整个加热炉的心脏。它的

换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。也就是说换向控制系统的正常运行决定着整个加热炉的正常燃烧和炉温的控制。所以在控制系统上采用计算机控制系统,由传感器采集各种变量PLC,再由PLC根据设定控制方式和目标值,分别驱动相应的换向装置和相应的执行机构,调节过程变量,实现对温度、压力、流量的调节控制。操作人员可通过键盘和鼠标经工控机HMI界面来设定炉子的各项热工参数,计算机根据设定的参数送上工控机处理,并在HMI上显示.同时随时可查看各种历史参数和打印各种生产报表。声光报警系统可即时对故障进行报警,并向操作者提示处理方法是目前较先进、实用的计算机控制系统。2、换向控制换向控制系统设有自动、手动控制两部分。在正常的运行过程中

相关文档
最新文档