几何第05讲 平面几何题选讲(2)

几何第05讲 平面几何题选讲(2)
几何第05讲 平面几何题选讲(2)

第五讲平面几何问题选讲(2)

例 1 (2004年全国高中数学联赛试题)如图,在锐角

△ABC中,AB上的高CE与AC上的高BD相交于点H,

以DE为直径的圆分别交AB、AC于F、G两点,FG与AH

相交于点K.已知BC=25,BD=20,BE=7,求AK的长.

例2 (2003年美国数学奥林匹克竞赛试题)

一个圆通过△ABC 的顶点A 、B ,分别交线段AC 、BC 于点D 、E ,直线BA 和ED 交于点F ,直线BD 和CF 交于点M .证明:MF=MC MB·MD=MC 2.

<=>∠CBM=∠CBG=∠CFG=∠DCF=∠DCM. 因为∠DMC=∠CMB,

所以,∠CBM=∠DCM <=>△BCM ∽△CDM . 故CM DM

BM CM ,即MB ·MD=MC 2.

例3. (2002年保加利亚冬季数学竞赛试题)

设M 、N 分别是△ABC 的边AC 、BC 上的点,且∠ACB=90o.设AN 与BM 交于点L .证明:△AML 、△BNL 的垂心与点C 三点共线.

例4. (第44届IMO 预选试题)

如图,已知△ABC 内一点P ,设D 、E 、F 分别为点P 在边BC 、CA 、AB 上的投影.假设AP 2+ PD 2=BP 2+ PE 2=CP 2+ PF 2,且△ABC 的三个旁心分别为 I A 、I B 、I C .证明:P 是△I A I B I C 的外心.

例5 (第44届IMO试题)

给定一个凸六边形,其中的每一组对边都具有如下性质:这两条边的中点

倍.证明:该六边形的所有内角相等.(一

个凸六边形ABCDEF共有三组对边:AB和DE,BC和EF,CD和FA)

例6 (第30届俄罗斯数学奥林匹克竞赛试题)

四边形ABCD外切于圆,∠A和∠B的外角平分线相交于点K,∠B和∠C 的外角平分线相交于点L,∠C和∠D的外角平分线相交于点M,∠D和∠A 的外角平分线相交于点N.设△ABK、△BCL、△CDM、△DAN的垂心分别为K1、L1、M1、N1.证明:四边形K1 L1 M1 N1是平行四边形.

例7. (2004年CMO 试题)

凸四边形EFGH 的顶点E 、F 、G 、H 分别在凸四边形ABCD 的边AB 、BC 、CD 、

DA 上,且满足

.1...=HA

DH GD CG FC BF EB AE 而点A 、B 、C 、D 分别在凸四边形E 1 F 1 G 1 H 1的边H 1E 1、E 1F 1、F 1G 1、G 1 H 1上,满足E 1F l ∥EF, F 1G 1∥FG ,G 1H 1∥GH, H 1E 1∥HE .已知

,1

1λ=AH A

E 求CG C

F 1的值.

例8 (2002年保加利亚国家数学奥林匹克竞赛试题)

是△A1B1 C1外接圆的直径,r和p分别为△ABC的内切圆

半径和半周长,证明:r2+ p2=d2.

几何图形初步练习题(含答案)

第四章几何图形初步 4.1 几何图形 4.1.1 立体图形与平面图形 第1课时立体图形与平面图形 1.从下列物体抽象出来的几何图形可以看成圆柱的是( ) 2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆 3.下列图形属于棱柱的有( ) A.2个 B.3个 C.4个 D.5个 4.将下列几何体分类: 其中柱体有,锥体有,球体有(填序号). 5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆

个. 6.把下列图形与对应的名称用线连起来: 圆柱四棱锥正方体三角形圆

第2课时 从不同的方向看立体图形和立体图形的展开 图 1.如图所示是由5个相同的小正方体搭成的几何体,从 正面看得到的图形是( ) 2.下列常见的几何图形中,从侧面看得到的图形是一个 三角形的是( ) 3.如图所示是由三个相同的小正方体组成的几何体从 上面看得到的图形,则这个几何体可以是( ) 4.下面图形中是正方体的展开图的是( ) 5.如图所示是正方体的一种展开图,其中每个面上都有 一个数字,则在原正方体中,与数字6相对的数字是( ) A.1 B.4 C.5 D.2 6.指出下列图形分别是什么几何体的展开图( 将对应的

几何体名称写在下方的横线上).

4.1.2 点、线、面、体 1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个 2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对 3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明; (2)用棉线“切”豆腐表明; (3)旋转壹元硬币时看到“小球”表明. 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来. 5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?

几何证明选讲(教师版)

B C D O A P 1.如图,点P 在圆O 直径AB 的延长线上, 且PB=OB=2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则PC= , CD= . 2.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C , ,32=PC 若∠CAP =30°,则⊙O 的直径AB =___________ 答案4 3.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _____。 解:依题意,BC =,∴AC =5,2 AD =.AB AC =15, ∴AD =15 4.如图,PA 切O 于点A ,割线PBC 经过圆心O ,OB=PB=1, OA 绕点O 逆时针旋转60°到OD ,则PD 的长为 . 解:∵PA 切O 于点A ,B 为PO 中点,∴AB=OB=OA, ∴60AOB ∠= ,∴120POD ∠= , 在 △ POD 中 由 余 弦 定 理 , 得 2222cos PD PO DO PO DO POD =+-?∠=1 414()72 +-? -= ∴PD 5.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD AD=DC ,则 sin ∠ACO=_________ 解:由条件不难得ABC ?为等腰直角三角形,设圆的半径为1,则1OB =,2BC =, OC =

sin BCO ∠= = ,s co BCO ∠= ∴ sin ∠ACO=0sin(45BCO -∠)=1010 6.如图,PT 是O 的切线,切点为T ,直线PA 与O 交于A 、B 两点,TPA ∠的平分线分别交直线TA 、 TB 于D 、E 两点,已知2PT =,PB =,则PA = , TE AD = . ; 7.已知AB 是圆O 的直径,EF 切圆O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 长为_______. 、23; 8.已知AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D ,且4AD DB =,设 COD θ∠=,则cos 2θ= . 解:()44,AD DB OC OD OC OD =∴+=- 即35OC OD =, 22 2 37cos 22cos 12121525OD OC θθ???? =-=?-=?-=- ? ? ???? 9.如图,圆O 是 ABC ?的外接圆,过点C 的切线交AB 的延长线于点D ,CD =3AB BC ==。则BD 的长______________ , AC 的长______________. 4,; 10.如图,⊙O 的直径AB =6cm ,P 是AB 延 长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC , 若CPA ∠=30°,PC = 。 解:连接OC ,PC 是⊙O 的切线,∴∠OCP=Rt ∠. ∵CPA ∠=30°,OC= 2AB =3, ∴0 3tan 30PC =,即PC= 11.如右图所示,AB 是圆O 的直径, AD DE =,10AB =,8BD =,则cos BCE ∠= . 35 12.如图:PA 与圆O 相切于A ,PCB 为圆O 的割线, P

最新平面几何练习题

平面几何选讲练习题 1.如图所示,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线交⊙O 2于点C , 过点B 作两圆的割线,分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P. (1)求证:AD ∥EC; (2)若AD 是⊙O 2的切线,且PA=6,PC=2,BD=9,求AD 的长; 2.如图:已知AD 为⊙O 的直径,直线BA 与⊙O 相切于点A ,直线OB 与弦AC 垂直并相 交于点G ,连接DC . 求证:BA ·DC =GC ·AD . 3. 已知:如图,△ABC 中,AB=AC ,∠BAC=90°,AE= 31AC ,BD=3 1 AB ,点F 在BC 上,且CF= 3 1 BC 。求证: (1)EF ⊥BC ; (2)∠ADE=∠EBC 。 B E D O 1 O 2 A P C

F E D A B C 4.如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F . (1)求FC BF 的值; (2)若△BEF 的面积为1S ,四边形CDEF 的面 积为2S ,求21:S S 的值. 5.已知C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,DC 是ACB ∠的平分线交 AE 于点F ,交AB 于D 点. (1)求ADF ∠的度数; (2)若AB=AC ,求AC:BC . 6.自圆O 外一点P 引切线与圆切于点A ,M 为PA 中点,过M 引割线交圆于B,C 两点. 求证:∠MCP=∠MPB . O A B D E F

7.如图,AD 是⊙O 的直径,AB 是⊙O 于点M 、N ,直线BMN 交AD 的延长线于点C ,NC MN BM ==,2=AB ,求BC 的长和⊙O 的半径. 8.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作 CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM ·MB =DF ·DA . 9.如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C 两点, 圆心O 在PAC ∠的内部,点M 是BC 的中点. (Ⅰ)证明A ,P ,O ,M 四点共圆; (Ⅱ)求∠OAM +∠APM 的大小. 10.如图 ,过圆O 外一点M 作它的一条切线,切点A ,过A 点作直线AP 垂直直线OM , 垂足为P. (Ⅰ)证明:OM ·OP=OA 2; (Ⅱ)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点,过B 点的切线交 直线ON 于K.证明:∠OKM=90° B M C O P

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

高考数学 必考热点大调查22 选修平面几何问题(选修1)(

2014高考数学必考热点大调查:热点22选修平面几何问题(选修 1) 【最新考纲解读】 1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理. 2.证明圆周角定理、圆的切线的判定定理及性质定理. 3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理. 【回归课本整合】 一、相似三角形 1.相似三角形 (1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数). (2)判定 ①判定定理1 两角对应相等的两个三角形相似. 判定定理2 三边对应成比例的两个三角形相似. 判定定理3 两边对应成比例且夹角相等的两三角形相似. ②如果两个直角三角形有一个锐角对应相等,那么它们相似. 如果两个直角三角形的两条直角边对应成比例,那么它们相似. 如果一个直角三角形的斜边与一条直角边和另一个直角三角形的斜边与一条直角边对应成比例,那么这两个三角形相似. (3)性质 ①性质定理1 相似三角形对应边上的高、中线和它们周长的比都等于相似比. ②性质定理2 相似三角形面积的比等于相似比的平方. 相似三角形对应角的平分线的比,外接圆直径的比、周长的比,内切圆直径的比、周长的比都等于相似比. 相似三角形外接圆面积的比,内切圆面积的比都等于相似比的平方. 2.平行截割定理 平行截割定理:三条平行线截两条直线,所得的对应线段成比例. 推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.3.直角三角形的射影定理: 若Rt△ABC斜边AB上的高为CD,则CD2=AD·BD,BC2=BD·AB,AC2=AD·AB. 二、圆幂定理与圆锥截线 1.圆的切线 (1)切线判定定理经过半径外端且垂直于这条半径的直线是圆的切线. (2)切线性质定理圆的切线垂直于经过切点的半径. ①经过圆心且垂直于切线的直线必过切点. ②经过切点垂直于切线的直线必经过圆心. 推论1 从圆外一点所引圆的两条切线长相等. 推论2 经过圆外一点和圆心的直线平分从这点向圆所引两条切线的夹角. (3)内切圆、旁切圆与一个三角形三边都相切的圆,叫做这个三角形的内切圆;与三角形的一边和其它两边的延长线都相切的圆,叫做三角形的旁切圆. 2.圆心角定理 圆心角的度数等于它所对的弧的度数.

几何图形初步经典测试题及解析

几何图形初步经典测试题及解析 一、选择题 1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( ) A .45? B .60? C .70? D .40? 【答案】C 【解析】 【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小 【详解】 ∵∠DOB 与∠DOA 的比是2:11 ∴设∠DOB=2x ,则∠DOA=11x ∴∠AOB=9x ∵∠AOB=90° ∴x=10° ∴∠BOD=20° ∴∠COB=70° 故选:C 【点睛】 本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导 2.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( ) A .38° B .104° C .142° D .144° 【答案】C 【解析】 ∵∠AOC =76°,射线OM 平分∠AOC ,

∴∠AOM=12∠AOC=12 ×76°=38°, ∴∠BOM=180°?∠AOM=180°?38°=142°, 故选C. 点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 3.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( ) A .35° B .45° C .55° D .65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A . 【点睛】 本题考查余角、补角的计算. 4.下面四个图形中,是三棱柱的平面展开图的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据三棱柱的展开图的特点作答. 【详解】 A 、是三棱锥的展开图,故不是; B 、两底在同一侧,也不符合题意; C 、是三棱柱的平面展开图; D 、是四棱锥的展开图,故不是. 故选C . 【点睛】 本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征. 5.在等腰ABC ?中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ?的周长最小时,P 点的位置在ABC ?的( )

天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等 函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线 与方程、导数及其应用。选修1—2:统计案例、推理与证明、 数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。选修2—2:导数及其应用,推理与证 明、数系的扩充与复数选修2—3:计数原理、随机变量及其 分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平 面向量,圆锥曲线,立体几 何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运 算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与 定义域、值域与最值、反函 数、三大性质、函数图象、 指数与指数函数、对数与对 数函数、函数的应用

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

几何图形初步基础练习题

图形认识初步基础练习题 一判断下列说法是否正确 ①直线AB与直线BA不是同一条直线();②用刻度尺量出直线AB的长度(); ③直线没有端点,且可以用直线上任意两个字母来表示();④线段AB中间的点叫做线段AB的中点(); ⑤取线段AB的中点M,则AB-AM=BM();⑥连接两点间的直线的长度,叫做这两点间的距离() ⑦一条射线上只有一个点,一条线段上有两个点() 二填空题 1.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC为_______ 2.如图,线段AC∶CD∶DB=3∶4∶5,M,N分别是CD,AB的中点,且MN=2cm,则AB的长为________ 3.如图,四点A、B、C、D在一直线上,则图中有______条线段,有_______条射线;若AC=12cm,BD=8cm,且AD=3BC,则AB=______,BC=______,CD=_ ___ 4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________ 5.如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD=_____ 6.C为线段AB上的一点,点D为CB的中点,若AD=4,则AC+AB的长为________ 7.把一条长24cm的线段分成三段,使中间一段的长为6cm,则第一段与第三段中点的距离为________ 8.如图,点C在线段AB上,E是AC的中点,D是BC的中点,若ED=6,则AB的长为________ 9.如图,已知∠AOB=2∠BOC,且OA⊥OC,则∠AOB=_________0 10.如图,已知OE⊥OF直线AB经过点O,则∠BOF—∠AOE=__________若∠AOF=2∠AOE,则∠BOF=___________ 11.如图,OC平分∠AOB,∠BOC=20°,则∠AOB=_______ 12.如图,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_______条线段,________条射线, ________个小于平角的角 13.如图,∠AOB=600,OD 、OE分别平分∠BOC、∠AOC,那么∠EOD=0 14.已知有共公顶点的三条射线OA、OB、OC,若∠AOB=1200,∠BOC=300,则∠AOC=_________ 15.2点30分时,时钟与分钟所成的角为度 16.40038′14′′的余角是,106024′48′′的补角是 17.一个角为n0(n<90),则它的余角为,补角为 18.∠α和∠β都是∠AOB的补角,则∠α∠β; 19.如果∠1+∠2=900,∠1+∠3=900,则∠2与∠3的关系是,理由是 20.102°43′32″+77°16′28″=_____ ___;98°12′25″÷5=___ __ 三选择题 1.互为余角的两个角之差为35°,则较大角的补角是() A.117.5° B.11 2.5° C.125° D.127.5° 2.如图,∠AOE=∠BOC,OD平分∠COE,那么图中除∠AOE=∠BOC外,相等的角共有() A.1对 B.2对 C.3对 D.4对 3.如图,由A到B的方向是() A.南偏东30° B.南偏东60° C.北偏西30 D.北偏西60° 4.某测绘装置上一枚指针原来指向南偏西550,把这枚指针按逆时针方向旋转800,则结果指针的指向() A.南偏东35° B.北偏西35° C.南偏东25° D.北偏西25° 5.甲看乙的方向为南偏西25°,那么乙看甲的方向是() A.北偏东75° B.南偏东75° C.北偏东25° D.北偏西25°

几何证明选讲知识点总结

相似三角形的判定及有关性质一一备课人:李发 知识点1比例线段的相关概念 比例线段:对于四条线段a b c、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即- - b d (或a:b=cd )那么这四条线段叫做成比例线段,简称比例线段. 注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位. ⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式. ⑶比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:b d c a 知识点2:比例的性质 基本性质:(1) a: b c: d ad bc;(2) a : c c: b c a b . 反比性质(把比的前项、后项交换): a c b d b d a c b a d c a c a b cd 合比性质:?.发生同样和差变化比例仍成立.如: a c a c等等. b d b d a b c d a b c d o p p m八,,小、a c e m a 等比性质:如果一(b d f n 0),那么 b d f n b d f n b 注意:实际上,由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad be,除 了可化为a:b c:d,还可化为a:c b:d , c: d a : b , b:d a : c , b:a d:c, c:a d:b, d : c b: a , d:b c:a. 知识点3:比例线段的有关定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等?推论1:经过三角形一边的中点与另一边平行的直线必平分第三边?(三角形中位线定理的逆定理) 推论2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰?(梯形中位线定理的逆定理) 平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点:4 :黄金分割 把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线 段AB的黄金分割点,其中AC AB 0.618AB . 2 知识点5:相似图形 1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形) 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫 做相似比(或相似系数) (1 )相似三角形是相似多边形中的一种;

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

最新初中数学几何图形初步经典测试题含解析(1)

最新初中数学几何图形初步经典测试题含解析(1) 一、选择题 1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是() A.20°B.22°C.28°D.38° 【答案】B 【解析】 【分析】 过C作CD∥直线m,根据平行线的性质即可求出∠2的度数. 【详解】 解:过C作CD∥直线m, ∵∠ABC=30°,∠BAC=90°, ∴∠ACB=60°, ∵直线m∥n, ∴CD∥直线m∥直线n, ∴∠1=∠ACD,∠2=∠BCD, ∵∠1=38°, ∴∠ACD=38°, ∴∠2=∠BCD=60°﹣38°=22°, 故选:B. 【点睛】 本题考查了平行线的计算问题,掌握平行线的性质是解题的关键. 2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()

A.B. C.D. 【答案】D 【解析】 【分析】 根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】 解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱. 故选:D. 【点睛】 本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键. 3.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于() A.38°B.104°C.142°D.144° 【答案】C 【解析】 ∵∠AOC=76°,射线OM平分∠AOC, ∴∠AOM=1 2 ∠AOC= 1 2 ×76°=38°, ∴∠BOM=180°?∠AOM=180°?38°=142°, 故选C. 点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 4.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

最新初中数学几何图形初步经典测试题及答案

最新初中数学几何图形初步经典测试题及答案 一、选择题 1.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( ) A .∠BAO 与∠CAO 相等 B .∠BA C 与∠AB D 互补 C .∠BAO 与∠ABO 互余 D .∠ABO 与∠DBO 不等 【答案】D 【解析】 【分析】 【详解】 解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B 正确; 因AO 、BO 分别是∠BAC 、∠ABD 的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A 正确,选项D 不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO 即可得∠BAO+∠ABO=90°,选项A 正确,故选D. 2.下面四个图形中,是三棱柱的平面展开图的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据三棱柱的展开图的特点作答. 【详解】 A 、是三棱锥的展开图,故不是; B 、两底在同一侧,也不符合题意; C 、是三棱柱的平面展开图; D 、是四棱锥的展开图,故不是. 故选C . 【点睛】 本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征. 3.在等腰ABC ?中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上

的一个动点,当PCE ?的周长最小时,P 点的位置在ABC ?的( ) A .重心 B .内心 C .外心 D .不能确定 【答案】A 【解析】 【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可. 【详解】 连接BP 、BE , ∵AB=AC ,BD=BC , ∴AD ⊥BC , ∴PB=PC , ∴PC+PE=PB+PE , ∵PB PE BE +≥, ∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线, ∵AD 也是中线, ∴点P 是△ABC 的重心, 故选:A. 【点睛】 此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义. 4.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( ) A .斗 B .新 C .时 D .代

相关文档
最新文档