电子探针显微分析(精简)

电子探针的分析原理及构造

电子探针在找矿方面的应用 一、电子探针-基本概念 电子探针仪是 X射线光谱学与电子光学技术相结合而 产生的。1948年法国的R.卡斯坦制造了第一台电子探针 仪。1958年法国首先制造出商品仪器。电子探针仪与扫 描电子显微镜在结构上有许多共同处。70年代以来生产 的电子探针仪上一般都带有扫描电子显微镜功能,有的还 附加另一些附件,使之除作微区成分分析外,还能观察和 研究微观形貌、晶体结构等。 用波长色散谱仪(或能量色散谱仪)和检测计数系统, 测量特征X射线的波长(或能量)和强度,即可鉴别元素 的种类和浓度。在不损耗试样的情况下,电子探针通常能 分析直径和深度不小于1微米范围内、原子序数4以上的 所有元素;但是对原子序数小于12的元素,其灵敏度较 差。常规分析的典型检测相对灵敏度为万分之一,在有些 情况下可达十万分之一。检测的绝对灵敏度因元素而异, 一般为10-14~10-16克。用这种方法可以方便地进行点、 线、面上的元素分析,并获得元素分布的图象。对原子序数高于10、浓度高于10%的元素,定量分析的相对精度优于±2%。 电子探针仪主要包括:探针形成系统 (电子枪、加速和聚焦部件等)、X射线信号检测系统和显示、记录系统、样品室、高压电源和扫描系统以及真空系统。 二、电子探针-结构特点 电子探针X射线显微分析仪(简称电子 探针)利用约1Pm的细焦电子束,在样品表 层微区内激发元素的特征X射线,根据特 征X射线的波长和强度,进行微区化学成 分定性或定量分析。电子探针的光学系统、 真空系统等部分与扫描电镜基本相同,通 常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。 电子探针主要由电子光学系统(镜筒),X射线谱仪和信息记录显示系统组成。电子探针和扫描电镜在电子光学系统的构造基本相同,它们常常组合成单一的仪器。 电子光学系统 该系统为电子探针分析提供具有足够高的入射能量,足够大的束流和在样品表面轰击殿处束斑直径近可能小的电子束,作为X射线的激发源。为此,一般也采用钨丝热发射电子枪和2-3个聚光镜的结构。为了提高X射线的信号强度,电

实验六 电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法 一、实验内容及实验目的 1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、电子探针的分析方法 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。 1.实验条件 (1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。 (4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

分析测试中心电子探针(EPMA)简介

分析测试中心电子探针(EPMA)简介 一、仪器概述 电子探针利用聚焦得非常细(微米-纳米级)的高能电子束轰击样品,激发出各种被测物质的有用信息(如特征X射线、二次电子、背散射电子等),通过分析这些有用信息达到对样品微区成分分析和形貌观察的目的。 电子探针与扫描电镜的结构大致相似,不同的是电子探针有一套完整的X射线波长和能量探测装置(波谱仪WDS和能谱仪EDS),用来探测电子束轰击样品所激发的特征X射线。由于特征X射线的能量或波长随着原子序数的不同而不同,只要探测入射电子在样品中激发出的特征X射线波长或能量,就可获得样品中所含的元素种类和含量,以此对样品微区成分进行定量分析是电子探针最大的特点。 分析测试中心已安装的电子探针是日本岛津公司生产的EPMA-1600型最新产品,它不仅具有较高的X射线检出角,同时由于使用全聚焦的X射线分光晶体,能兼顾X 射线检测的高灵敏度和高分辨率,并配有高稳定的电子光学系统、真空系统及高精度机械系统以及EDAX公司生产的Genesis能谱仪,是目前华南地区最先进的微区成分定性定量分析和形貌观察用大型精密科研仪器之一。 二、仪器用途 适用于材料(合金、陶瓷、半导体材料等)、矿物、冶金、机械、微电子等领域的微区化学组成定性和定量分析、微区化学组成线分析、微区化学组成面分析以及各类固体产品的微区形貌观察与成分分布图像等,是对试样表面形貌观察、微区组织结构和元素定性定量分析的最有效、原位(in-situ)表征手段。 三、仪器的性能与特点 1、具有较高的X-射线检出角(52.5?),有利于提高仪器空间分辨率和凸凹样品分析观察的可靠性;分光晶体采用Johanson型全聚焦分光晶体,同一道波谱仪兼顾高分辨率和高灵敏度。 2、分析精度:好于1%(主要元素,含量>5%)和5%(次要元素,含量~1%);谱仪检测极限:大于10ppm。 3、分析元素范围:4Be-92U;加速电压:0.2-30kV(可调步长≤0.5kV);二次电子像分辨率:6nm;放大倍数:50-300000?,连续可调(有效图像观察倍数≤50000?)。 4、电子束流稳定性:好于1.5?10-3/h;电子束流:10-12–10-5A,连续可调,绝对准确值好于10%。 5、样品台最小移动间距为0.02微米,重复精度好于±1μm,机械系统精密度高。

电子探针、扫描电镜显微分析2

图8-12 电子探针结构的方框图 2.4.1 电子光学系统 电子光学系统包括电子枪、电磁透镜、消像散器和扫描线圈等。其功能是产生一定能量的电子束、足够大的电子束流、尽可能小的电子束直径,产生一个稳定的X 射线激发源。 2.4.1.1 电子枪 电子枪是由阴极(灯丝)、栅极和阳极组成。它的主要作用是产生具有一定能量的细聚焦电子束(探针)。从加热的钨灯丝发射电子,由栅极聚焦和阳极加速后,形成一个10μm ~100μm 交叉点(Crossover),再经过二级会聚透镜和物镜的聚焦作用,在试样表面形成一个小于1μm 的电子探针。电子束直径和束流随电子枪的加速电压而改变, 加速电压可变范围一般为1kV ~30kV 。 2.4.1.2 电磁透镜 电磁透镜分会聚透镜和物镜,靠近电子枪的透镜称会聚透镜,会聚透镜一般分两级,是把电子枪形成的10μm -100μm 的交叉点缩小1-100倍后,进入样品上方的物镜,物镜可将电子束再缩小并聚焦到样品上。为了挡掉大散射角的杂散电子,使入射到样品的电子束直径尽可能小,会聚透镜和物镜下方都有光阑。 为了在物镜和样品之间安置更多的信号探测器,如二次电子探测器、能谱仪等,必须有一定的工作距离( 物镜底面和样品之间的距离)。工作距离加长必然会使球差系数增大,从而使电子束直径变大,如果电子束几何直径为dg, 由于球差系数的影响,最终形成的电子束 直径d 应为:d 2=dg 2+ds 2 ,ds 为最小弥散圆直径,它和球差系数Cs 的关系为: ds = 2 1Cs 2 α (8·2) α为探针在试样表面的半张角。因此,增加工作距离受到球差的限制。为了解决这一矛盾,设计了一种小物镜,是这类仪器的一项重要改进。小物镜可以在不增加工作距离的情况下,在物镜和样品之间安放更多的信号探测器,如JCXA -733电子探针,工作距离为11mm ,可同时安装四道波谱仪(WDS),一个能谱仪,一个二次电子探测器和一个背散射电子探测器,并使X 射线出射角增加到40°。高出射角减小了试样对X 射线的吸收和样品表面粗糙所造成的影响,但小物镜要获得足够的磁场必须在其线圈内通以大电流,为了解决散热问题要进行强制冷却,一般用油冷却。

电子探针分析过程浅析

电子探针分析过程浅析 电子探针(EPMA)是非常先进的元素定性和定量分析设备,是目前微区元素定量分析最准确的仪器。它使用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析X射线的波长,即可知道样品中所含元素的种类;分析特征X射线的强度,可知样品中对应元素的相对含量,并配置能谱仪分析附件。电子探针可进行图像观察,并获得元素的定性定量分析数据。它的应用能为钢铁产品的研发工作及质量控制提供准确、有效的分析数据。针对此课题,本报记者采访了首钢技术研究院检验高级工程师严春莲。 电子探针在钢铁工业中有非常重要的作用,国内外许多科研院所、钢铁企业都利用电子探针进行固体样品的微区(微米到纳米级)分析,可分析的元素范围是B5—U92。它利用细聚焦的电子束照射样品,可查明钢铁样品微区中的元素成分,尤其是可以对C、N、O等轻元素进行定性定量分析,X射线取出角可达52.5°,以高信噪比及高灵敏度检测钢材中较轻元素的含量可达ppm级。这是扫描电镜所不能胜任的,因为扫描电镜和能谱仪一般是对元素周期表中Na元素以后的重元素进行定性和半定量分析。现阶段,利用电子探针已经突破这一局限,大大方便研发人员对样品中的轻元素进行微观分析研究。如板材产品会出现明显的碳偏析和析出相,通过电子探针进行微区观察分

析,会有助于生产实际问题的解决,促进新产品强化机理问题的深入研究。另外,电子探针还可以进行镀层成分、厚度的测定、粒度分布的测定及断面分析等。电子探针无疑是钢铁企业提高科研水平、改善产品质量的一种非常有效的技术手段。 与传统的成分分析仪相比,电子探针更偏重成分的微区定量分析,处于微米级的分析精度,它的检测极限一般为0.01—0.05wt%,对原子序数大于11,含量在10wt%以上的元素,其相对误差通常小于2%。而光谱类的分析仪是较宏观的检测,处于毫米级的分析精度。以380CL 车轮钢开裂分析为例,裂纹从边部开裂,沿着中心偏析带附近往里扩展,但未曾沿着中心偏析带开裂。裂纹开裂处周边无夹杂,无氧化物,周边组织无脱碳现象。利用金相显微镜、扫描电镜等分析后只能观察到有偏析带,但具体是什么成分偏析、偏析程度如何就无法准确判定,而利用电子探针分析发现试样中心偏析带附近存在着磷偏析带,裂纹沿着磷偏析带开裂。根据这一结果,倒推出当时在炼钢生产时,同一时间生产的高强钢也发现了严重的磷偏析,现场生产异常排除后,车轮钢至今未发现因磷偏析引起的开裂。 目前,首钢技术研究院利用电子探针开发铸坯枝晶组织显示、枝晶偏析定量分析等技术处于国内领先水平。通过设置适当的分析条件,电子探针的面、线、点分析功能可以较好地表征钢中微量元素的偏析状况,并可获得准确定量的微区化学成分。对成分偏析含量低、组织

电子探针

第八章 电子探针、扫描电镜显微分析 中国科学院上海硅酸盐所李香庭 1 概论 1.1 概述 电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。 EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。 EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。它们是现代固体材料显微分析(微区成份、形貌和结构分析)的最有用仪器之一,应用十分广泛。电子探针和扫描电镜都是用计算机控制分析过程和进行数据处理,并可进行彩色图像处理和图像分析工作,所以是一种现代化的大型综合分析仪。现在国内各种型号的电子探针和扫描电镜有近千台,分布在各个领域。 1.2电子与固体样品的交互作用 一束细聚焦的电子束轰击样品表面时,入射电子与样品的原子核和核外电子将产生弹性或非弹性散射作用,并激发出反映样品形貌、结构和组成的各种信息,如二次电子、背散射电子、吸收电子、阴极发光和特征X射线等(图8-1)。

电子探针分析技术在地学中的应用进展

电子探针分析技术在地学中的应用进展 摘要电子探针分析技术(EPMA)是一种应用较早、且至今仍具有独特魅力的多元素分析技术。二战以后,世界经济和社会的迅猛发展极大地促进了科学技术的进步,电子探针分析技术(EPMA)也进入了一个快速发展时期。在地学领域的应用中,取得了令人瞩目的成就。文章就该技术的发展历史、发展趋势及在地学中的应用进展等方面做出了具体阐述。 关键词:电子探针;地学;应用进展 1引言 电子探针是电子探针X 射线显微分析仪的简称,英文缩写为EPMA (Electron Probe X-ray Micro-Analyser),它用一束聚焦得很细(50nm~1μm)的加速到 5kV-30kV的电子束,轰击用光学显微镜选定的待分析试样上某个“点”(一般直径为1-50um),利用试样受到轰击时发射的X射线的波长及强度,来确定分析区域中的化学组成。 随着电子光学技术和计算机技术的发展,现在的EPMA同时具有扫描电镜SEM的形貌观察、结构分析等功能。不但像仪器发明之初那样,以金属和矿物样品中不同相或不同组成的成分分析为主要目的,而且也应用在冶金、电子电器件、陶瓷、塑料、纤维、木材、牙齿、骨骼、叶、根等等方面。其应用领域之广泛,可说目前已经涉及到所有固体物质的研究工作中,尤其在材料研究工作方面。这种仪器不仅是研究工作中的重要工具,而且也是质量检查的手段之一。本文仅对EPMA在地学领域中的应用进展加以阐述。 2电子探针的发展历史简介 电子探针分析的基本原理早在1913 年就被Moseley发现,但直到1949 年,法国的Castaing在guinier教授的指导下,才用透射电镜(TEM)改装成一台电子探针样机。1951年6月,Castaing在他的博士论文中,不仅介绍了他所设计的电子探针细节,而且还提出了定量分析的基本原理。现在电子探针的定量修正方法尽管作了许多修正,但是,他的一些基本原理仍然适用。1955年Castaing在法国物理学会的一次会议上,展出了电子探针的原形机, 1956 年由法国CAMECA公司制成商品,1958年才把第一台电子探针装进了国际镍公司的研究室中,当时的电子探针是静止型的,电子束没有扫描功能。

场发射电子探针简介-山东大学公共技术服务平台

(日本电子株式会社北京事务所) Fax: 86-10-68046324 场发射电子探针简介 一、日本电子探针JXA-8530F技术说明:

(日本电子株式会社北京事务所) Fax: 86-10-68046324 日本电子致力于电子探针的研究有半个多世纪的历史,从第一代电子探针的面市,到现在日本电子推出的以最新技术的场发射 (FE) 电子枪为特色的JEOL场发射电子探针显微分析仪FE-EPMA,带来了微区表面定量分析的革命。 日本电子2007年最新推出的第一代场发射电子探针JXA-8500F,使电子探针的图像观察能力和分析能力发生质的飞跃。经过一段时间改进,第二代场发射探针JXA-8530F已经推上市场。JXA-8530F在继承了JXA-8500F的强力硬件―包括场发射电子枪、电子光学系统和分子泵真空系统的同时,图像的分辨率提高一倍,束斑尺寸最小减小一个数量级,空间分辨率,分析效率大幅提高。 JXA-8530F具有日本电子传统的电子探针优势。 (一)优秀的电子光学系统 日本电子在电子光学设计制造方面有着传统的优势,图像质量好,长时间使用,图像的分辨率衰减慢,大工作距离11mm时获得高质量图像是日本电子的强项。二次电子图像分辨率达到3nm。日本电子的背散射电子探头性能突出是市场上普遍的反映,将原子序数相近的元素,以不同的衬度在图像上体现出来,表征这一性能的指标既是“背散射电子探测器的灵敏度”,日本电子采用高灵敏度、环型半导体背散射探测器,可将成分极为相近的两个相的衬度反映出来,其意义是显尔易见的。 扫描图像的调整自动化程度高,操作简便日本电子采用专利技术——“预对电子源”,更换电子源后,无须机械调整,即可获得图像(电子束),而且灯丝寿命长;操作方便,自动聚焦、自动消象散、自动衬度和自动亮度等功能的引入,使操作者很容易的获得高质量图像。 束流范围大、稳定而且大小容易改变,这是定量分析的基础,JXA-8530F束流范围为5X10-7 -10-12A /束流稳定度为±0.3%/h (二)波谱系统 JXA-8530F采用两种尺度的罗兰圆谱仪(100mm和140mm)进行分光,兼顾分辨率和灵敏度,提高了它的检测灵敏度。大罗兰圆谱仪波长分辨率高这是它的强项,而小罗兰园谱仪则追求了高计数率,JXA-8530F通常采用两种罗兰圆谱仪的搭配,扬长避短,从而实现对样品的精确分析。 在晶体交换的灵活性和避免误差方面,日本电子的电子探针,其分光晶体可在谱仪的任何位置处进行晶体交换,这一关键技术可以大大避免样品分析时晶体位置改变带来的误差。通过分析软件来控制“法拉第杯”的“进”、“出”,避免电子束对样品的不必要辐照,其结果是分析速度快、污染小和分析结果可靠,适合各种样品的分析。

电子探针

电子探针(EPMA) 全名为电子探针X射线显微分析仪,又名微区X射线谱分析仪。可对试样进行成分、形态、结构、物性等多方面的分析。除H、He、Li、Be等几个较轻元素外,都可进行定性和定量分析。 工作原理:是将试样置于显微镜下,选定分析位置,利用经过加速和聚焦的极窄的电子束为探针,激发试样中某一微小区域,在直径为1um、体积为1um3区域内的不同元素受激发射出X射线,用波长色散X射线谱仪或能量色散X射线谱仪读出元素的特征X射线,根据特征X射线的强度与波长信息,进行元素的定性定量分析。 发展历史:从Castaing奠定电子探针分析技术的仪器、原理、实验和定量计算的基础以来,电子探针分析(EPMA)作为一种微束、微区分析技术在50~60年代蓬勃发展,至70年代中期已比较成熟;促进了地学中地质年代学研究项目的深入,在矿物学、岩石学、矿床学、微古生物学、普查找矿等方面起了非常巨大的作用, 在许多重大地质成果中都发挥了重要作用。 特点:EPMA技术具有高空间分辨率(约1μm ) 检出限可低至10-14~10-15克、简便快速、精度高、分析元素范围广( 4Be ~92U)、不破坏样品属非破坏性分析。在矿物研究工作中既能微观观察,同时又能分析微区成分。 运用前景:电子探针在分析鉴定微矿物、微成分方面,有着广阔的应用前景,主要用于岩石矿物的深度分析,如与薄片鉴定结合,检测未知矿物及难辨矿物——片钠铝石、钠沸石、皂石等。与阴极发光显微镜相结合,可揭示矿物的发光机制。与扫描电镜配合,可精确测定扫描电镜下的各种粘土矿物及未知矿物,使形态观察与成分分析密切联系。还可与X衍射分析结合,详细测定各种矿物,包括混层粘土矿物的成分等等。 电子探针的运用 如今,电子探针已广泛运用于地学研究中的许多领域,如:测定地质体年龄、鉴定矿物、研究系列矿物、固溶体分离矿物、矿物环带结构、矿物蚀变晕、构造分析等。 1.电子探针化学测年 电子探针化学定年方法最早是由日本Suzuki等(1991a)提出的,他们对日本的变质

实验6 电子探针(能谱仪)结构原理及分析方法

实验6 电子探针(能谱仪)结构原理及分析方法 一、实验目的与任务 1) 结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2)选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照第十四章,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、实验方法及操作步骤 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析,以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内浓度分布。 1.实验条件 (1) 样品样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择应考虑待分析元素及其谱线的类别。原则上,加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强

北京大学地空学院“电子探针显微分析仪”招标采购项目招标文件

北京大学地空学院 “电子探针显微分析仪”招标采购项目 招标文件 编号:2014[009] 北京大学实验室与设备管理部 二〇一四年五月二十日

目录 第一部分投标邀请 (2) 第二部分招标说明 (4) 第三部分货物需求一览表及技术规格 (9) 第四部分设备明细表 (13) 第五部分技术规格偏离表 (14) 第六部分原厂授权书 (15) 开标一览表 (16)

第一部分投标邀请 公告日期:2014年5月20日 项目名称:北京大学地空学院“电子探针显微分析仪”招标采购项目 招标编号: 2014[009] 招标机构名称: 北京大学实验室与设备管理部 地址:XX市XX区颐和园路5号北京大学红5楼邮编:100871 电话:******** ********;传真:******** 联系人:XXX 刘雪蕾 北京大学实验室与设备管理部(以下简称“招标机构”)具体承办北京大学地空学院“电子探针显微分析仪”招标采购项目招标采购项目的招标采购事宜,邀请合格投标人就下列货物和有关服务提交密封投标。合格投标人均可在招标机构得到进一步的信息和查阅招标文件。 1.招标内容 1.1招标货物名称:电子探针显微分析仪 1.2数量及技术规格要求:数量壹套,技术规格要求详见标书 1.3交货地点:北京首都机场 2.合格投标人必须符合《中华人民共和国政府采购法》第二十二条之规定。 3.招标文件购买时间和办法:2014年5月20日—2014年6月11日(工作日)9:00至16:30时在招标机构(北京大学西门内红1楼、红2楼之间横楼二层5216室)购买招标文件。标书售价200元人民币,售后不退。 4.投标人可从北京大学招标公告栏或实验室与设备管理部网站下载本次招标的电子版标书(******/zbcg/zbxxgs/),以供参考。 5.接受投标时间、投标截止时间及开标时间 5.1接受投标及投标截止时间:所有投标书应于2014年6月12日8:30前递交到上述购买标书地 址,逾期恕不接受。 5.2开标时间:兹定于2014年6月12日8:30整在北京大学实验室与设备管理部后院会议室进行 开标、评标工作。 6.投标细则 6.1 投标内容 6.1.1最终用户:北京大学地空学院

电子探针X射线显微分析

第13-14讲 教学目的:使学生了解电子探针X射线显微分析方法 教学要求:掌握电子探针原理,了解电子探针基本信号,掌握电子探针工作方式;理解能谱仪和波谱仪之间差异 教学重点:电子探针基本原理;工作方式;波谱和能谱区别教学难点:衍射衬度像成像原理 教学难点:波谱仪及能谱仪的工作原理及比较,探针的三种分析方式及其应用教学拓展:查阅文献,了解探针在那些领域有较好应用 作业: 1.波谱仪和能谱仪的比较; 2.电子探针各自采集的最主要的物理信号及仪器的最主要功能。 第4节电子探针X射线显微分析 1电子探针基本原理 电子探针(Electron Probe Microanalysis-EPMA)的主要功能是进行微区成分分析。它是在电子光学和X射线光谱学原理的基础上发展起来的一种高效率分析仪器。 其原理是:用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析特征X射线的波长(或能量)可知元素种类;分析特征X射线的强度可知元素的含量。 其镜筒部分构造和SEM相同,检测部分使用X射线谱仪,用来检测X射线的特征波长(波谱仪)和特征能量(能谱仪),以此对微区进行化学成分分析。

武汉理工大学材料研究与测试中心电子探针设备 2电子探针两个物理学基础 a莫塞莱定律:=C(Z-σ)2,特征X射线频率与发射X射线的原子的原子序数平方之间存在线性关系。 b布拉格定律:2dsinθ=nλ,λ为X射线波长,单位为?,n是正整数。测出X射线的掠射角θ,即可计算出X射线的波长,进而确定出产生波长特征X射线的元素。 3波谱仪(WDS)工作原理 已知电子束入射样品表面产生的X射线是在样品表面下一个um量级乃至纳米量级的作用体积发出的,若该体积内含有各种元素,则可激发出各个相应元素的特征X线,沿各向发出,成为点光源。在样品上方放置分光晶体,当入射X 波长、入射角、分光晶体面间距d之间满足2dsinθ=nλ时,该波长将发生衍射,若在其衍射方向安装探测器,便可记录下来。由此,可将样品作用体积内不同波长的X射线分散并展示出来。 一般平面分光晶体使谱仪的检测效率非常低,表现在:固定波长下,特定方向入射才可衍射;处处衍射条件不同;要解决的问题是:分光晶体表面处处满足同样的衍射条件;实现衍射束聚焦把分光晶体作适当的弹性弯曲,并使X射线源、弯曲晶体表面和检测器窗口位于同一个圆周上,就可以达到把衍射束聚焦的目的。该圆称为聚焦圆,半径为R。此时,如果晶体的位置固定,整个分光晶体只收集一种波长的X射线,从而使这种单色X射线的衍射强度大大提高。 3.1 波谱仪类型

电子探针的综述

电子探针的发展及应用 1 电子探针的发展 1949年法国Castaing与Guinier将一架静电型电子显微镜改造成为电子探针仪。1951年Castaing的博士论文奠定了电子探针分析技术的仪器、原理、实验和定量计算的基础,其中较完整地介绍了原子序数、吸收、荧光修正测量结果的方法,被人们誉为EPMA显微分析这一学科的经典著作。1956年,在英国剑桥大学卡文迪许实验室设计和制造了第一台扫描电子探针。1958年法国CAMECA 公司提供第一台电子探针商品仪器,取名为MS-85。现在世界上生产电子探针的厂家主要有三家,即日本岛津公司SHIMADZU、日本电子公司JEOL和法国的CAMECA公司。 随着科学技术的发展,电子探针显微分析技术进入了一个新的阶段,电子探针向高自动化、高灵敏度、高精确度、高稳定性发展。现在的电子探针为波谱WDS和能谱EDS组合仪,用一台计算机同时控制WDS和EDS,结构简单、操作方便。 2 电子探针的原理 电子探针的全称为电子探针X射线显微分析(Electron Probe Microanalysis,简称EPMA),是电子光学和X射线光谱的结合产物。它用一束聚焦得很细(50nm~1μm)的加速到5kV-30kV的电子束,轰击用光学显微镜选定的待分析试样上某个“点”(一般直径为1-50um),利用试样受到轰击时发射的X射线的波长及强度,来确定分析区域中的化学组成。EPMA是一种显微分析和成分分析相结合的微区分析,它特别适用于分析试样中微小区域的化学成分,因而是研究材料组织结构和元素分布状态的极为有用的分析方法[1]。 2. 1 主要结构 电子探针主要结构有:电子束照射系统( 电子光学系统),样品台,X射线分光(色散)器,真空系统,计算机系统(仪器控制与数据处理),如图1所示。2. 2 电子光学系统与观察 产生电子束照射样品的部分称为照射系统或电子光学系统(EOS),保持在约10- 3~ 10- 4Pa的真空系统中。电子束由灯丝,栅极帽,阳极板组成的电子枪中发

电子探针X射线微区分析

电子探针X射线微区分析 电子探针X射线微区分析(EPMA)Electron Probe X-ray Microanalysis是用聚焦极细的电子束轰击固体的表面,并根据微区内所发射出X射线的波长(或能量)和强度进行定性和定量分析的方法。 电子探针工作原理 电子探针(Electron Probe Microanalysis-EPMA)的主要功能是进行微区成分分析。它是在电子光学和X射线光谱学原理的基础上发展起来的一种高效率分析仪器。 其原理是:用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析特征X 射线的波长(或能量)可知元素种类;分析特征X射线的强度可知元素的含量。 其镜筒部分构造和SEM相同,检测部分使用X射线谱仪,用来检测X射线的特征波长(波谱仪)和特征能量(能谱仪),以此对微区进行化学成分分析。 X射线谱仪是电子探针的信号检测系统,分为: 能量分散谱仪(EDS),简称能谱仪,用来测定X射线特征能量。 波长分散谱仪(WDS),简称波谱仪,用来测定特征X射线波长。 WDS组成:波谱仪主要由分光晶体和X射线检测系统组成。 原理:根据布拉格定律,从试样中发出的特征X射线,经过一定晶面间距的晶体分光,波长不同的特征X射线将有不同的衍射角。通过连续地改变q,就可以在与X射线入射方向呈2 q的位置上测到不同波长的特征X射线信号。根据莫塞莱定律可确定被测物质所含有的元素。 为了提高接收X射线强度,分光晶体通常使用弯曲晶体。 编辑本段电子探针分析的特点 电子探针显微分析有以下特点: 1.显微结构分析 电子探针是利用0.5μm-1μm的高能电子束激发待分析的样品,通过电子与样品的相互作用产生的特征X射线、二次电子、吸收电子、背散射电子及阴极荧光等信息来分析样品的微区内(μm范围内)成份、形貌和化学结合状态等特征。电子探针是几个μm范围内的微区分析,微区分析是它的一个重要特点之一, 它能将微区化学成份与显微结构对应起来,是一种显微结构的分析。 2. 元素分析范围广 电子探针所分析的元素范围从硼(B)——铀(U),因为电子探针成份分析是利用元素的特征X射线,,而氢和氦原子只有K层电子,不能产生特征X射线,所以无法进行电子探针成分分析,锂(Li)和铍(Be)虽然能产生X射线,但产生的特征X射线波长太长,通常无法进行检测,少数电子探针用大面间距的皂化膜作为衍射晶体已经可以检测Be元素。能谱仪的元素分析范围现在也和波谱相同,分析元素范围从铍(Be)——铀(U)。 3. 定量分析准确度高 电子探针是目前微区元素定量分析最准确的仪器。电子探针的检测极限(能检测到的元素最低浓度)一般为(0.01-0.05)wt%,不同测量条件和不同元素有不同的检测极限,但由于所分析的体积小,所以检测的绝对感量极限值约为10-14g,定量分析的相对误差为(1—3)%,对原子序数大于11,含量在10wt% 以上的元素,其相对误差通常小于2%。 4. 不损坏试样、分析速度快 电子探针一般不损坏样品,样品分析后,可以完好保存或继续进行其它方面的分析测试,编辑本段电子探针分析方法及应用

相关文档
最新文档