Dust formation in Electric Arc Furnace Birth of the particles

Dust formation in Electric Arc Furnace Birth of the particles
Dust formation in Electric Arc Furnace Birth of the particles

Dust formation in Electric Arc Furnace:Birth of the particles

Anne-Gwe ′nae ¨lle Gue ′zennec a,*,Jean-Christophe Huber b ,Fabrice Patisson a ,Philippe Sessiecq a ,

Jean-Pierre Birat b ,Denis Ablitzer a

a

Laboratoire de Science et Ge ′nie des Mate ′riaux et de Me ′tallurgie,Parc de Saurupt,54042Nancy Cedex,France

b

IRSID,Voie Romaine,BP 30320,57283Maizie `res le `s Metz,France

Accepted 4May 2005

Available online 28July 2005

Abstract

The characterization of Electric Arc Furnace (EAF)dust shows that bubble burst at the liquid steel surface is the principal source of dust emission.We have therefore developed an experimental device for studying this phenomenon.As in the case of the air–water system,the bubble-burst gives birth to two types of droplets:film drops and jet drops.The jet drop formation is observed with high-speed video.The film drop aerosol is collected on filters and then characterized by means of SEM,granulometric and gravimetric analyses.Results are presented and discussed.The quantification of both types of projections leads to the conclusion that the film drop projections represent the major source of dust.The amount of film drops greatly decreases with the parent bubble size.Under 4.5mm in bubble diameter,no film drops are formed.Decreasing enough the bubble size would therefore represent an effective solution for reducing drastically the EAF dust emission.D 2005Elsevier B.V .All rights reserved.

Keywords:Electric Arc Furnace (EAF);Liquid steel;Dust;Bubble bursting;Droplets;Aerosol

1.Introduction

The Electric Arc Furnace (EAF),designed for steel-making from recycled scrap iron (see Fig.1),also co-produces between 15to 25kg of dust per ton of steel.Dust formation is strongly linked to the process which can be divided into five steps:

–furnace charging:the scrap and the additives (lime,coal ...)are loaded into special charging buckets which are then emptied into the furnace;

–melting:an electric arc is created between the graphite electrodes and the scrap which entails the charge melting and the formation of a steel bath covered by a slag layer,volatile solute species (e.g.zinc)begin to be removed;–refining:in this step of the process,phosphorus is removed from the steel bath by interfacial reactions between the slag and the liquid metal,injection of

oxygen promotes the decarburization reaction with dissolved carbon and bubbles of carbon monoxide (CO)are formed,which helps to remove other dissolved gases;

–slag foaming:the CO-bubbles crossing the slag layer make it foam,the foaming process being enhanced by the addition of coal powder;

–casting:after the composition and the temperature of the bath have been controlled,the liquid steel is cast.During the process,the fumes are extracted through an aperture in the furnace roof.These are post-combusted,cooled,and cleaned from the transported dust,which is collected in large bag filters.This dust contains hazardous,leachable elements such as zinc,lead or cadmium which require EAF dust to be stored in specific landfills.

In order to propose economically feasible solutions for both recycling and/or reducing EAF dust,the understanding of the dust formation is necessary.The present paper describes the different mechanisms of formation identified thanks to a morphological and mineralogical character-ization of various dust samples,and then focuses on the

0032-5910/$-see front matter D 2005Elsevier B.V .All rights reserved.doi:10.1016/j.powtec.2005.05.006

*Corresponding author.Tel.:+33383584267;fax:+33383584056.E-mail address:guezenne@mines.inpl-nancy.fr (A.-G.Gue ′zennec).Powder Technology 157(2005)2–

11

https://www.360docs.net/doc/166598086.html,/locate/powtec

study of the main source of emission,i.e.bubble burst at the

surface of the liquid bath.An original experimental device was designed in order to understand and quantify precisely this phenomenon.The results of the experimental study are presented and discussed.

2.Characterization of Electric Arc Furnace dust The investigations regarding the morphology and min-eralogy of the particles contained in EAF dust give useful information for the indentification of the dust formation mechanisms.Several dust samples coming from different industrial furnaces were observed by SEM (Scanning Electron Microscopy)and analyzed by EDS (Energy Dispersive Spectrometry).As shown in Fig.2,EAF dust particles cover a wide range of sizes.To simplify the survey of the morphologies,we distinguished two categories of particles:large particles from a few dozen to a few thousand micrometres,and finer particles lower than 20A m.

https://www.360docs.net/doc/166598086.html,rge particles

Three morphological types belong to this category.The first one is composed of particles of coal and lime (Figs.3and 4).Their sizes vary between 20and 500A m and their shapes are irregular.This morphology indicates they come from the direct fly-off of solid particles during the introduction of powder materials into the EAF (scrap,coal for slag foaming,additions,recycled dust,etc.).

The second one is made up of sphere-like particles whose sizes range from 20to 200A m (Fig.5).Their chemical composition corresponds to that of the slag (Ca,Al,Fe,Si ...).They probably result from a phenomenon of liquid droplets projection at the impact points of the arc or of the oxygen jet on the liquid bath.

The third morphological type corresponds to agglomer-ates of fine particles (Fig.6)similar to those presented in the following part.Their sizes vary between 20and 1000A m.They are fragile and break up easily.Thus,these particles are likely formed by low-temperature agglomeration (e.g.in

filters).

Fig.1.Schematic representation of an Electric Arc

Furnace.

Fig.2.EAF

dust.Fig.3.Coal particle.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–113

Contrary to the agglomerates of fine particles,the first

two types of particles are hardly present or even completely absent from the dust samples.Their presence suggests an excessive fume extraction flow rate or a bad control of the melting and addition processes.2.2.Fine particles

Fine particles,whose sizes are below 20A m,account for the major part of EAF dust.A small proportion of those particles corresponds to monocrystals of zinc oxide (Fig.7).They are easily identifiable thanks to their facetted aspect.Their size rarely exceeds a few hundred nanometres.

The other particles are spherical.Their size varies from 0.2to 20A m.We found three types of spheres which differ from each other because of their mineralogy:

&homogeneous spheres whose composition corresponds either to the slag or to the steel bath with an enrichment in zinc;they are often hollow when they are larger than 2or 3A m (Fig.8);

&heterogeneous spheres made up of a slag phase and a steel phase enriched in zinc (Fig.9);some of them

display an iron-rich dendritic structure buried inside a vitreous phase;

&submicronic spheres of pure zincite.

The zincite spheres,like the monocrystals,form during the condensation of the vapors of zinc contained in the EAF fumes [1,2].The other spheres represent the major part of the dust observed.They come from the projection of liquid droplets.On account of their sizes,they are thought to be emitted by the burst of CO-bubbles coming from the decarburization of the steel bath [1,3,4,5].

The finest particles,whose sizes are lower than 2or 3A m,are frequently agglomerated to each other or around a bigger particle (Fig.10).The sizes of these agglomer-ates vary from 5to 20A m;a few of them reach 50A m and some show signs of partial sintering also noted by Cruells et al.[6].In this case,the agglomeration took place inside the furnace or the fume extraction ducts at high temperature.2.3.Interpretation

The dust collected in bag filters at the end of the EAF fume extraction system is the final product of a series

of

Fig.4.Lime

particle.

Fig.5.Sphere-like particle whose composition corresponds to that of the

slag.

https://www.360docs.net/doc/166598086.html,rge agglomerates of fine

particles.

Fig.7.Zincite monocristals.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–11

4

phenomena,such as the emission of particles from the steel

bath,the transport of these particles by the gas flow in the fume extraction system,the in-flight physico-chemical transformations they undergo,etc.The results of the morphological analysis of the EAF dust show that the dust formation process takes place in two steps:first,the emission of dust ‘‘precursors’’,i.e.vapors,metal droplets,and solid particles,inside the furnace;second,the con-version of those precursors into dust by agglomeration and physico-chemical transformations.

From the different types of particles displayed previ-ously,five emission mechanisms of dust precursors have been identified (see Fig.11):

&volatilization,especially localized at the hot spots in the arc zone (1)and the oxygen jet zone (1V ),but taking place as well in the CO bubbles;

&projection of droplets at the impact points of the arc (2)or of the oxygen jet (2V )on the steel bath;

&projection of fine droplets by bursting of CO bubbles (3)coming from the decarburization of the steel bath;

&bursting of droplets (4)in contact with an oxidizing atmosphere within the surface;the occurrence of this

phenomenon,which can be classed as a bubble-burst mechanism,is uncertain in EAF;

&direct fly-off of solid particles (5)during the introduction of powder materials into the EAF (scrap,coal for slag foaming,additions,recycled dust,etc.).

According to the preceding analysis and experimental quantifications of each mechanism made by Birat et al.[7],the prevailing mechanisms of dust precursor emission appear to be the volatilization (27%of the dust)and the bursting of CO bubbles (60%of the dust).The direct fly-off of solid particles remains very limited if sufficient operating cautions are taken.As for the projections at the impact points of the arc or of the oxygen jet,most of them fail to be carried up by the fume extraction system,due to their size,and fall back into the liquid bath.

The precursors are further transformed during their transport within the furnace and then in the fume extraction system.They can undergo physical transformations:con-densation of the vapors,rapid solidification of the fine projections in contact with a colder atmosphere,in-flight agglomeration and coalescence of dust particles.The precursors can also be modified by chemical reactions (e.g.oxidation)with the carrier gas,whose temperature and composition vary,and,they can possibly react with other precursor particles.For a reaction between condensed phases (liquid or solid)to occur,particles must first be brought into contact.Therefore,there is a strong link between the mechanisms of agglomeration and the chemical evolution [8].

3.Dust formation by bubble bursting 3.1.Theory

The projection of liquid steel and slag droplets by bursting of CO bubbles has been recognized as the principal mechanism of dust emission in EAF.Very few studies about bubble-burst at the surface of liquid metal have

been

Fig.8.Several full spheres and one hollow

sphere.Fig.9.Heterogeneous

sphere.

Fig.10.Agglomerates of fine particles.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–115

reported [9].However,in order to understand the phenom-enon,useful results and observations can be found in the

abundant literature about the air–water system.From these studies,the bubble-burst process can be split up into three steps,which give rise to two types of droplets (Fig.12).When emerging at the surface (Fig.12a),a bubble lifts up a liquid film that progressively gets thinner under the influence of drainage,when the bubble comes to rest.The shape of a bubble floating at the surface of a liquid can be determined by following the approach proposed by Unger et al.[10].

As the film reaches a critical thickness,it breaks up and the bubble cap is disintegrated into fine droplets called film drops (Fig.12b).Many authors [11–14]studied the number and size of film drops as a function of the bubble size.The number is proportional to the surface of the film.The size distribution is wide:from 0.3to 500A m.

After the disruption of the bubble cap,the cavity remaining at the liquid surface closes up,creating an upward Rayleigh jet that is unstable and can break up into droplets usually called jet drops (Fig.12c).The number of jet drops never exceeds ten and decreases when the bubble

size increases [11,14].Their sizes have been found to range between 0.1and 0.18times the diameter of their parent bubble for air–water system [15,16].3.2.Experimental apparatus

In order to study dust emission from bubble burst in liquid steel,we set up an original experimental device (Fig.13)using a vacuum induction melting furnace (Leybold)modified in order to operate at atmospheric pressure under an argon atmosphere.The aims of the experiments are to clarify the way the bubbles burst at a liquid steel bath surface and to quantify the resulting emissions,i.e.film drops and jet drops.

The steel charge (750g of a commercial steel grade XC38)is melted in an alumina crucible (45mm inside diameter,70mm height),fitted in a graphite susceptor.This configuration reduces electromagnetic convection in the metal bath.The temperature of the liquid steel is controlled by a bichromatic pyrometer;during an experiment,the temperature of the bath is maintained constant,usually at a value between 1600and 1650-

C.

Fig.11.Schematic representation of the mechanisms of dust emission in

EAF.

Fig.12.Schematic representation of the burst of a bubble on a liquid surface.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–11

6

The gas injection device consists of an alumina tube (7

mm outside diameter,4mm inside diameter,300mm length),fed with gas through a stainless steel tube,which is connected,outside the furnace,to a mass flow controller and the argon cylinder.The bubbles form at the mouth of an alumina capillary inserted into the injection tube.In order to change the bubble size,we use three different sizes of alumina capillaries (outer diameter:0.5, 1.2or 3mm).Moreover,for a given capillary,the gas flowrate can be modified (between 1cm 3min à1and 15cm 3min à1)as well as the pressure drop,which enables us to vary the bubble size in a wide range,between 4and 13mm (all bubble sizes indicated in the present paper are equivalent volume diameters).

The bursting of bubbles at the surface and the formation of the jet drops are observed by means of a high-speed video camera (Kodak Motion Corder)which makes it possible to film the bath surface at a rate up to 10,000fps.Actually,good-quality images could not be obtained at such a rate because increasing the shooting frequency entails a reduc-tion in image resolution.We therefore selected rates of 5000frames s à1to record the film break and 1000frames s à1to observe the formation of the jet drops and to determine the frequency of emergence of the gas bubbles at the surface.The latter frequency is equal to the frequency of the bubble formation at the capillary mouth.Knowing the bubbling frequency,the flowrate of gaz injection and the temperature of the liquid metal,we can deduce the bubble volume.From this volume,it is possible to determine the bubble size d B which corresponds to the equivalent volume diameter of the bubble.

In order to study the film drops,the aerosol formed is exhausted through a rack-mounted tube.The airborne particles are collected on filters inserted in an in-line stainless steel filter holder connected to a flowmeter and a vacuum pump.Two types of filters were used:glass fiber filter (millipore)for the gravimetric analysis of the particles

and PVC membranes (millipore)for the granulometric analysis and the SEM observation.In order to prevent the saturation of the filters,the exhaust period is limited to 15s for one filter.The flowrate is 4.39?10à4Nm 3s à1,which corresponds to a gas velocity of 0.4m s à1at 500K (typical gas temperature above the bath).According to the Stokes law,it enables to carry particles up to 60A m in diameter,a size which is larger than that of most of particles contained in the EAF dust.Almost all the particles collected on the filters can be regarded as coming from the steel bath.Indeed,it is possible to remove most of the parasitic particles present in the atmosphere of the furnace by sweeping it with filtered gas.At the beginning of each experiment,the furnace is pumped out and then fed with filtered argon.After 1h of sweeping,there remains in the furnace less than 100particles with diameters larger than 0.3A m for 28.3L of gas and none of these particles have a diameter above 1A m.Thanks to these experimental precautions,it is possible to obtain a sufficient cleanness of the furnace in order to ensure an accurate determination of the emissions coming from the steel bath.3.3.Results

3.3.1.Bubble bursting mechanisms

The analysis of the video sequences reveals that the mechanisms involved in bubble bursting on the free surface of liquid steel are similar to those occurring with air–water systems.Note that no film drops could be observed on the video sequences,due to their smallness and the limited image resolution (one pixel corresponds to 180–200A m).Nevertheless,their existence is confirmed by the SEM observation of the particles collected on the filters.Two types of sampling were made:with bubbling and without bubbling (i.e.bubbling is turned off for a while).The samples with bubbling show the presence of sphere-like particles (Fig.14),with diameters from 0.5to 40A m,

which

Fig.13.Schematic representation of the experimental device.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–117

do not appear in the samples collected without bubbling.

Spherical particles in this size range are of the type,predominant in EAF dust,attributed,in the literature (see Part I),to liquid droplet projections.In the present case,these particles are solidified film drops.

Unlike the film drops,the projection of jet drops can be observed on the video frames.Fig.15shows the formation of an upward liquid jet and the projection of one jet drop after a bubble burst at the surface of the liquid steel.3.3.2.Characterization of jet drops

The analysis of video frames is a reliable means to determine precisely the number of ejected jet drops.The results,reported in Fig.16,are consistent with those presented in the literature:the probability of jet drop formation,and thus the number of jet drops per bubble,increases as the size of the parent bubble decreases.

By analogy with the correlations proposed by Blanchard [17]and Wu [16]in the case of air-water systems,we derived an exponential law giving the number of ejected drops per bubble (N jet )as a function of the bubble diameter (d B ,expressed in mm):N jet ?43:4exp à0:58d B eT

The coefficients were calculated by regression from the experimental results (Fig.16).

If the number of jet drops can be determined on the basis of the video sequences,it is much more difficult to measure their sizes because of the poor resolution of the images.Nevertheless,these images show that the jet drops observed are not exhausted by the fume extraction device and fall

back into the bath or around the crucible.In order to determine their sizes,the particles gathered around the crucible at the end of each experiment are collected and weighed.These particles are dense metal spheres.From this method,we obtain the size distribution of the jet drops projected during the experiment.The median diameter of each distribution is used in order to characterize the jet drop populations.The results obtained for bubble sizes ranging from 5.5to 10mm are reported in Fig.17;the jet drop size is proportionnal to the size of the parent bubbles (between 12%and 18%of the bubble diameter).

3.3.3.Characterization of film drops

To quantify the film drop emission,we analysed aerosols collected during experiments with and without bubbling,using granulometric and gravimetric techniques.Without bubbling,the particles detected come from the vaporization of the steel charge which is clearly visible in the form of fumes inside the furnace.

Granulometric analyses of the experimental dust samples were performed by wet laser diffraction.The Coulter LS 130granulometer used gives the volume distribution of a suspension of particles ranging from 0.04to 2.103A m.Dust collected on membranes is dispersed in pure ethyl alcohol and desagglomerated by ultrasonic and mechanic agitation following the procedure described in Fig.18.Such a procedure leads to an optimal desagglomeration of the particles and a good reproducibility of the measurements.Fig.19shows the typical results of a granulometric analysis of two kinds of dust samples (with and

without

Fig.14.Several film drops collected in the experimental

device.

Fig.15.Frames taken from a video sequence at 1000fps (a:bubble emerging at the bath surface;b:disruption of the bubble cap;c,d:formation of an upward liquid jet;e:emission of a jet

drop).

Fig.16.Number of jet drops versus bubble size.

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–11

8

bubbling).They confirm the existence of two particle

populations:submicronic particles coming from the vapor-ization of the liquid steel,and film drops.Concerning the first population,we do not have yet a satisfactory explanation for the presence of three modes.The important feature in the figure is the apparition of the biggest particles in the sample collected with bubbling.

From such granulometric results and knowing the amount of dust collected with and without bubbling (see below),it is possible to obtain the size distribution of film drops by ‘‘subtracting’’both types of results.Fig.20presents the distributions obtained for three bubble sizes.It can be seen that the size spectrum broadens up when the bubble size increases,even if most of the film drops remain under 20A m,as in EAF dust samples.This phenomenon is confirmed by the SEM observation of the samples.

The mass of particles collected was determined by weighing the glass fiber filters before and after each experiment.The difference between the results of the experiments with-and without bubbling gives the mass of film drops collected.The results are gathered in Table 1;for an easier and more meaningful comparison,the amounts

have been referred to one bubble burst (M B in Table 1)and to the volume of injected gas (M G in Table 1).

The results clearly show that the amount of film drops produced by one bubble burst greatly increases with the bubble size.For the smallest bubbles,under 4.6mm in diameter,no film drop was detected.More precisely,the amount of film drops was so low that it could not be detected,the difference in weight between the samples with-and without bubbling being below the balance sensitivity (10à5g).The mass of film drops for 1m 3of injected gas also increases with the bubble size,as long as this bubble size is lower than 11mm.Above this size,we can notice a plateau or a slight decrease in the amount of film drops.It would be interesting to investigate further this phenomenon,as well as to relate the amount of film drops to the mass of the bubble cap prior to bursting.3.4.Interpretation

In EAF,60%of dust come from projections of liquid metal and slag (see Part I).These projections from the

bath

Fig.17.Size of jet drops versus bubble

size.

Fig.18.Procedure for the preparation of the particle suspension and for the granulometric

analysis.

Fig.19.Size distribution of two dust samples collected with and without bubble bursting (bubble diameter:7mm).

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–119

can be attributed to the CO-bubble burst.The mechanisms involved in the formation of those projections in EAF can be slightly different from those met in our experiment,particularly owing to the presence of a slag,either foaming or not.Nevertheless,the results we have obtained give useful information for the understanding and the quantifi-cation of dust formation in EAF.

Jet drops come from the disintegration of the upward jet created after the removal of the bubble cap.Their number increases when the bubble size decreases,and their size

represents 12%to 18%of the parent bubble size.The size of CO-bubbles formed in EAF remains little known.However,analyses of foaming slag samples and numerical calcula-tions indicate that their sizes are probably between 2and 20mm [8].According to our results,such bubbles are expected to produce jet drops whose sizes vary from 0.2mm to almost 4mm,which are much larger than most of the particles found in EAF dust samples.As observed in our laboratory furnace,jet drops are not exhausted by the fume extraction system and are likely to fall back into the steel bath.Jet drops can thus hardly contribute to dust formation from bubble burst in EAF.

Film drops are emitted during the disintegration of the liquid cap which covers the bubble at the surface of the bath.Their morphology and their size range are very close to those of the particles contained in EAF dust.The amount of projections produced by bubble burst in EAF varies between 0.016and 0.028kg m à3[8].These figures are close to those derived from our laboratory experiments (see Table 1).Further associated with the conclusion of the jet drop size study,they show that,when a bubble bursts,it is mostly the film drops that contribute to dust formation.Our results also reveal a significant decrease of the amount of film drops resulting from bubble burst when the bubble size decreases.Moreover we brought out the existence of a critical bubble size (around 4.5mm)under which no film drop is detected.While this phenomenon was already evidenced by Spiel [14]for air–water systems,it had never been observed in the case of liquid steel.

From these results,it appears that it should be possible to strongly reduce the amount of dust produced in EAF by decreasing the CO-bubble sizes,ideally between 1and 4mm.The latter bound prevents the film drop formation and the former one avoids the emission of jet drops small enough to be carried up.Such an objective may be difficult to reach since the CO-bubble formation is a rather spontaneous process.Nevertheless,a solution could be to better control the decarburization reaction,for example by favoring nucleation at the expense of growth.

4.Conclusion

From the study of the morphological and mineralogical characteristics of EAF dust samples combined to

the

Fig.20.Size distribution of film drops produced by bubble bursting.Bubble diameter:a)8.3mm,b)10.2mm,c)12.5mm.

Table 1

Mass of film drops as a function of the parent bubble size d B (bubble size)M B (mass of projections for one bubble burst)M G (mass of projections for 1m 3of injected gas)4mm not detected <1g/m 34.6mm not detected <1g/m 37.2mm 3.75A g/bubble 19.2g/m 39.1mm 10.1A g/bubble 25.6g/m 310.7mm 18.9A g/bubble 29.5g/m 312.6mm

30.3A g/bubble

29g/m 3

A.-G.Gue ′zennec et al./Powder Technology 157(2005)2–11

10

knowledge of the EAF steelmaking process,we could determine the mechanisms of EAF dust formation.Among the different sources of emission,the major one is the projection of liquid droplets by bubble burst at the liquid bath surface.We therefore designed an experimental device to observe the gas bubble burst at the surface of liquid steel by means of high-speed video,and to quantify the resulting projections by granulometric and gravimetric analyses.The phenomena involved are similar to those taking place in the case of an air bubble bursting at water surface and result in the emission of two types of droplets:film drops and jet drops.Only film drops take part in the formation of EAF dust,jet drops are too big to be exhausted and fall back into the liquid bath.We have also shown that the amount of film drops decreases with the size of the parent bubble.When the bubble size reaches4.5mm,no film drop is emitted.The bubble size is therefore a key parameter for the reduction of dust produced in EAF.

The continuation of the present piece of work will consist of studying the influence of a slag at the surface of the bath, as well as that of surfactants,on the bubble-burst process. References

[1]A.M.Hagni,Reflected light microscopy,electron microscopy,electron

spectroscopy and X-ray diffraction mineralogical characterization of EAF dusts,PhD,University of Missouri-Rolla(1995).

[2]J.R.Porter,J.I.Goldstein,Y.W.Kim,American Institute of Physics

(1982),377-393.

[3]A.M.Hagni,R.D.Hagni,Extraction and processing for the

treatment and minimization of wastes,in:J.Hagner,W.Imrie,J.

Pusatori,V.Ramachandran,The Minerals,Metals and Materials Society,1993,pp.1137–1148.

[4]L.Nedar,Steel Research67(1996)320–327.

[5]C.L.Li,M.S.Tsai,ISIJ33(1993)284–290.

[6]M.Cruells,A.Roca,C.Nunez,Hydrometallurgy31(1992)213–231.

[7]J.P.Birat,A.Dez,M.Faral,S.Gonthier,J.C.Huber,B.Aubry,

Journe′es Side′rurgiques Internationales ATS,Paris,1998.

[8]J.C.Huber,La formation des poussie`res dans un Four Electrique

d’Acie′rie,Doctorate Thesis,INPL,2000.

[9]Z.Han,L.Holappa,Metallurgical and Materials Transactions.B,

Process Metallurgy and Materials Processing Science34(2003) 525–532.

[10]H.Unger,J.Starflinger,U.Brockmeier,M.K.Koch,W.Schutz,

Kerntechnik61(1996)16–22.

[11]D.C.Blanchard,L.D.Syzdek,Journal of Geophysical Research93

(1988)3649–3654.

[12]F.J.Resch,J.S.Darrozes,G.M.Afeti,Journal of Geophysical

Research91(1986)1019–1029.

[13]F.J.Resch,G.M.Afeti,Journal of Geophysical Research96(1991)

10681–10688.

[14]D.E.Spiel,Journal of Geophysical Research103(1998)

24907–24918.

[15]D.E.Spiel,Journal of Geophysical Research99(1994)10289–10296.

[16]J.Wu,Tellus41B(1989)469–473.

[17]D.C.Blanchard,Journal of Geophysical Research94(1989)

10999–11002.

A.-G.Gue′zennec et al./Powder Technology157(2005)2–1111

iOS英文术语对照

英文术语对照 安装MAC与XCode、XCode工具快速入门: appl e:苹果公司。 mac,Macintosh:由苹果公司设计生产并且运行Mac OS操作系统的个人电脑产品。 Mac OS:是一套运行于苹果Macintosh系列电脑上的操作系统。 iPhone:iPhone是苹果公司旗下的一个智能手机系列,此系列的手机搭载苹果公司研发的iOS手机操作系统。 iOS:iPhone OS,是由苹果公司为移动设备所开发的操作系统,支持的设备包括iPhone、iPod touch、iPad、Appl e TV。 BSD:Berkeley Software Distribution,伯克利软件套件,是Unix的衍生系统,Mac OS的核心。 Snow Leopard:雪豹,mac os的一个版本。 Lion:狮子,mac os的一个版本。 Mountion Lion:山狮,mac os的一个版本。 Find er:发现者,mac下的资源浏览器。 App Store:应用商店。 NeXT:NeXT软件公司。 Xcod e:苹果公司向开发人员提供的集成开发环境,用于开发Mac OS X和iOS的应用程序。 assistant editor:辅助编辑区域。 buil d:构建、编译。 run:构建、编译并运行。 d ebugger:调试器。 id entity inspector:标识检视面板 navigator:导航面板。 OC基础语法与流程控制Objective-c: OC:Objective-C是一种通用、高级、面向对象的编程语言。是苹果的OS X 和iOS 操作系统,及其相关API、Cocoa 和Cocoa Touch 的主要编程语言。Cocoa:苹果公司为Mac OS X所创建的原生面向对象的编程环境。Foundation:通用的面向对象库。 framework:框架,通常指的是为了实现某个业界标准或完成特定基本任务的软件组件规范,也指为了实现某个软件组件规范时,提供规范所要求之基础功能的软件产品。 Cocoa Touch:iOS界面框架。 Media:iOS中负责处理图片,音频,视频等多媒体数据的层级。 Core Services:提供系统核心功能(比如数据存储等)的软件层级。 Core OS:提供操作系统级别(操作蓝牙模块,键盘,显示器等)的服务的软件层级。 import:OC中加载头文件的一种方法。 autoreleasepool:自动释放池。

【5】IOS面试题--内存管理

1.属性readwrite,readonly,assign,retain,copy,nonatomic,atomic各是什么作用,在那种情况下用? readwrite是可读可写特性;需要生成getter方法和setter 方法时使用 readonly是只读特性只会生成getter方法不会生成setter 方法 ;不希望属性在类外改变 assign是赋值特性,不涉及引用计数,弱引用,setter方法将传入参数赋值给实例变量;仅设置变量时; retain表示持有特性,setter方法将传入参数先保留,再赋值,传入参数的retaincount会+1; copy表示拷贝特性,setter方法将传入对象复制一份;需要完全一份新的变量时。 nonatomic非原子操作,不加同步,多线程访问可提高性能,但是线程不安全的。决定编译器生成的setter getter是否是原子操作。 atomic原子操作,同步的,表示多线程安全,与nonatomic 相反

2.Difference between shallow copy and deep copy? 浅复制和深复制的区别? 浅层复制:只复制指向对象的指针,而不复制引用对象本身。深层复制:复制引用对象本身。 意思就是说我有个A对象,复制一份后得到A_copy对象后,对于浅复制来说,A和A_copy指向的是同一个内存资源, 复制的只不过是一个指针,对象本身资源。 对于深复制来说,A和A_copy指向的是两个不同的内存资源,他们是两份独立对象本身。 用网上一哥们通俗的话将就是: 浅复制好比你和你的影子,你完蛋,你的影子也完蛋 深复制好比你和你的克隆人,你完蛋,你的克隆人还活着。 3.什么是栈内存(stack)?什么是堆内存(heap)?栈内存:由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈(先进后出)。在内存中占连续的空间,紧密依次排列,效率很高,要优于堆内存,但是分配容量有限。在IOS开发中,栈内存里主要存放的是任何C类型,如int、short、char、long、struct、enum等基本数据类型或者结构体。 堆内存:也叫散列堆,在运行的过程中动态内存分配。需要在创建对象的时候通过alloc开辟空间,不用的时候需要

iOS开发高级程序员面试题-答案

一、判断题(每题2分,共20分) 1、UITableView能够绑定多个数据源。(错) 2、一个UIViewController可以管理多个UITableView。(对) 3、Object-c的类可以多重继承。(错) 4、objective-c类里面的方法只有两种, 静态方法和实例方法。(对) 5、NSFileManager和NSWorkspace在使用时都是基于进程进行单件对象的实例化。(对) 6、用类别增加方法时,不能与原来类中的方法产生名称冲突。(错) 7、frame指的是该view在本身坐标系统中的位置和大小。(错) 8、method是一个方法的名字,selector是一个组合体。(错) 9、ARC是编译特性,不是运行时特性,在编译时,编译器会自动加上释放代码。(对) 10、从iOS4之后,Safari支持全屏浏览,Siri支持普通话。(对) 二、填空题(每空2分,共20分) 1、iOS是使用Objective-C语言编写的,使用该语言开发的Cocoa是一款功能强大的用户界面工具包,也是iOS的核心。 2、数组是将元素在内存中连续存放,由于每个元素占用内存相同,可以通过下标迅速访问数组中任何元素。链表恰好相反,其中的元素在内存中不是顺序存储的,而是通过存在元素中的指针联系到一起。 3、发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作。而发送异步请求不会阻塞主线程,会建立一个新的线程来操作,之后程序可以继续运行。 页脚内容1

4、autorelease只是把Object放入了当前的autorelease pool中,当它被释放时,其中的所有Object都会被调用Release。 5、作为Objective-C导入头文件的关键字,#import<>用来包含系统的头文件,#import””用来包含用户头文件。 三、简述题(每题4分,共20分) 1、delegate和notification有什么区别,什么情况下使用? 答:delegate:消息的发送者(sender)告知接收者(receiver)某个事件将要发生,delegate同意然后发送者响应事件,delegate机制使得接收者可以改变发送者的行为。通常发送者和接收者的关系是直接的一对多的关系。 notification:消息的发送者告知接收者事件已经发生或者将要发生,仅此而已,接收者并不能反过来影响发送者的行为。通常发送者和接收者的关系是间接的多对多关系。 2、Object-C中创建线程的方法是什么?如果在主线程中执行代码,方法是什么?如果想延时执行代码、方法又是什么? 答:线程创建有三种方法:使用NSThread创建、使用GCD的dispatch、使用子类化的NSOperation,然后将其加入NSOperationQueue。 在主线程执行代码,方法是performSelectorOnMainThread。 如果想延时执行代码可以用performSelector:onThread:withObject:waitUntilDone。 3、iOS有哪些数据持久化方式? 答:四种:属性列表、对象归档、SQLite3和Core Data。 页脚内容2

一个区分度很大的面试题

一个区分度很大的面试题 考察一个面试者基础咋样,基本上问一个@property 就够了: @property 后面可以有哪些修饰符? ?线程安全的: ?atomic,nonatomic ?访问权限的 ?readonly,readwrite ?内存管理(ARC) ?assign,strong,weak,copy ?内存管理(MRC) ?assign,retain,copy ?指定方法名称 ?setter= ?getter= 什么情况使用weak 关键字,相比assign 有什么不同?比如: ?在ARC中,出现循环引用的时候,必须要有一端使用weak,比如:自定义View的代理属性 ?已经自身已经对它进行一次强应用,没有必要在强引用一次,此时也会使用weak,自定义View的子控件属性一般 也使用weak;但b是也可以使用strong

? weak当对象销毁的时候,指针会被自动设置为nil,而assign 不会* assigin 可以用非OC对象,而weak必须用于OC 对象 怎么用copy 关键字? ?对于字符串和block的属性一般使用copy ?字符串使用copy是为了外部把字符串内容改了,影响该属性 ? block使用copy是在MRC遗留下来的,在MRC中,方法内部的block是在在栈区的,使用copy可以把它放到堆区.在ACR中对于block使用copy还是strong效果是一样的这个写法会出什么问题:@property (copy) NSMutableArray *array; ?添加,删除,修改数组内的元素的时候,程序会因为找不到对于的方法而崩溃.因为copy就是复制一个不可变NSArray的对象 如何让自己的类用copy 修饰符? ?你是说让我的类也支持copy的功能吗? ?如果面试官说是: ?遵守NSCopying协议 ?实现- (id)copyWithZone:(NSZone *)zone; 方法?如果面试官说否,是属性中如何使用copy ?在使用字符串和block的时候一般都使用copy

ARC 问答

软件英才网软件行业驰名招聘网站 ARC 问答 原文: https://www.360docs.net/doc/166598086.html,/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html by Mike Ash 概念 " Clangstatic analyzer "是一个非常有用的查找代码中内存管理错误的工具。我在查看这个分析器的输出时经常会想,“既然你能找出错误,为什么就不能修正错误呢?” 实际上,这就是ARC的作用。编译器中包含了内存管理规则,但只能简单地由它自己来调用,无法帮助程序员查找错误。 ARC介于自动垃圾回收(GC)和手动内存管理之间。就像垃圾回收,ARC让程序员不再需要书写retain/release/autorelease语句。但它又不同于垃圾回收,ARC无法处理retaincycles。在ARC里,如果两个对象互相强引用(strong references)将导致它们永远不会被释放,甚至没有任何对象引用它们。 因此,尽管ARC能免去程序员大部分内存管理问题,但仍然要程序员自己避免retaincycles 或手动打断对象之间的retain循环。ARC和苹果的垃圾回收之间还有一个重要的不同:ARC 不是强制的。而对于苹果的垃圾回收,要么整个程序都使用,要么都不用。也就是说在app 中的所有O-C代码,包括所有的苹果框架和所有的第3方库必须支持垃圾回收,才能使用垃圾回收。相反,ARC和非ARC代码可以在一个app中和平共处。这使得将项目可以零星地迁移到 ARC 而不会像垃圾回收起初遇到的各种兼容性和稳定性的问题。 Xcode ARC 在Xcode 4.2中有效,当前为beta版,只能用Clang编译(即"Apple LLVM compiler")。有一个设置“Objective-CAutomatic Reference Counting”,设置为YES打开ARC,NO关闭ARC。 如果在老的代码中打开这个设置,将导致大量的错误。ARC不仅仅为你管理内存,它还禁止你手动管理内存。手动调用retain/release/autorelease 方法在ARC中是被禁止的。由于在非ARC代码中这样的调用随处可见,因此会得到大量的错误。 幸运的是, Xcode 提供了工具对老代码进行自动转换。选择“Edit -> Refactor... -> Convert to Objective-C ARC... ”,Xcode会引导你转换你的代码。尽管有时候也需要你告诉它怎样做,但仍然有许多工作是自动的。 基本功能 Cocoa的内存管理规则很简单: 1如果你alloc、new、copy或者retain一个对象,你必须release或者autorelease 它。 2如果你在此之外获得一个对象,但你需要它在内存中存在更长时间,你必须retain 或者copy它。当然,最后你必须release/autorelease它。 这非常适合于自动化。例如你编写了以下代码:

arc下dealloc的处理

ARC 下dealloc 过程的探究 我是前言 这次探索源自于自己一直以来对ARC 的一个疑问,在MRC 时代,经常写下面的代码: 1 2 3 4 5 6 7 8 9 - (void)dealloc { self.array = nil; self.string = nil; // ... // // 非Objc 对象内存的释放,如CFRelease(...) // ... // [super dealloc]; } 对象析构时将内部其他对象release 掉,申请的非Objc 对象的内存当然也一并处理掉,最后调用super ,继续将父类对象做析构。而现如今到了ARC 时代,只剩下了下面的代码: 1 2 3 4 5 6 - (void)dealloc { // ... // // 非Objc 对象内存的释放,如CFRelease(...) // ... // } 问题来了: 1. 这个对象实例变量(Ivars )的释放去哪儿了? 2. 没有显示的调用[super dealloc],上层的析构去哪儿了? ARC 文档中对dealloc 过程的解释 llvm 官方的ARC 文档中对ARC 下的dealloc 过程做了简单说明,从中还是能找出些有用的信息: A class may provide a method definition for an instance method named dealloc. This method will be called after the final release of the object but before it is deallocated or any of its instance variables are destroyed. The superclass’s implementation of dealloc will be called automatically when the method returns.

IOS选择题带答案

软件开发应试人员考试试题(Android) 姓名:___________电话:___________ 以下信息有工作经验人员如实填写,应届毕业不填(时间从毕业参加工作算起)从事Android开发时间____月 1.及时聊天app不会采用的网络传输方式是D A UDP B TCP C Http D FTP 2.下列技术不属于多线程的是A A Block B NSThread C NSOperation D GCD 3.线程和进程的区别不正确的是B A进程和线程都是由操作系统所体会的程序运行的基本单元 B线程之间有单独的地址空间 C进程和线程的主要差别在于它们是不同的操作系统资源管理方式 D线程有自己的堆栈和局部变量 4.堆和栈的区别正确的是D

A对于栈来讲,我们需要手工控制,容易产生memory leak。 B对于堆来说,释放工作由编译器自动管理,无需我们手工控制 C在Windows下,栈是向高地址扩展的数据结构,是连续的内存区域,栈顶的地址和栈的最大容量是系统预先规定好的。 D对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。 5.下列回调机制的理解不正确的是???B A目标动作对:当两个对象之间有?比较紧密的关系时,如视图控制器与其下的某个视图。??????? B代理:也叫委托,当某个对象收到多个事件,并要求同一个对象来处理所有事件时。委托机制必须依赖于某个协议定义的?方法来发送消息。??????? C通告机制:当需要多个对象或两个?无关对象处理同一个事件时。??????? D Block:适?于回调只发?生一次的简单任务。

iOS面试重点技术

1.几个重点技术: 即时通讯,支付(支付宝,微信),runtime,runloop,二维码(使用系统接口实现),socket,音频视频 2.RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部"接受消息->等待->处理" 的循环中,直到这个循环结束(比如传入quit 的消息),函数返回。 3.在使用手动的内存管理方式的项目中,会经常用到很多自动释放的对象,如果这些对象不能够被即时释放掉,会造成内存占用量急剧增大。Run loop就为我们做了这样的工作,每当一个运行循环结束的时候,它都会释放一次autorelease pool,同时pool中的所有自动释放类型变量都会被释放掉。

4.面试问题 ?@property 后面可以有哪些修饰符? ?什么情况使用 weak 关键字,相比 assign 有什么不同??怎么用 copy 关键字? ?这个写法会出什么问题:@property (copy) NSMutableArray *array; ?如何让自己的类用 copy 修饰符?如何重写带 copy 关键字的setter? 这一套问题区分度比较大,如果上面的问题都能回答正确,可以延伸问更深入点的: ?@property 的本质是什么?ivar、getter、setter 是如何生成并添加到这个类中的 ?@protocol 和 category 中如何使用 @property ?runtime 如何实现 weak 属性 [※]@property中有哪些属性关键字? [※]weak属性需要在dealloc中置nil么? [※※]@synthesize和@dynamic分别有什么作用?

iOS笔试题

iOS笔试题 姓名_________________ 时间____________________ 一、填空题(20题) 1、与alloc对应的方法是,与retain对应的方法是。 2、@property的作用是 , @synthesize的作用是。 3、一个对象的dealloc方法在时被调用。 4、分类(categories)能够向一个已有的类中添加。 拓展(extensions)能够在当前类中增 加。 5、iOS开发者账户中,最多能够添加台设备号。 6、协议(protocal)可以分为两种,其中以关键字申明的协议可以不被实现。 7、是大多数Objective-C类继承的根类,它没有父类。 8、代理(delegate)的作用是。 9、UIViewController的didReceiveMemoryWarning方法在时会调用。 10、MVC模式中,M是指,V是指,C是指。 11、autorelase的作用 是 。 12、 iOS后台运行是在系统版本才开始支持。 13、代码: - (void)setName:(NSString *)newName{ https://www.360docs.net/doc/166598086.html, = newName; } 被调用的结果是。 14、UDID是由位十六进制字符串组成。 15、在KVC中通用的属性访问器方法是和。 16、关键字nil在Objective-C中表示。

17、#import和#include的区别是。 18、在Objective-C中是否支持运算符重载,能否在头文件里申明私有方法。 19、在Instruments工具中,用于检查内存泄露的工具是。 20、在iOS开发环境下,后缀为.a的文件又叫做。 二、单选题(20题) 1、在Objective-C中,类的成员变量默认被申明为:()A:@private B:@protected C:@public D:@package 2、iPhone、iPad、iTouch中使用的架构是()A:arm B:i386 C:x86 D:IA-32 3、下面哪个类在iPhone应用程序开发时不能使用 ( ) A:UITabViewController B:UINavigationController C:UISplitViewController D:UITableViewController 4、关于Objective-C++中的异常处理,下面说法最正确的是 () A:Objective-C不支持异常处理 B:在Objective-C++中,Objective-C的异常处理能够捕获C++的异常 C:在Objective-C++中,Objective-C的异常处理不能捕获到C++的异常 D:在Objective-C++中,Objective-C和C++的异常处理可以相互捕获异常 5、在对象的dealloc方法中,关于[super dealloc];语句说法正确的是()A:[super dealloc];有没有没有关系 B:[super dealloc];应该放在dealloc方法内的第一行 C:[super dealloc];应该放在dealloc方法内的最后一行 D:[super dealloc];位置无所谓,只要在dealloc方法里有就可以 6、下面关于方法:[[[object method1] method2] method3:[object method4]];中的method调用顺序是 ( ) A: 1 2 3 4 B: 1 2 4 3 C:4 1 2 3 D: 4 3 2 1 7、iOS开发中,HTTPS通讯是在什么位置来保障安全性()A:NSURLRequest方法里B: NSURLRequest代理方法里 C:NSURLConnection方法里D:NSURLConnection代理方法里 8、关于NSURLConnection同步通讯和异步通讯,下面说法正确的是()A: 同步通讯是指发送数据后,不等接收方回应,接着发下一个数据 B: 异步通讯时会阻塞当前线程 C: 发送同步通讯时,系统会自动创建一个单独的线程

iOS笔试题及答案

1. 什么是ARC/MRC,ARC无法管理内存的情况? 答案 1.ARC: 自动引用计数。OC自动内存管理机制, 2.区别于MRC需要手动管理引用计数retain或release 对引用计数+1 -1操作。这种操作耗费精力容易出错,比如在多线程操作有时不确定哪个线程最后使用完毕,在模块化时对象被多个模块创建和使用,不能确定最后由谁去释放 。无法管理内存的情况? **1***Block或Delegate的循环引用解决的方法:掐断其中的一条强引用,使之变成弱引用,变成这样,就打破了循环引用: __weaktypeof (self) weakSelf =self; Delegate要用weak修饰 ***2**NSTimer未释放 在使用NSTimeraddtarget时,为了防止target 被释放而导致的程序异常,timer 会强引用target,所以这也是一处内存泄露的隐患。解决方法是使用线程安全的MSWeakTimer,然后在dealloc中主动调用invalidate **3***非OC对象

2.如何理解retain/copy/assign/release/autor release/dealloc关键字?答案 copy:建立一个索引计数为1的对象,然后释放旧对象,主要用于nsstring; retain:释放旧的对象,将旧对象的值赋予输入对象,再提高输入对象的索引 计数为1 对其他NSObject和其子类 assign: 简单赋值,不更改索引计数 release:手动释放对象; dealloc:它的作用是,当对象的引用计数为0,系统会自动调用dealloc方法,回收内存。 autorelease 原理: a.先建立一个autorelease pool b.对象从这个autorelease pool里面生成。 c.对象生成之后调用autorelease函数,这个函数的作用仅仅是在autorelease pool中做个标记,让pool记得将来release一下这个对象。 d.程序结束时,pool本身也需要rerlease, 此时pool会把每一个标记为autorelease的对象release一次。如果某个对象此时retain count大于1,这个对象还是没有被销毁。 (weak和strong)不同的是当一个对象不再有strong类型的指针指向它的时候它会被释放,即使还有weak型指针指向它。weak表示如果还没有人指 向它了,它就会被清除内存,同时被指向nil

相关主题
相关文档
最新文档