汤姆逊TG585V7 说明书

汤姆逊TG585V7 说明书
汤姆逊TG585V7 说明书

THOMSON TG585 无线路由器

使用说明书

THOMSON TG585 设置说明

看设置教程请勿一目十行,请不要从后往前看。设置需要有一定耐心。急性朋友建议直接电话联系我们或者找当地电脑公司上门给你服务!以免几分钟搞定的事情你搞几小时。

特别提醒:设置本无线路由器的时候,是不需要上网的。不止1个客人这样问我们。我连接上你这个东西以后网都上不了了,还怎么设置啊!在此告诉大家,这个设置的页面是保存在无线路由里面的所以不上网也可以设置的!还有些客人属于急性子,教程看个是懂非懂就进行设置,到最后上不去了,就开始牢骚满天飞,说啥东西不行啊,说啥出货前没检测啊!搞得您我都不爽不说,还浪费大量时间,【本人遇到因为网线没连接好,ADSL帐号密码填写错误而不能上网的的客人还不在少数】我们的教程都是相对简洁的!只所以花1~2天制作这样的教程,为的就是能让绝大多数客人能通过自己来完成设置!因为有的设置必须是在断网状态的。我们既没办法帮你远程协助设置!又没办法看到你目前设置的状态。我们是有力使不上啊!以理性的态度对待网络购物,会让你购物更开心的!

THOMSON TG585不仅能作为猫和路由一体机使用直接电话线接入,不仅适用于ADSL用户也适用小区宽带网络。真正的万能路由器,可以适用于任何网络适用。

步骤一:连接无线宽带路由器到您的网络

1.首先将路由器电源适配器接头插入后面板的电源插孔处,另一端接入电源插座。打开路由器上的电源开关,当通电之后会看到

前面板的Power指示灯(电源指示灯)亮。待路由启动完毕后再进行下一步的操作。

2.ADSL用户将连接至宽带Modem的电话线接到路由的DSL 口,小区宽带用户将入户网线接到LAN口1-4任意一端口。

3.将与电脑连接的网线接在LAN端(有1~4个口)任意一个端口。

步骤二:本地连接配置

1将电脑网卡的ICP/IP设置成自动获取IP地址

(1)您正在使用的计算机桌面上,用鼠标右键点击网上邻居,选择“属性”。

“属性”。

点击“属性”。

线猫时,计算机即会自动获得IP地址。

2 .查看电脑网卡是否获取到正确的IP地址及网关

(1)您正在使用的计算机桌面上,用鼠标右键点击网上邻居,选择“属

态”。

(3)在随后打开的窗口里,先看下本地连接的常规页面,已连接上表

明电脑与无线猫的物理连接没问题。再看下支持页面,里面连接类型应该是通过DHCP分配默认网关应该是192.168.1.254

步骤三: 无线路由器的网络配置

1.打开浏览器,本文以IE浏览器为例,在浏览器的地址栏键入19

2.168.1.254回车(虽然现在你还不能上网,但只要您使用网线将电脑与路由器的LAN口任意一个连接起来即可打开路由器配置界

面)。

2.按照下图顺序进行点击

3.点击NEXT 下一步

4.选择Router PPP ,然后下一步。

5.ADSL用户(电话线接入)必须正确选择你当地的VPI与VCI (每个地方不一样,常见VPI VCI一般有0.35 8.35 8.81 0.100),宽带用户(网线接入)不需要设置VPIVCI,随便选一个。选择PPPOE,然后下一步。

6.填写正确的ADSL账号与密码,就是你宽带的账号密码,然后下一

步。

7.注意!切记!以下是设置登录路由界面账号密码的,建议不要更改。

8.Start 继续下一步

9.路由器配置正在保存,稍等几秒钟

10.表示已经设置完成,Finish完成。

步骤四: 查看无线路由器是否已经连接到外网

特别提醒:

1.使用了无线路由器以后,不需要再运行电脑里面的宽带连接拨号程序了,刚才我们在无线路由器里面填写了ADSL帐号密码,拨号的工作就由无线路由来完成了,以后打开电脑就可以上网的。

2.限时的ADSL用户。就是每个月限制了使用时间的那种比如1个月限制使用240小时或者360小时那种,不用的时候记得关闭无线路由器

的电源!否则30X24小时的工作时间会让你严重超额使用…….

方法一.最简单的方法是直接到开Internet Explorer 输入1个网址看能否上网能上表明ok。

注意:我们以打开https://www.360docs.net/doc/1e7399084.html, 为例,若出现下面的情况表明你的VPI VCI数值设置错误,请重新设置VPI VCI。

注意:我们以打开 https://www.360docs.net/doc/1e7399084.html, 为例,若出现下面的情况表明你的宽带账号或宽带密码设置错误,请重新设置账号密码。

电话线与宽带猫没连接好,请重新连线。

方法二进入路由器的设置页面,点击“状态” 按钮 WAN IP地址若是0.0.0.0表示没连接到Internet ,WAN IP地址若是

XX.XX.XX.XX XX=数字表示已经连网。

若是上不了网请按下面的方法去检查问题之所在

1.经过上面的设置后,首次自动拨号的速度看当地的网络速度,30秒~5分钟等。有的地方可能时间更长,所以在设置完毕后请耐心等待1段时间

2.若是等待时间超过15分钟还是不能上网,请检测电话线与ADSL 猫之间的连接是否存在接触不良【查看无线路由器的DSL状态灯亮状态】

3.检测ADSL宽带帐号与密码的正确性。很多客人会说,我的帐号

密码绝对没问题的!但我们确实遇到N多这样说的客人最后真的是帐号密码错误而不能上网。最简单的检测方式是将电脑直接接在你原来的宽带猫上运行…宽带连接?拨号程序。手工输入你的ADSL帐号与密码点连接后。若是能连接并上网!表明正确

步骤五: 无线路由器的无线加密

(1)按照下图顺序进行点击。

(2)点击Configure

(3)设置无线密码

第五章 化学平衡

第五章化学平衡 授课时数:8学时 主要内容: 1. 化学反应的等温方程式和化学反应的亲的势 2. 理想气体化学反应的标准平衡常数 3. 温度对标准平衡常数的影响 4. 其它因素对理想气体化学平衡的影响 5. 同时反应平衡 6. 真实气体反应及混合物和溶液中反应的化学平衡 重点: 1. 化学反应标准平衡常数的定义; 2. 平衡常数和平衡组成的计算; 3. 化学反应的等温方程式和等压方程式及其应用; 4. 温度、压力及惰性气体等因素对化学平衡的影响。 难点: 1. 利用等温方程式判断一定条件下化学反应可能进行的方向; 2. 范特霍夫方程式的推导及其应用。 教学方式: 1. 采用CAI 课件与黑板讲授相结合的教学方式; 2. 合理运用问题教学或项目教学的教学方法; 3. 作业:1,3,4,5,8,10,11,14,15,18,20,21,22,24,26,27,28; 4. 答疑:(a) 课后答疑;(b) 通过网络答疑。

5.1化学反应的等温方程 1.摩尔反应吉布斯函数和化学反应亲和势 在一定的温度、压力和非体积功为零的条件下,化学反应B 0B B ∑=ν的摩尔反应吉布 斯函数为 ? ?? ??=?<=自发 平衡0m r G 定义化学反应的亲和势A 为 m r G A ?-= A 代表在恒温、恒压和' 0W =的条件下反应的推动力。A >0反应能自动进行;A =0反应处 于平衡态;A < 0反应不能自动进行。 2.摩尔反应吉布斯函数与反应进度的关系,平衡条件 对于化学反应 B 0B B ∑=ν,随着反应的进行,各物质的量均发生变化,对多组分系统 B B B d d d d n p V T S G ∑++-=μ 如果在恒温恒压下 B B B d d n G ∑=μ 根据反应进度的定义 B B d d νξn = , 得 ξ νd n B B d =, 代入上式,则 ξ μνd d B B B ∑=G m r B B B ,)/(G G P T ?=∑=??μνξ 式中的 ()p ξ??T,G 表示在T ,p 及 组成一定的条件下,反应系统的 吉布斯函数随反应进度的变化率, 恒温恒压下均相反应的G -ξ曲线示意图

亥姆霍兹自由能和吉布斯自由能的区别

亥姆霍兹自由能(Helmholtz free energy): F=U-TS, U 是系统的内能,T 是温度,S 是熵。(注意与吉布斯自由能的区别) 吉布斯自由能(Gibbs free energy): G=H-TS , H为焓,S为熵,T为当前温度 由于吉布斯自由能G 可以表示为G = F + pV,另有G = μN,所以F = μN –pV;亥姆霍兹自由能的微分形式是:dF = - SdT - PdV + μdN 其中P 是压强,V 是体积,μ是化学势 在统计物理学中,亥姆霍兹自由能是一个最常用的自由能,因为它和配分函数Z直接关联:F = -kTlnZ 吉布斯自由能的微分形式是: dG = ? SdT + Vdp + μdN, 其中μ是化学势,也就是说每个粒子的平均吉布斯自由能等于化学势; ΔG叫做吉布斯自由能变(吉布斯自由能判据) 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 吉布斯自由能改变量。表明状态函数G是体系所具有的在等温等压下做非体积功的能力。反应过程中G的减少量是体系做非体积功的最大限度。这个最大限度在可逆途径得到实现。反应进行方向和方式判据。 (功函判据) 亥姆霍兹函数是一个重要的热力学参数,等于内能减去绝对温度和熵的乘积:两个状态差值的负数等于一个可逆等温等容过程的最大功输出。 亥姆霍兹自由能是等温下做所有功的能力,亦称功函 吉布斯自由能是等温等压下除体积功以外的功的能力 玻尔兹曼常数(Boltzmann constant)(k 或kB)是有关于温度及能量的一个物理常数: 记为“K”,数值为:K=1.3806488(13)×10^-23J/K 理想气体常数等于玻尔兹曼常数与阿伏伽德罗常数的乘积: R=kN; 熵函数 熵可以定义为玻尔兹曼常数乘以系统分子的状态数的对数值: S=k㏑Ω; 焓变熵变 焓 焓是物体的一个热力学能状态函数,即热函:一个系统中的热力作用,等于该系统内能加上其体积与外界作用于该系统的压力的乘积的总和(Enthalpy is a combination of internal energy and flow work.)。 焓是一个状态函数,也就是说,系统的状态一定,焓的值就定了。 焓的定义式(物理意义)是这样的:H=U+pV [焓=流动内能+推动功] 其中U表示热力学能,也称为内能(Internal Energy),即系统内部的所有能量; p是系统的压力(Pressure),V是系统的体积(V olume) 。 焓变 焓变(Enthalpy changes)即物体焓的变化量。 焓变是生成物与反应物的焓值差。作为一个描述系统状态的状态函数,焓变没有明确的物理意义。

吉布斯自由能

@ 吉布斯自由能 定义 ΔG=ΔH-TΔS (Kj/mol) 吉布斯自由能相关书籍封面(1) G叫做吉布斯自由能。因为H、T、S均为状态函数,所以G为状态函数。 特点 ΔG叫做吉布斯自由能变化 、 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 吉布斯自由能改变量。表明状态函数G是体系所具有的在等温等压下做非体积功的能力。反应过程中G的减少量是体系做非体积功的最大限度。这个最大限度在可逆途径得到实现。反应进行方向和方式判据。 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 范特霍夫等温公式 吉布斯自由能随温度和压强变化很大。为了求出非标准状况下的吉布斯自由能,可以使用范特霍夫等温公式: ΔG = ΔG0 + RT \ln J 其中,ΔG0是同一温度、标准压强下的吉布斯自由能,R是气体常数,J是反应熵。 温度的变化在ΔG0的使用上表现出来,不同的温度使用不同的ΔG0。非标准状况的ΔG0需要通过定义式(即吉布斯等温公式)计算。压强或浓度的变化在J的表达上表现出来。 】 研究对象 >W非反应以不可逆方式自发进行 =W非反应以可逆方式进行

<0 反应以不可逆方式自发进行 =0 反应以可逆方式进行 >0 不能进行 * 等温等压下体系的吉布斯自由能减小的方向是不做非体积功的化学反应进行的方向。 任何等温等压下不做非体积功的自发过程的吉布斯自由能都将减少。 标准自由能 在温度T时,当反应物和生成物都处于标准态,发生反应进度 标准自由能推理过程 为1 mol的化学反应Gibbs自由能的变化值,称为标准摩尔反应吉布斯自由能变化值,用表示标准吉布斯自由能与一般反应的吉布斯自由能的关系: # 标准自由能变化 标准自由能变化(△GO):相应于在一系列标准条件(温度298K,压力1atm(=),所有溶质的浓度都是不是mol/L)下发生的反应自由能变化。△GO′表示条件下的标准自由能变化。 平衡常数 在等温等压反应中,如果吉布斯自由能为负,则正反应为自发,反之则逆反应自发。如果为0,则反应处于平衡状态。此时,根据范特霍夫等温公式,ΔG = ΔG0 + RT \ln J,J变成平衡常数,于是有: ΔG0 = -RT ln K 要注意,使用范特霍夫等温公式时,ΔG和ΔG0的温度一定要相等。 这样,我们可以推出以下结论: ΔG0>0时,K<1; ¥ ΔG0=0时,K=1; ΔG0<0时,K>1。 自由能做功 有人可能会问:为什么单单用等温等压过程系统向环境作最大有用功的能力而不用包括气体膨

吉布斯函数

吉布斯系列 学号:120103709014 摘要:在物理化学当中,吉布斯自由能是物理化学中的一个重要的热力学函数,虽然他只是定义的一个函数,是若干热力学函数的数学组合。但吉布斯自由能概念几乎贯穿在整个物理化学的学习过程中,加深对吉布斯自由能定义、性质和判据的掌握,正确理解体系的吉布斯自由能变化的计算公式及其使用范围和条件,是掌握事物内在本质和学好物理化学的基础。 关键字:吉布斯函数、范特霍夫等温方程、吉布斯自由能与熵和焓、吉布斯自由能与平衡常数、吉布斯自由能与化学势 一、吉布斯函数 吉布斯函数(Gibbs function),系统的热力学函数之一。又称热力势、自由焓、吉布斯自由能等。符号G,定义为:G=H-TS 式中H、T、S分别为系统的焓、热力学温度(开尔文温度K)和熵。吉布斯函数是系统的广延性质,具有能量的量纲。由于H,S,T都是状态函数,因而G也必然是一个状态函数。 当体系发生变化时,G也随之变化。其改变值△G,称为体系的吉布斯自由能变,只取决于变化的始态与终态,而与变化的途径无关:△G=G终一G始

按照吉布斯自由能的定义,可以推出当体系从状态1变化到状态2时,体系的吉布斯自由能变为:△G=G2-G1=△H -△(TS) 对于等温条件下的反应而言,有T2=T1=T 则△G=△H-T △S 上式称为吉布斯-亥姆霍兹公式(亦称吉布斯等温方程)。由此可以看出,△G包含了△H和△S的因素,若用△G 作为自发反应方向的判据时,实质包含了△H和△S两方面的影响,即同时考虑到推动化学反应的两个主要因素。因而用△G作判据更为全面可靠。而且只要是在等温、等压条件下发生的反应,都可用△G作为反应方向性的判据,而大部分化学反应都可归入到这一范畴中,因而用△G作为判别化学反应方向性的判据是很方便可行的。 如果一个封闭系统经历一个等温定压过程,则有: ΔG≤W′(2)式中ΔG为此过程系统的吉布斯函数的变化值,W′为该过程中的非体积功,不等号表示该过程为不可逆过程,等号表示该过程为可逆过程。式(2)表明,在等温定压过程中,一个封闭系统吉布斯函数的减少值等于该系统在此过程中所能做的最大非体积功。 如果一个封闭系统经历一个等温定压且无非体积功的过程,则根据式(2)可得: ΔG≤0(3)式(3)表明,在封闭系统中,等温定压且不作非体积功的过程总是自动地向着系统的吉布斯函数减小的

吉布斯自由能

吉布斯自由能又叫做吉布斯函数,是热力学中一个重要的参量,常用G表示,它的定义是:G = U ? TS + pV = H ? TS, 其中U是系统的内能,T是温度,S是熵,p是压强,V是体积,H是焓。 吉布斯自由能的微分形式是: dG = ? SdT + Vdp + μdN, 其中μ是化学势,也就是说每个粒子的平均吉布斯自由能等于化学势。 定义:ΔG=ΔH-TΔS (kJ/mol) G叫做吉布斯自由能。因为H、T、S均为状态函数,所以G为状态函数。 ?G叫做吉布斯自由能变,可作为恒温、恒压过程自发与平衡的判据。 热力学第一定律表达式:Q=?U+W U是热力学能(亦称为内能),H是焓,Q为热量,W为功量 定义焓:H=U+pV,相应的比焓:h=u+pv 范特霍夫等温公式 吉布斯自由能随温度和压强变化很大。为了求出非标准状况下的吉布斯自由能,可以使用范特霍夫等温公式: ΔG = ΔG0 + RT·ln J 其中,ΔG0是同一温度、标准压强下的吉布斯自由能,R是气体常数,J是反应商。 温度的变化在ΔG0的使用上表现出来,不同的温度使用不同的ΔG0。非标准状况的ΔG0需要通过定义式(即吉布斯等温公式)计算。压强或浓度的变化在J的表达上表现出来。 反应进行的方向: 定义吉布斯自由能G=H-TS。因为H、T、S均为状态函数所以G为状态函数。 吉布斯自由能改变量-ΔG=-(G2-G1)>=W非。表明状态函数G是体系所具有的在等温等压下做非体积功的能力。反应过程中G的减少量-ΔG是体系做非体积功的最大限度。这个最大限度在可逆途径得到实现。反应进行的方向和方式可以由ΔG进行判断: -ΔG>W非反应以不可逆方式自发进行 -ΔG=W非反应以可逆方式进行 -ΔG0 不能进行 可见等温等压下体系的吉布斯自由能减小的方向是不做非体积功的化学反应进行的方向。任何等温等压下不做非体积功的自发过程的吉布斯自由能都将减少。 标准自由能 在温度T时,当反应物和生成物都处于标准态,发生反应进度

热力学第二定律总结

第三章 热力学第二定律总结 核心内容: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能 对于恒T 、V 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 对于恒T 、p 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。 一、内容提要 1、热力学第二定律的数学形式 不可逆或自发 ?<>?21T Q S δ 可逆或平衡 不可能 上式是判断过程方向的一般熵判据。将系统与环境一起考虑,构成隔离系统则上式变为: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能

上式称为实用熵判据。在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。 将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 此式称为亥姆霍兹函数判据。 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 此式称为吉布斯函数判据。 熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。 此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系: r T W A =? r V T W A '=?, r p T W G '=?, 即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。 下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。 2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)

物理化学专业英语

本文由feiguohai66贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 物理化学专业英语 电泳 electrophoresis Dyndall effect molar heat capacity under constant vol ume Constant voIume thermometer molar heat capacity under constant pressur e constant pressure thermometer localized particle system 丁达尔效应定容摩尔热容定容温度计定压摩尔热容定压温度计定域子系统动力学方程kinetic equations动力学控制独立子系统对比摩尔体积kinet ics control independent particle system reduced mole volume 对比体积reduced volume对比温度对比压力对称数reduced temperature reduced pressure symmetry number 对行反应reversible reactions对应状态原理principle of corresponding state 多方过程polytropic process多分子层吸附理论adsorption theory of mul ti-molecular layers 二级反应second order reaction 二级相变second order phase change法拉第常数法拉第定律faraday cons tant Faraday’s law

吉布斯自由能

定义 G叫做吉布斯自由能。因为H、T、S均为状态函数,所以G为状态函数。 特点 ΔG叫做吉布斯自由能变化 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 吉布斯自由能改变量。表明状态函数G是体系所具有的在等温等压下做非体积功的能力。反应过程中G的减少量是体系做非体积功的最大限度。这个最大限度在可逆途径得到实现。反应进行方向和方式判据。 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 范特霍夫等温公式 吉布斯自由能随温度和压强变化很大。为了求出非标准状况下的吉布斯自由能,可以使用范特霍夫等温公式: ΔG = ΔG0 + RT \ln J 其中,ΔG0是同一温度、标准压强下的吉布斯自由能,R是气体常数,J是反应熵。 温度的变化在ΔG0的使用上表现出来,不同的温度使用不同的ΔG0。非标准状况的ΔG0需要通过定义式(即吉布斯等温公式)计算。压强或浓度的变化在J的表达上表现出来。 研究对象 >W非反应以不可逆方式自发进行 =W非反应以可逆方式进行 0 不能进行 等温等压下体系的吉布斯自由能减小的方向是不做非体积功的化学反应进行的方向。 任何等温等压下不做非体积功的自发过程的吉布斯自由能都将减少。 标准自由能

标准自由能变化(△GO):相应于在一系列标准条件(温度298K,压力1atm(=),所有溶质的浓度都是不是mol/L)下发生的反应自由能变化。△GO′表示条件下的标准自由能变化。 平衡常数 在等温等压反应中,如果吉布斯自由能为负,则正反应为自发,反之则逆反应自发。如果为0,则反应处于平衡状态。此时,根据范特霍夫等温公式,ΔG = ΔG0 + RT \ln J,J变成平衡常数,于是有: ΔG0 = -RT ln K 要注意,使用范特霍夫等温公式时,ΔG和ΔG0的温度一定要相等。 这样,我们可以推出以下结论: ΔG0>0时,K<1; ΔG0=0时,K=1; ΔG0<0时,K>1。 自由能做功 有人可能会问:为什么单单用等温等压过程系统向环境作最大有用功的能力而不用包括气体膨胀功在内的总功来度量系统发生自发过程的可能性呢?原因在于,系统发生自发过程,膨胀功是可正可负的。可见单单考虑系统作有用功,排除了膨胀功,问题才更纯,更明确。 总之,在等温等压条件下系统自发过程的判断是: △G< 0 即:△G<0,过程自发;△G>0,过程不自发(逆过程自发);△G=0,达到平衡态。一个自发过程,随着过程的发展,△G的绝对值渐渐减小,过程的自发性渐渐减弱,直到最后,△G=0,达到平衡。 化学反应中的自由能 对于一个化学反应,可以像给出它的标准摩尔反应焓△rHmΘ一样给出它的标准摩尔反应自由能变化△rGmΘ(为简洁起见,常简称反应自由能)。 跟热力学能变△U、焓变△H随温度与压力的改变不会发生大的改变完全不同,反应自由能△rGm随温度与压力的改变将发生很大的改变。因此,从热力学数据表中直接查出或计算出来的,标态下的△rGmΘ()的数据,不能用于其它温度与压力条件下,必须进行修正。 用热力学理论可以推导出,求取T温度下的气体压力对△rGmΘ的影响的修正公式为: J=∏(pi/pΘ)vi 其中∏是算符,表示连乘积(例如,a1×a2×a3=╥ai;i=1,2,3),pΘ为标态压力=100kPa,pi为各种气体(与△rGm(T)对应)的非标态压力,vi是化学方程式中各气态物质的计量系数,故J是以计量系数为幂的非标态下各气体的分压与标准压力之比的连乘积。 若系统中还有溶液,上式应改为: J=∏(pi/pΘ)Vi?∏(ci/cΘ)Vi 若系统中只有溶液,则上式又应改为: J=∏(ci/cΘ)Vi 对大多数化学反应而言,温度对反应自由能的影响要大大超过反应物的分压(以及浓度)对反应自由能的影响。通过实验或热力学理论计算,可以得出各种反应的自由能受温度的影响情形。若

物理化学朱传征第二章习题

例2-3 2mol 某单原子分子理想气体从始态273K 、θp ,经一绝热压缩过程至终态546K 、4θ p 。试计算S ?,并判断此过程是否可逆? 解: 对于理想气体任意状态变化过程,其熵变为 21,m 12 11 ln ln 5 5461 28.314ln 28.314ln J K 2 2734 =5.76J K p T p S nC nR T p --?=+??=??+?? ???? 因为此过程为绝热过程,且0S ?>,所以此过程是一不可逆过程。 【点评】对于理想气体的任意状态变化过程,只要始终状态确定,即可计算熵变。如果本题给出系统始终态是(, T V )或(, p V ),则可以分别按下式计算 22,m 11ln ln V T V S nC nR T V ?=+ 或 22,m ,m 11 ln ln p V V p S nC nC V p ?=+ 例2-5 在θ p 下,使1mol 水蒸气在373K 冷凝成液态水,再把水冷却到273K 并凝结成冰。求全部过程中水的熵变。设液态水的平均热容为75.681 1 J K mol --??,水在沸点时的蒸发焓和凝固点时的凝固焓分别为1 40.63kJ mol -?和16.04kJ mol --?。 解: 此过程的示意图如下所示: 各步骤的熵变分别为: θ 3vap m 111 1 40.6310J K 108.9J K 373n H S T --?????=- =-?= -? ??? 11 22,m 1273ln 75.68ln J K 23.6J K 373p T S nC T --???==?=-? ??? θ 11fus m 326040 ()J K 22.1J K 273 n H S T --??=-=-?=-? 总过程的熵变为 11123(108.923.622.1)J K 154.6J K S S S S --?=?+?+?=---?=-? 1 S ????冷 凝 3 S ????→ 凝 固 2 S ????冷 却

吉布斯函数

吉布斯自由能 (2009-04-09 10:35:19) 转载 标签: 分类:科技探索 自由能 标准状况 化学势 等压 吉布斯 宇宙 杂谈 吉布斯自由能又叫吉布斯函数,是热力学中一个重要的参量,常用 G 表示,它的定义是: 其中 U 是系统的内能,T 是温度,S 是熵,p 是压强,V 是体积,H 是焓。吉布斯自由能的微分形式是: 其中是化学势。一个重要的推论是。也就是说每个粒子的平均吉布斯自由能等于化学势。 目录 [隐藏] ? 1 物理意义 ? 2 生成吉布斯自由能 ? 3 范特霍夫等温公式 ? 4 吉布斯自由能与熵和焓 o 4.1 推导 o 4.2 相变 ? 5 吉布斯自由能与平衡常数 ? 6 吉布斯自由能与电化学

7 参阅 [编辑] 物理意义 吉布斯自由能的物理含义是在等温等压过程中,除体积变化所做的功以外,从系统所能获得的最大功。换句话说,在等温等压过程中,除体积变化所做的功以外,系统对外界所做的功只能等于或者小于吉布斯自由能的减小。数学表示是: 如果没有体积变化所做的功,即 W=0,上式化为: 也就是说,在等温等压过程前后,吉布斯自由能不可能增加。如果发生的是不可逆过程,反应总是朝着吉布斯自由能减少的方向进行。 特别地,吉布斯自由能是一个广延量,单位摩尔物质的吉布斯自由能就是化学势μ,也就是说。 具体推导如下:假设,代入热力学第一定律的微分形式: 现在假想保证原来物体属性的情况下,切掉体系的一小部分dN。这时,dT,dp,dg 这些强度量的变化为零。所以必然有。 [编辑] 生成吉布斯自由能 由于自由能的绝对值很难求出,同时它又是一个状态函数,所以实际应用时,就采用各种物质与稳定单质的相对值,即生成吉布斯自由能,全称标准摩尔生成吉布斯自由能变。它是由处于标准状况下的稳定单质生成一摩尔标准状况下的化合物的吉布斯自由能变,用符号表示。 通过生成吉布斯自由能,我们能算出标准反应自由能。标准反应自由能是指在标准状况下,标况下的反应物生成标况下的生成物所需要的能量变化,即用生成物的生成吉布斯自由能与各自的化学计量系数相乘后减去的反应物的生成吉布斯自由能与各自的化学计量系数相乘后的乘积。常用符号表示。 对于一般反应:aA + bB → cC + dD 它的标准反应自由能 = [c(C)+ d(D)] - [a(A)+ b(B)] 一般化学教科书和化学手册中都列出常见物质的生成吉布斯自由能(同时还会列出生成焓和标准熵),用时直接查表便可。 [编辑] 范特霍夫等温公式

无机合成课后习题

第一章习题: 1.现代无机合成的内容和方法与旧时代相比有哪些变化? 2.为什么说无机合成化学往往是一个国家工业发展水平的标志? 3.为什么说合成化学是化学学科的核心,是化学家改造世界、创造社会财富的最有力的手段? 4.您能举出几种由p区元素合成的无机材料吗? 5.为什么从某种意义上讲,合成化学的发展史就是化学的发展史? 6.您或您的朋友的研究课题属于无机合成领域?如果是,属于哪个热点领域?举例说。 7. 什么是极端条件下的合成?能否举一例说明。 8. 查阅文献,找出一例绿色合成原理在无机合成化学中的应用。 9. 何谓软化学合成方法?与所谓的“硬化学法”相比有什么特点? 10.在研究工作中,您最喜欢利用哪种工具查阅化合物的合成方法? 第二章习题: 1.化学热力学在无机合成中的起着什么样的重要的作用? 2. Bartlett是怎样从吉布斯-亥姆霍兹方程分,确立稀有气体第一个化合物制备的热力学根据? 3.Ellingham 图建立的依据是什么? 4. 查阅Ellingham 图,看MnO被C还原为金属的最低温度是多少?写出该温度下的总反应方程式。 5. 偶合反应在无机合成中应用的原理何在?请举例说明。 6. 10.Pourbaix图(pH-E)的实质是什么?它都有哪些方面的应用? 第三章习题: 1.温度与物性有怎样的关系?什么是物质的第五态? 2.实验室中,获得低温的方法或低温源装置有哪几种?各举一例。 3.为什么任何碱金属与液氨反应后溶液都具有同一吸收波长的蓝光?核心物种是什么?如何证明? 4. 什么是金属陶瓷?有什么特殊性质?用在哪些方面?它们是如何在高温下制备的? 5. 获得高温有哪些手段?高温合成技术有哪些广泛应用? 6.何谓高温下的化学转移反应?它主要应用在无机合成的哪些方面? 7.什么是等离子体超高温合成?它主要有哪些方面的用途? 8.什么是自蔓延高温合成?该法有什么特点?其关键技术是什么? 9.从物理化学原理说明高温高压合成的机理。 10.什么是超导体?超导体具有什么突出的性质?哪些元素是超导元素? 第四章习题 1.什么是水热-溶剂热合成?该法有什么特点?有无不足? 2. 水热-溶剂热合成都有哪些反应类型? 3. 影响水热-溶剂热合成的因素有哪些? 4. 水热-溶剂热合成有哪些具体应用? 5.什么是“空气敏感化合物”?无水无氧操作主要应用在哪些方面? 6.无水无氧操作有哪几种具体技术?相比各有什么特点? 7.何谓电解合成?无机化合物的电解合成有哪些其他合成方法所不及的优点? 8.有哪些电解条件影响理想的电解合成? 9.电解合成技术有哪些广泛应用? 第五章:

吉布斯自由能

吉布斯自由能 定义 G叫做吉布斯自由能。因为H、T、S均为状态函数,所以G为状态函数。 特点 ΔG叫做吉布斯自由能变化 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 吉布斯自由能改变量。表明状态函数G是体系所具有的在等温等压下做非体积功的能力。反应过程中G的减少量是体系做非体积功的最大限度。这个最大限度在可逆途径得到实现。反应进行方向和方式判据。 吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。 范特霍夫等温公式 吉布斯自由能随温度和压强变化很大。为了求出非标准状况下的吉布斯自由能,可以使用范特霍夫等温公式: ΔG = ΔG0 + RT \ln J 其中,ΔG0是同一温度、标准压强下的吉布斯自由能,R是气体常数,J是反应熵。 温度的变化在ΔG0的使用上表现出来,不同的温度使用不同的ΔG0。非标准状况的ΔG0需要通过定义式(即吉布斯等温公式)计算。压强或浓度的变化在J的表达上表现出来。 研究对象 >W非反应以不可逆方式自发进行 =W非反应以可逆方式进行 0 不能进行

任何等温等压下不做非体积功的自发过程的吉布斯自由能都将减少。 标准自由能 平衡常数 在等温等压反应中,如果吉布斯自由能为负,则正反应为自发,反之则逆反应自发。如果为0,则反应处于平衡状态。此时,根据范特霍夫等温公式,ΔG = ΔG0 + RT \ln J,J变成平衡常数,于是有: ΔG0 = -RT ln K 要注意,使用范特霍夫等温公式时,ΔG和ΔG0的温度一定要相等。 这样,我们可以推出以下结论: ΔG0>0时,K<1; ΔG0=0时,K=1; ΔG0<0时,K>1。 自由能做功 有人可能会问:为什么单单用等温等压过程系统向环境作最大有用功的能力而不用包括气体膨胀功在内的总功来度量系统发生自发过程的可能性呢?原因在于,系统发生自发过程,膨胀功是可正可负的。可见单单考虑系统作有用功,排除了膨胀功,问题才更纯,更明确。 总之,在等温等压条件下系统自发过程的判断是: △G< 0 即:△G<0,过程自发;△G>0,过程不自发(逆过程自发);△G=0,达到平衡态。一个自发过程,随着过程的发展,△G的绝对值渐渐减小,过程的自发性渐渐减弱,直到最后,△G=0,达到平衡。

吉布斯自由能

吉布斯自由能[编辑] 维基百科,自由的百科全书 (重定向自生成吉布斯自由能) 跳转至:导航、搜索 本条目需要补充更多来源。(2014年10月31日) 请协助添加多方面可靠来源以改善这篇条目,无法查证的内容可能会被提出异议而移除。

吉布斯自由能(英语:Gibbs free energy),或称吉布斯函数(Gibbs function)、自由焓(Free Enthalpy)是热力学中描述等温、等压过程的一个重要参量,常用表示,它的定义是: ,

其中是系统的内能,是温度,是熵,是压强,是体积,是焓。 吉布斯自由能的微分形式是: , 其中是化学势。一个重要的推论是。也就是说每个粒子的平均吉布斯自由能等于化学势。 目录 [隐藏] ? 1 物理意义 ? 2 生成吉布斯自由能 o 2.1 部分物质的生成自由能[1] ? 3 范特霍夫等温公式 ? 4 吉布斯自由能与熵和焓 o 4.1 推导 o 4.2 相变 ? 5 吉布斯自由能与平衡常数 ? 6 吉布斯自由能与电化学 ?7 参阅 ?8 参考文献 物理意义[编辑] 在标准状况下,存在一个一般规律: “ 任何一个封闭系统都尽量使自由能最小 ” 因此,根据这个自然界的基本趋势,如果对于一个潜在反应,距离这个最小值进行定量测量,当热力学的计算显示吉布斯自由能ΔG的变化是负值的时候。本质上,这表明了那样一个反应更容易发生并且将释放能量。释放的能量等于这个化学反应所能够做的最大的功。相反,如果ΔG为正值,能量必须通过做功的方式进入反应系统使得此反应能够进行。

吉布斯自由能的物理含义是在等温等压过程中,除体积变化所做的功以外,从系统所能获得的最大功。换句话说,在等温等压过程中,除体积变化所做的功以外,系统对外界所做的功只能等于或者小于吉布斯自由能的减小。数学表示是: 如果没有体积变化所做的功,即,上式化为: 也就是说,在等温等压过程前后,吉布斯自由能不可能增加。如果发生的是不可逆过程,反应总是朝着吉布斯自由能减少的方向进行。 特别地,吉布斯自由能是一个广延量,单位摩尔物质的吉布斯自由能就是化学势,也就是说。 , 具体推导如下:假设,代入热力学第一定律的微分形式: , 现在假想保证原来物体属性的情况下,切掉体系的一小部分。这时, ,,这些强度量的变化为零。所以必然有, 生成吉布斯自由能[编辑]

亥姆霍兹

亥姆霍兹 亥姆霍兹(HermannvonHelmholtz,1821~1894)德国物理学家、生理学家。使他在科学界最负盛名的是能量守恒定律的提出。1821年10月31日生于柏林波茨坦的一个中学教师家庭。中学毕业后由于经济困难不能进人柏林大学学习物理,以毕业后在军队服役8年为条件换取公费进入柏林皇家军事医学院。但他在学习期间仍努力在柏林大学旁听,并自学了伯努利、康德、拉普拉斯、毕奥等人的著作。1842年获医学博士学位,被任命为波茨坦驻军军医。这期间他开始研究生理学特别是感觉生理学。他提倡以物理学、化学为基础来研究生物学:受李比希的《动物化学》的影响,提出体温和肌肉的作用来源于食物的燃烧热。通过对动物体的大量实验,总结出“一种自然力如果由另一种自然力产生时,其中当量不变。”这最终导致他明确地提出能量守恒定律。1847年他在新成立的德国物理学会发表了著名的“关于力的守恒”讲演。从而第二年被特许从军队退役,担任柯尼斯堡大学的生理学副教授。 亥姆霍兹在这次著名的讲演中,从当时已有的科学成果第一次用数学方式详细地提出今天大家所理解的能量守恒定律。主要论点是:①一切科学都可以归结到力学(这导致了他的机械唯物主义观点);②证明了牛顿力学和拉格朗日力学在数学上是等价的,因而可以用拉格朗日的方法以力所传递的

能量或它所作的功来量度力;③所有这种能量是守恒的。他讨论了当时已知的力学的、热学的、电学的、化学的各种科学成果,严谨地论证了各种运动中能量的守恒定律。他还进一步明确了力学中的“势能”概念,给出了万有引力场和电场的势能表示式。这次讲演内容后来写成专著《力之守恒》,于1853年发表。德国医生迈尔于1842年偏重于从一般哲学方面即自然力的相互联系方面提出能量守恒的概念,英国物理学家焦耳从实验方面1843年测定了热功当量值,而亥姆霍兹则是从物理理论方面论证了能量转换的规律性。所以,提出能量守恒定律的荣誉通常归之于亥姆霍兹、迈尔和焦耳三人。 从1871年开始,亥姆霍兹的研究方向转向物理学。在电磁理论方面,他测出电磁感应的传播速度为314000km/s,由法拉第电解定律推导出电可能是粒子。由于他的一系列讲演,麦克斯韦的电磁理论才真正引起欧洲大陆物理学家的注意,并且导致他的学生赫兹于1887年用实验证实电磁波的存在以及取得一系列重大成果。在热力学研究方面,于1882年发表论文《化学过程的热力学》,他把化学反应中的“束缚能”和“自由能’区别开来,指出前者只能转化为热,后者却可以转化为其他形式的能量。他从克劳修斯的方程,导出了后来称作的吉布斯-亥姆霍兹方程。他还研究了流体力学中的涡流、海浪形成机理和若干气象问题。

相关文档
最新文档