基于拉曼光谱散射的新型分布式光纤温度传感器及应用_王剑锋

基于拉曼光谱散射的新型分布式光纤温度传感器及应用_王剑锋
基于拉曼光谱散射的新型分布式光纤温度传感器及应用_王剑锋

光纤温度传感器工作原理及实际应用分析

光纤温度传感器工作原理及实际应用分析 摘要:文章在分析DTS分布式光纤传感器系统的逻辑组成和工作原理后,详细介绍了基于分布式光纤温度传感器和光纤光栅温度传感器测温系统对在电力系统各重要电气设备进行温度安全监测中的应用。 关键词:光纤温度传感器;DTS;电力温度监测 温度是工程应用领域中重要的检测和监控对象,对于一个内部结构复杂、涉及点面较多的复杂系统而言,要获得一个准确且具有一定监测对象范围跨度的实时温度信息(或监测对象分布的应用应变特性),采用常规的单点移动式或由多个独立单点相互结合组成的准分布式温度传感器侧空虚体统,不仅会由于数据采集的延时性降低温度测量数据的准确度,同时还会由于复杂的接线使整个系统布线变得非常困难,这时选用分布式光纤温度传感系统(Distributed Temperature Sensing,DTS)就是一种非常有效的方法,非常适合冶金、化工、电力等恶劣环境场合中的实时温度测量和监控,具有相当大的研究意义。 1DTS分布式光纤传感器系统 DTS 分布式光纤传感器系统是一款结构较为复杂的工业应用领域温度在线检测和控制产品,其非常适用于环境较为恶劣、干扰对象较多、监测范围跨度较大的重要工农业应用产生中的温度实时准确检测和控制。 1.1DTS系统组成 DTS分布式光纤传感器系统主要包括传感光纤、光路模块、电路模块、高级应用软件、以及一些辅助的外围集成电路设备,其逻辑组成结构如图1所示。 从图1可知,DTS系统在运行时,首先由电路模块中得控制及信号处理电路将对应的控制信号通过驱动电路驱动半导体激光器发生对应的高速脉冲信号,然后经过光路模块中得激光脉冲耦合形成对应的光纤信号,并经分光光路转换后进入到传感光纤中,再经探测器、探测电路、高速采集电路等将光纤传感器中的温度信号返回到系统的控制及信息处理电路中,完成对监测对象温度信号的采集。通过半导体激光器产生的激光脉冲在进入到传感光纤后,就会通过分光耦合特性发生背向散射光,其所产生散射光主要有三个波长的背向散射光,分别为Anti-Stokes(反斯托克斯)光、Rayleigh(瑞利)光、以及Stokes(斯托克斯)光。三种背向散射光中,Anti-Stokes具有温度敏感个性,为温度信号光;而Stokes 光对温度信号不敏感,为系统中得参考光。从系统传感光纤中返回的探测器中的背向散射光经分光光路、光滤波器滤波后,可以将Stokes光波和Anti-Stokes光波有效分离,然后再经APD 探测器接收后,经探测电路等放大电路处理后由高速数据采集模块进行自动采集,并经接口电路上传到客户PC机上,完成对系统温度信号、温度分布曲线、波动曲线等的动态显示。

开题报告-光纤温度传感器的研制

毕业设计(论文)开题报告题目:光纤温度传感器的研制 系别 专业 班级 姓名 学号 导师 ****年** 月*** 日

一、毕业设计(论文)综述(课题背景、研究意义及国内外相关研究情况) 本毕业设计研制的光纤温度传感器是指在光纤温度传感系统中,光纤作为光波的传输通路,设计一种光纤传感系统,测量待测物体的温度并与标准温度计的测量值、比较、定标以实现实用化的光纤温度测量系统。 光纤和光纤通信的问世和发展,引起了各界人士的关注,他们试图将这一新技术成果用到各自的领域。光纤传感器的出现正是这样。 目前,从大量文献资料中可看到光纤传感器的研究有如下动向: 1.继续深入研究传感器的理论和技术,解决实用化问题,发展新原理的光纤传感器。 光纤传感器基本原理的研究日益深入,强度、相位调制的传感器更加完善,而对波长调制和时间分辨信息的传感器亦有深入的研究。传感器用于实际测量的主要问题是长时间的漂移效应,漂移效应主要来自光纤传输线的衰减、祸合器和分束器特性不完整、光源输出不稳定及探测器的响应等。人们对此进行了深入研究,提出了许多解决办法,无论采用何种方法,在传感头上使用“比较”技术,使光纤传感器获得长时间的稳定,这样就可以使光纤传感器实用化。 2.从单一传感器进入到传感器系统的研究,并与微处理机相结合形成光纤遥测系统。 单一光纤传感器的研究一进入到实用化阶段,但它无法适用于多参数,多变量的测量。光纤传感器系统的一种形式是采用多路传输的光无源传感器系统,其核心问题是如何节省光路,寻求更有效利用的信息通道,使其能不畸变的更多的传输由各个光纤传感器取得的信号。利用光纤之间、几个无源传感器之间、数据遥测通道之间的多路传输达到此目的。 70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。 1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它

分布式光纤测温系统

分布式光纤温度监测系统 型号:CTM 4000 德国技术 激光器15年免维护 产 品 样 本 (2006版) 国内主要用户:北京电力公司杭州电力公司厦门电业局 宁波电力公司连云港核电站 北京兴迪仪器有限责任公司

目录 1 应用领域 2 测量原理 2.1 拉曼散射 2.2 测量原理 3 系统组成 4 系统整体性能和特点 5 系统技术规范 5.1 系统主要技术参数 5.2 控制器 OTS 5.2.1 主机 5.2.2 电气参数 5.2.3 光的连接器 5.3 感温光缆 5.3.1 外敷设式光缆 5.3.2 内嵌式光缆 6 多路光纤转换开关(可选件) 7 中文操作软件 CHARON_02 增强版 8 系统网络(可选件) 9 计算机和打印机 10 安装附件 11 国内电力行业用户典型应用举例

分布式光纤温度监测系统 型号:CTM 4000 目前,在很多场合下,温度已成为非常关键的因素,许多物理特性的变化都直接反映在温度的升降上,因此对温度的监测的意义越来越大。随着光纤应用技术的发展,基于拉曼散射原理的分布式光纤测温系统是目前世界上最先进、最有效的连续分布式温度监测系统。 CTM4000型分布式光纤温度监测系统,由北京兴迪仪器有限责任公司引进德国先进核心技术成套生产,并提供整套系统的安装,调试和售后服务。已得到国内用户的广泛认可。截止到2005年底,已经应用在北京电力公司220kV电缆,回路长9.7公里,杭州电力局12 根220KV电缆,厦门电业局10/110/220kV电缆,宁波电力局220 kV电缆,连云港核电站220KV电缆的温度监测上。同时向厦门电业局提供电缆载流量计算软件,实时提供电缆的负荷率和载流量预测。 在中国的高速公路隧道,过江隧道,办公大楼防火等领域也有50多套正在使用中。在全世界范围内共有约2500套系统投入使用。 1 应用领域 1) 电力电缆温度监测 电力电缆的在线实时温度监测,具有重大现实意义: 运行状态监测,有效监测电缆在不同负载下 的发热状态,积累历史数据; 载流量分析,可以保证在不超过电缆的允许 运行温度的情况下,最大地发挥电缆的传输 能力,降低运行成本; 老化监测,发现电缆上的局部过热点。及时采取降温措施,延缓电缆老化速度; 实时故障监测,发现电缆运行过程中的外力破坏; 电缆沟内火情监测与报警;

光纤温度传感器在电力系统中的应用现状综述

光纤温度传感器在电力系统中的应用现状综述 摘要:首先介绍了光纤温度传感器的优点及发展现状,并重点介绍了应用最为广泛的分布式光纤温度传感器与光纤光栅温度传感器的基本原理。概述了当前光纤温度传感器在电力系统中基本的应用模式,并综述了光纤温度传感器对电力系统主要设备进行温度监测的现状与意义。针对光纤温度传感器在电力系统中应用存在的问题与不足,提出了相应的解决方案并对其前景进行了展望。 关键词:分布式光纤温度传感器;光纤光栅;温度监测;故障诊断;电力系统 Application situation of temperature monitoring of optic fiber sensor in power system LI Qiang1,WANG Yan-song2,LIU Xue-min2 (https://www.360docs.net/doc/197517417.html,OC Research Center, Beijing 100027, China; 2.College of Information and Control Engineering, China University of Petroleum,Dongying 257061,China) Abstract:The advantages and development of temperature monitoring of optic fiber sensor is presented, and the working principle of fiber optic distributed temperature sensor,f iber grating sensor are respectively introduced,which are most popular in industry use .I n the paper, the basic application model of temperature monitoring of optic fiber in power system are presented.

光纤温度传感器的设计

设计性实验报告 实验课程:医用传感器设计实验学生姓名:程胜雄 学号: 080921037 专业班级:08医工医疗器械方向 2010年12月8日

光纤温度传感器的设计 摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠, 灵敏度咼。 关键词:光纤,传感器,光纤传感器,光纤温度传感器 在光通信系统中,光纤是用作远距离传输光波信号的媒质。在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。因此,人们发现如果 能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出

现了光纤传感技术。 一:光纤传感器的基本原理 在光纤中传输的单色光波可用如下形式的方程表示 E=错误!未找到引用源。 式中,错误!未找到引用源。是光波的振幅:w是角频率;■为初相角。 该式包含五个参数,即强度错误!未找到引用源。、频率w、波长错误!未找到引用源。、相位(wt+ J和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。 (一)强度调制 1.发光强度 调制传感 器的调制 原理光 纤传感器 中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来 实现对被测对象的检测和控制。其基本原理如图 5-39所示。光源S发出的发 光强度为错误!未找到引用源。的光柱入传感头,在传感头内,光在被测物理 量的作用下强度发生变化,即受到了外场的调制,

光纤温度传感器在电力电缆监测中的应用研究

光纤温度传感器在电力电缆监测中的应用研究 发表时间:2018-01-10T10:12:31.343Z 来源:《电力设备》2017年第27期作者:郑瑜 [导读] 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。 (国网上海浦东供电公司 200122) 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。光纤温度传感器作为一种更为高效精确的测温装置,在当前的电力电缆监控中得到了有效的应用。本文在阐述光纤温度传感器工作原理的基础上,分析了相应系统的整体功能,并提出了实际情况下的具体的应用,旨在提供一定的参考与借鉴。 关键词:电力电缆;监测;光纤温度传感器 1光纤温度传感器工作原理 电传导是以电流作为传导媒介,同理光纤传感器是以光作为媒介进行的传导的,只不过它的传导过程比电传导更加复杂。它是将变化的能量转化成变化的光信号,光是一种相干性特别好的物质,这便让它更具特点,比传统的传感器都稳定,而又因为光的抗电磁干扰能力强,这也使光纤传感器受外界影响更小。同时具备以上特点的光纤传感器还特别轻小、柔韧,所以也便可以到处可用,解决了传统传感器无法再高压、强电流无法使用的窘境。 在目前的光纤传感器中大多应用了光纤光栅和拉曼散射等原理,光纤光栅是利用布拉格波长的温度依赖性进行监控温度的变化。每当有光线通过光栅时,电脑就会记录下一系列的波长、温度等数据,然后根据事先编写好的程序计算出光纤传感器附近的温度。而对于其他原理也可以计算出温度,如拉曼传感器的原理就和光纤光栅传感器不同,但并不意味着就无法保证了数据的准确性,拉曼传感器测出的温度同样准确,它使用了光时域反射的原理。同样在传感器中也有用到了光纤的后向拉曼散射原理,这种原理是基于光在不同种介质中会产生非弹性漫射,而这传感器主要就是利用产生了不同的非弹性漫射波进行对温度计算,最终得到精确的温度数据。 2电力电缆温度在线监测系统功能分析 根据电缆接头数量多、集中性差的特点,系统采用“分散-集中-再集中”结构,系统硬件结构如图1所示,系统由温度传感器、测控单元、数据传输设备及上位PC机组成。 图1电力电缆温度在线监测系统结构 温度传感器安装在电缆中间接头处,测控单元从各温度传感器读出电缆接头的实际温度,处理后存入外部存储器SRAM中,上位PC机定时向各测控单元发出读取电缆接头温度数据的命令,各测控单元收到命令后,将存在SRAM中的数据上传给PC机。当SRAM中的数据被PC机读取后,各测控单元会重新读取各温度传感器当前数据,进行温度数据更新。 PC机收到各测控单元温度数据后,即对数据进行分析处理、判断、显示、保存及打印等,并在温度越限时报警,提示相应电缆接头位置,以便运行人员及时排除故障。 2.1温度传感器的选择 温度传感器选用单总线数字温度传感器。每个传感器有唯一的系列号,多个传感器可在同一条总线上。具有独特的单线接口方式,支持多节点。传感器测温时无需任何外部元件,使分布式测温系统电路结构和硬件大为简化,具有通过数据线供电、超低功耗工作方式的特点。 2.2测控单元 测控单元是整个系统最重要的部分,根据实际需求,系统可以包括1个或多个测控单元。系统的测控单元采用单片机构成,用来完成传感器输出数据的采集、序列号的注册及与上位PC机的通信等。 由于1个测控单元要与多个温度传感器连接,且距离较远,为提高测控单元的抗干扰能力和可靠性,测控单元与传感器之间的连接由光电隔离和驱动电路组成。 每个测控单元还设计了1个登记注册端口并接至单片机,每个传感器在投入使用前必须事先进行注册,并将其惟一的序列号存入SRAM 中,以便使用。这是当发生温度越限报警后快速定位的重要依据。该系统内部每条总线连接不同单片机单片机分别进行单总线温度采集,采集到的数据和传感器的序列号通过GPRS网络传送到上位PC机中。 2.3数据传输 各测控单元与上位PC机之间的通信采用GPRS。GPRS是在现有GSM网络基础上通过软件升级实现的,GPRS网络的出现克服了GSM 网络在数据应用方面的缺点。采用分组交换技术,并增加2个服务节点。提供无线系统上的数据业务,可以无缝接入Internet,具有永远在线、按流量计费、覆盖范围广及无需铺线等优点。 3光纤温度传感器在电力电缆监测中的具体应用 3. 1实时监控电力电缆表面温度 通过光纤温度传感器对电力电缆表面温度实时检测,可以实现对工作电缆的问题及时处理,防止在电厂站工作时出现重大的电力电缆由于温度过高出现的重大事故。可以对电力电缆工作中出现的电力电缆事故进行定位,从而及时告诉工作人员事故位置可以更好的修护,

光纤测温系统技术方案

EN.SURE分布式光纤温度系统方案

保证当今世界电力的可靠供给 防止电力中断的预防措施 随着对电力的需求不断增加,对于电力公司和电网的挑战也越来越大。电力供给行业继续迅速自由化发展,致使了国内和国际网络的重组。过去几年中发生的事件,包括主要区域大规模的停电和短路,以及替代能源不断被应用于现存的网络中,表明了现在的结构需要作出改善。同时,对开支能否降至最低的压力也越来越大。 温度监测是地下能源传输分配系统优化的关键因素。导体的温度取决于负载,但其余诸如土壤热阻力,电力线路的排布,相邻的电缆和其他来源扩散到导体周围的热量等因素也会对系统表现产生重要影响。 即使现今,要预测电缆沿线的温度分布是几乎不可能的,所以系统的最大载流量通常妥协于操作条件和风险最小化。 安装工业分布式温度测量系统(DTS)来测量电缆沿线的实时温度是传输分配系统监测的第一步。LIOS技术有限公司提供的集成动态电缆分级(DCR)或者也可称为实时热额定值(RTTR)解决方案不仅仅能够持续监测高压电缆沿线的实时温度,而且能帮助电网在安全的前提下达到最大能力。此外,它也使得电网运营商能在原定运作条件发生重大改变时预测传输系统的动向。

[测量原理] 光纤测温系统由激光二极管发出的连续波照射光纤内的玻璃芯。当光波沿着光纤玻璃芯下移时,会产生多种类型的辐射散射。如瑞利(Rayleigh)散射、布里渊(Brillouin)散射和拉曼(Raman)散射等。其中拉曼散射是对温度最为敏感的一种。光纤中光传输的每一点都会产生拉曼散射,并且产生的拉曼散射光是均匀分布在整个空间角内的。 拉曼散射是由于光纤分子的热振动和光子相互作用发生能量交换而产生的,具体地说,如果一部分光能转换成为热振动,那么将发出一个比光源波长更长的光,称为斯托克斯光(Stokes光),如果一部分热振动转换成为光能,那么将发出一个比光源波长更短的光,称为反斯托克斯光(Anti-Stokes光)。其中Stokes光强度受温度的影响很小,可忽略不计,而Anti-Stokes光的强度随温度的变化而变化。Anti-Stokes光与Stokes光的强度之比提供了一个关于温度的函数关系式。光在光纤中传输时一部分拉曼散射光(背向拉曼散射光)沿光纤原路返回,被光纤探测单元接收。DTS通过测量背向拉曼散射光中Anti-Stokes光与Stokes光的强度比值的变化实现对外部温度变化的监测。在频域中,利用OFDR技术,根据光在光纤中的传输速率和入射光与后向拉曼散射光之间的强度差,可以对不同的温度点进行定位,这样就可以得到整根光纤沿线上的温度并精确定位。 其工作原理如下图所示: [技术优势] LIOS技术有限公司提供的监测系统能通过以下措施保证用户在事故前定位热点,动态分析电力负荷以及保证可靠的电力供应: 1)热点的精确定位

分布式光纤测温系统原理

分布式光纤测温系统原理 分布式光纤测温系统依据后向散射原理可以分为三种:基于瑞利散射、基于拉曼散射和基于布里渊散射。目前发展比较成熟,且有产品应用于工程的是基于拉曼散射的分布式光纤测温系统。它的传感原理主要依据的是光纤的光时域反射(OTDR)原理和光纤的后向拉曼散射温度效应。 分布式光纤测温 一、引言 随着我国经济的发展,电力系统正在朝着超高压、大电网、大容量、自动化的方向发展,一旦发生事故便会对国民经济造成巨大损失。如何对正在运行的电力设备进行在线监测并进行安全预测和温度变化趋势分析?如何通过实时数据对设备质量、运行环境、运行方式、设备老化、负荷不平衡等进行科学分析?这些都是电力系统中迫切需要解决的问题。传统的红外测温仪、红外成像仪、感温电缆、热电阻 式测温系统等只能对电力系统的局部位置进行测温,无法为安全、经济运行、高效检修提供科学依据。而分布式光纤测温系统能够实现多点、在线的分布式测量,实现了运行设备的实时在线监测,有效地解决了长期以来现场出现的高温、燃烧、爆炸、火灾等事故应急不备的问题。在电力系统中,这种光纤测温技术在高压电力电缆、电气设备因接触不良引起的发热部位、电缆夹层、电缆通道、大型发电机定子、大型变压器、锅炉等设施的温度定点传感场合具有广泛的应用前景。 二、分布式光纤测温的基本原理 1. 分布式光纤测温系统依据后向散射原理可以分为三种:基于瑞利散射、基于拉曼散射和基于布 里渊散射。目前发展比较成熟,且有产品应用于工程的是基于拉曼散射的分布式光纤测温系统。它的传感原理主要依据的是光纤的光时域反射(OTDR)原理和光纤的后向拉曼散射温度效应。 (一)光时域反射(OTDR)原理 当激光脉冲在光纤中传输时,由于光纤中存在折射率的微观不均匀性,会产生散射。在时域里,入射光经后向散射返回到光纤入射端所需时间为t,激光脉冲在光纤中所走过的路程为2L,其中v为光在光纤中的传播速度、C为真空中的光速,n为光纤折射率。在测得时刻t时,就可求得距光源L处的距离。 (二)光纤的后向拉曼散射温度效应 当一个激光脉冲从光纤的一端射入光纤时,这个光脉冲会沿着光纤向前传播。由于光脉冲与光纤内部分子发生弹性碰撞和非弹性碰撞,故光脉冲在传播中的每一点都会产生反射,反射中有一小部分的反射光,其方向正好与入射光的方向相反(亦可称为后向)。这种后向反射光的强度与光线中的反射点的温度有一定的相关关系。反射点的温度(该点光纤所处的环境温度)越高,反射光的强度也越大。利用这个现象,若能测出后向反射光的强度,就可以计算出反射点的温度,这就是利用光纤测量温度的基本原理。 如用公式来表达:当激光脉冲在光纤中传播时与光纤分子相互作用,会发生瑞利散射、布里渊散射、拉曼散射,其中拉曼散射是由于光纤分子的热振动和光子相互作用发生能量交换而产生的。如果一部分光能转换成热振动,那么将发出一个比光源波长长的光,称为斯托克斯光;如果一部分热振动转换为光能,

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅温度传感器 报告

光纤光栅温度传感器报告 ( 波长调制型光纤温度传感器 《 《光纤传感测试技术》 课 课程作业报告 提交时间: 2011年10月 27 日 1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过 ,B外界参量对布拉格中心波长的调制来获取传感信息,其数学表达式为: ,,,2nBeff neff,式中:为纤芯的有效折射率;是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。

(2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材 料的结构和载荷,探测其损伤的传感器。 2.传感设计与可行性论证(执笔人:) 根据耦合模理论,光纤布拉格光栅的中心反射波长可以表示为: ,,,2nBeff n,effB,式中为导模的有效折射率,为光栅的周期。由(1)式可以看出,中心反射波长

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景 温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用 光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。 2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。 3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。 4、传感器的小尺寸在医学应用中是非常有意义的, 光纤光栅传感器是现今能够做到最小的

分布式光纤测温系统分析

分布式光纤测温系统 一、兴安矿现状 兴安矿井煤系地层厚1120米,有煤层41个,其中可采和局部可采煤层23个,煤层总厚度为75.99米,2006年10月26日黑龙江省煤田地质研究所对兴安矿煤层自然倾向性分类和自然发火期核定说明:11、12、17-1、17-2、18、21、22、27、30号层9个煤层属容易自然发火煤层。 各煤层自然发火期:11 号层自然发火期:4个月;17-1号层、17-2号层自然发火期: 8个月;18号层自然发火期:6个月;21号层自然发火期: 10 个月、12、27、30号煤层自然发火期12个月属自然发火煤层, 23、24、28、33等煤层自然发火期12 个月以上,属不易自然发火煤层。 由于煤层自燃发火期短,在对煤层自然发火潜伏期温度的变化进行观测时发现现有的观测技术落后。 二、强化温度观测技术 兴安矿煤层自燃发火的预测预报工作主要以人工观测采空区后部钻孔为主,这种方法在技术上限制了观测的连续性和准确性,为改变现有的观测技术,兴安矿引进了山东微感光电子有限公司研发的分布式光纤测温监测预报系统。 三、分布式光纤测温监测预报系统原理及系统软硬件设备 1、原理 分布式光纤测温监测预报系统采用分布式光纤测温技术,该技术

为拉曼散射和光时域反射技术,可以实现温度和距离的测定。 拉曼散射是依据光在光纤中传播过程中,产生后向拉曼散射光谱的温度效应。当入射的光量子与光纤物质分子产生碰撞时,产生弹性碰撞和非弹性碰撞。弹性碰撞时,光量子和物质分子之间没有能量交换,光量子的频率不发生任何改变,表现为瑞利散射光保持与入射光相同的波长;在非弹性碰撞时,发生能量交换,光量子可以释放或吸收声子,表现为产生一个波长较长的斯托克斯光和一个波长较短的反斯托克斯光。由于反斯托克斯光受温度影响比较敏感,系统采用以斯托克斯光通道作为参考通道,反斯托克斯光通道作为信号通道,有两者的比值可以消除光源信号波动、光纤弯曲等非温度因素,实现对温度信息的采集,光纤测温的原理是依据后向拉曼(Raman )散射效应。 图3-1 激光散射光谱分析 光时域反射技术(即OTDR 原理)是对空间分布的温度实现空间测量的理论基础。激光脉冲在光纤中传输时,在时域里,入射光经过背向散射返回到光纤入射端所需时间为t ,激光脉冲在光纤中所走过的路程为2L ,有: 2L V t =? (3-1) C V n = (3-2)

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

光纤温度传感器的研究

光纤温度传感器的研究 毕业生:夏正娜 指导老师:王兆民孟瑜 摘要:光纤温度传感器是20世纪70年代发展起来的一种新型传感器,与传统的温度传感器相比,它具有灵敏度高、体积小、质量轻、易弯曲、抗电磁干扰等优点;特别适用于易爆、易燃、腐蚀性强等苛刻环境下的温度检测。因此,光纤温度传感器得到迅速发展。 本文根据双光束干涉原理,自行构成了一个干涉型光纤温度传感器,观察干涉图样,对其进行了实验研究,阐述了它的原理,实验步骤,将得到的数据进行了分析处理,验证了本实验测量温度的可行性,并对实验装置进行了改造。 关键词:光导纤维光纤温度传感器干涉原理干涉型光纤温度传感器 Abstract :Optical fiber temperature sensor is a new developed type of sensor in the 70s of the Twentieth Century. Compared with the traditional temperature sensors,it owns a lot of advantages,such as higher sensitivity,smaller volume,slighter mess ,easier to bend and stronger capacity of Shielding the electro-magnetic interference. Particularly,it can be applied to detect the temperature of the explosive,flammable and corrosive matters in harsh environment. Therefore, optical fiber sensor developed rapidly in recent years. This paper bases on the interference principle, it construct a interference optical fiber temperature sensor. Observing the interference fringe, analyzing the experiment result, detailing its principle and experiment steps, then I can get some data to deal with the data. The data copes the theory perfectly. At last, I propose some advices to improve this experiment. Key word :Optical fiber Optical fiber temperature sensor Interference principle interference optical fiber temperature sensor. 1. 引言 温度是度量物理冷热程度的物理量,许多物理现象和化学现象都是在一定的温度下进行的。温度是作为衡量客观物质世界运动及其存在状态的一个重要物理量,温度信息的获得,可以使人们能够更好地掌握客观世界的内在规律。随着科学技术的发展,各个领域对测温元件的性能和效率提出了越来越高的要求,特别是工业、医学、电力等领域,在有强电磁干扰或易燃易爆的场合下,传统温度传感器便受到很大的限制。 光纤传感器是上世纪70年代中期发展起来的一种新型的传感器,是光纤和光纤通信技术发展的产物。由于光纤具有体积小、重量轻、电绝缘性好、柔性弯曲、耐腐蚀、灵敏度高等特点,能完成传统的传感器很难完成或者不能完成的任务。光纤传感技术用于温度测量,除了具有以上特点外,与传统的温度测量仪器相比,还具有响应快、频带宽、防爆、抗电磁干扰等优点,因此,光纤温度传感器是光纤传感器发展的一个

光纤温度传感器在微波场测温中的应用

光纤温度传感器在微波场测温中的应用 邹 建 饶 程 顾兴志 (重庆大学光电技术及系统教育部重点实验室,重庆 400044) 提要:处于强电磁场的环境下,在微波场中温度的测量依然是一个技术难题。介绍了适用于微波场测温的各类光纤温度传感器,阐述了光纤光栅用于温度传感的原理及在微波场中测温的前景与应用。对微波场中测温技术的进一步发展具有一定的参考价值。 关键词:微波场,温度测量,光纤传感,光纤光栅 The application of FOS for temperature measurement in microw ave field Zou Jian Rao Cheng Gu Xingzhi (The K ey Laboratory for Optoelectronic T echnology&Systems,M inistry of Education,Chongqing 400044) Abstract:The development of fiber optic sens or(FOS)technology provides a lot of new methods used in tem perature measurement in a microwave(MW)field. This paper presents a systematic review of FOS utilized to measure tem perature in MWfields and analyses the application and development foreground of fiber Bragg grating(F BG)for tem perature measurement in a MW field. K ey w ords:microwave field,tem perature measurement,FOS,F BG 1 引言Ξ 微波是指波长范围为1m到1mm对应频率范围为300MH z到300G H z的电磁辐射,在电磁波谱中属超高频电磁波。处在这一频率范围的电磁波被成功的用于电视广播、微波通讯、雷达以及卫星通讯,取得了很大的成就。20世纪60年代以后,微波作为一种新型能源在工业上得到了广泛的应用,拓展成了一个分支技术〔1〕。如化学研究中的应用,有催化领域,有机合成,合成某些放射性药剂以及干燥等方面;食品加工方面有食品的熟化,杀菌,干燥及解冻等方面;在医疗方面,各种微波治疗仪的成功研制与应用,显示出微波医学具有不可估量的潜在生命力;基于微波的材料热处理方面的技术发展也是日新月异,如陶瓷烧结,木材干燥,微波染色等等。 尽管微波作为一种新型能源在上述领域中得到广泛应用,由于强电磁场的存在,在微波场下的温度测量依然是个技术难题。而温度显然是个重要的参数,如微波诱导催化反应的机理以及微波参催化剂作用的机理的研究还不是很深入,主要原因之一就是微波场中的温度无法准确测量;微波治疗仪中加热治疗温度以在42~44℃范围内为宜,而将45℃作为安全上限〔2〕。因此,微波场中温度测量技术的发展将进一步推动微波在其他工业领域的应用。 2 微波场测温的传统方法概述 2.1 热电偶、热敏晶体管及集成电路温度传感器 由于温度参数在微波热处理中的重要性,人们已经在各类微波炉,微波反应釜,微波治疗仪等很多存在微波场的领域实现了对温度的检测。这些温度检测技术中有常规的如热电偶温度传感器,也有热敏晶体管及集成电路温度传感器。然而在微波场中,由于强电磁场存在,金属材料制作的测温探头及导线在高频电磁场下产生感应电流,由于集肤效应和涡流效应,使其自身温度升高,对温度测量造成严重干扰,使温度示值产生很大的误差或者无法进行稳定的温度测量。 2.2 热敏电阻———高阻导线温度传感器 热敏电阻———高阻导线温度传感器是采用高阻值的半导体热敏电阻作测温探头,用特制的高阻值导线作信号的传输线,再配以简单的测量电路构成的温度传感器。热敏电阻、高阻导线以及金属传输线间的连接采用导电胶粘贴。这种温度传感器有一定的优点,如抗电磁干扰、灵敏度高、体积小、反应快以及价格低廉等,不足之处在于稳定性、互换性和线性度较差,以及高阻导线的机械强度差。对高精度测量很难达到要求。 3 可用于微波场测温的各类光纤温度传感器 3.1 光纤温度传感技术 光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的。作为被测量信号载体的光波和作为光波传播媒介的光纤,具有一系列独特的,其他载体和媒介难以比拟的优点:光波不产生电磁干扰,也不怕电磁干扰,易为各种光探测器件接收,可方便的进行光电或电光转换,易与高度发展的现代电子装置和计算机相匹配;光纤工作频率宽,动态范围大,是一种低损耗传输线,光纤本身不带电,体小质轻,易弯曲,抗电磁干扰,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。国外一些发达国家对光纤传感技术的应用研究已取得丰富成果,不少光纤传感器系统已实用化,成为替代传统传感器的商品。 光纤温度传感是光纤传感的一个重要分支。所有与温度相关的光学现象或特性,本质上都可以用于温度测量,基于此,用于温度测量的现有光学技术相当丰富。已产品化的光纤温度传感器占到将近所有光纤传感产品的20%〔3〕。由于光纤温度传感技术的先天抗电磁干扰等特性,被众多研究者用来对微波场进行温度传感。 3.2 各类光纤温度传感器 光纤温度传感器按其工作原理分为功能型光纤温度传 27 《激光杂志》2003年第24卷第5期 LASER JOURNA L(V ol.24.N o.5.2003) Ξ2003年3月21日收稿 作者简介:邹建(1960年)男,重庆市人。副研究员,博士。长 期从事光电技术及应用方面的科研项目,尤其是在光纤传感 器方面经验丰富,先后参加或主持多项国家自然科学基金,国 家七五、八五攻关项目。获国家教委科技进步二、三等奖各一 项,发表论文30余篇,出版专著一部。

相关文档
最新文档