手机无线充电技术的研究

手机无线充电技术的研究
手机无线充电技术的研究

手机无线充电技术的研究

字数:2465

来源:数字化用户2013年36期字体:大中小打印当页正文

【摘要】手机是用户群体最大的一个电子产品,但是由于充电器携带不便,手机无电给用户带来了很多的麻烦。本文首先分析无线充电技术中的原理,然后以手机为实验对象,将无线充电与有线充电相比较,显示出无线充电的独特优点,最后分析无线充电器的内部构造,为以后的无线充电器的开发与更新提供了理论及数据依据。

【关键词】手机充电无线充电电磁感应

一、前言

电子信息产业的快速发展促进着各式各样的电子产品,手机属于电子产品中的一个大的类别,每个手机都有其相对应的充电器,每换一部手机,原来的手机充电器就废弃了。大量旧充电器给环境的处理带来了巨大的负担,主要的原因就是手机充电器不能通用。对于手机的使用者而言,携带手机充电器非常得不便。随着人们对于无线通讯的需求,手机技术的发展和生产成本的降低使得手机快速普及,同时支持无线充电功能的手机会更加受到人们的青睐。

二、无线充电技术的概述

(一)无线充电原理

无线充电的原理主要就是两个部分,一个是电磁感应,另一个就是感应电动势。电磁感应定律其主要原理是闭合电路的一部分在磁场里做切割磁感线运动时就会产生感应电动势,有了感应电动势就能够驱动电子形成电流。通过这个原理我们给线圈提供一个不断变化的磁通量,线圈内就会产生电流,再将这部分电流整合为直流为手机充电。

感应电动势的模型可以通过下图可以看出来,线圈1集成在无线充电器端,线圈2集成在手机端,充电器端的线圈半径要大于手机端的线圈。两者之前存在一定的距离,给线圈1施加一定的正弦电流,就会在线圈2出产生一定的磁感

应。

(二)无线充电技术分类

无线充电技术按照原理和运作方式可以分为三种,电磁感应、无线电波以及电磁共振。

电磁感应就是利用一对线圈之间的电磁感应来实现充电技术。在发送端与接收端都有一个线圈,发送端是无线充电器端,线圈集成为初级线圈也叫做发射线圈;在手机端也有一个线圈,线圈集成为次级线圈也叫做接受线圈。当电流通过发射线圈之后,便会产生磁场,接收线圈接受了磁场就会产生电磁感应,从而产生电动势,有了电压就会产生感应电流,就可以为手机冲电。这种技术两者之间的距离需要小于1cm,用户需要将待冲设备放在无线充电器表面上充电。

无线电波由于空间巨大从而耗能高,所以使用比较少,基本原理类似于早期使用的矿山收音机。其中的微型高效接收器可以接收空间传输的无线电波。此技术由于存在巨大的空间损耗,所以一般只是使用在小功率的电子设备上,接受装置与发射装置之间的距离不能超过几米。

电磁共振传输距离比较大,实验中运用到的线圈的直径高达几十厘米,此种方法还不能商业化,因为商业化产品中使用的线圈都是几厘米的,但是尺寸过小接收端接收的功率就会降低。不过随着技术的不断更新,相信在以后的电子产品中电磁共振原理的无线充电器可以得到广泛的应用。

三、无线充电和有线充电的充电时间对比

根据无线充电器设计的要求,无线充电器的充电时间不能超过有线充电一小时,而且总时间不能超过4个小时。

我们对同一个手机分别进行了无线充电和有限充电直到充满,得到了充电时间。有线充电时间为110分钟,恒流电流为750mA,过程包括滴流充电、恒流充电和恒压充电。而无线充电的时间为150分钟,恒流电流为560mA,整个过程也包括滴流充电、恒流电流和恒压电流。

对此实验结果进行分析,无线充电的时间为150分,只比有线充电时间长40分钟,而且总的时间没有超过4个小时,完全符合设计的需求。

四、无线充电控制电路

(一)功率传输流程

功率传输流程可以分为充电器端控制流程、手机端控制流程和手机充电端流程。

充电器端控制流程主要包括对手机的检测、温度检测保护和发射功率等。充电器检测手机是否放置在充电器上,同时还要识别是否是手机装置,如果放置的

不是手机只是普通的金属则会停止充电过程;如果接收到了无线充电器信号的反馈,就进行确认并开始充电,同时每5秒针检测手机是否被拿走,如果手机拿走则停止充电。

手机端控制流程包括线圈检测、接收功率等。手机一旦接收到无线充电器的信号时,手机需要打开控制电路并对线圈进行检测,如果线圈的位置没有问题,就会发送信号反馈给无线充电器,然后就等待无线充电器确认并传输电流给手机。手机一旦充满电,就要发送信号给无线充电器,让无线充电器停止电流传输。

手机端充电流程包括开始充电、指示灯控制、检测是否充满电和停止充电控制等。

(二)硬件电路

(1)充电器端电路。整套充电器电流包括电源部分、线圈、存储器部分、控制电流部分以及检测电流电压部分。电源部分是将交流电转换成直流电,并经过转换电路得到所需要的电流和电压;线圈是电流传输的核心零件,负责将电流转换成磁场并从空间中传输出去;存储部分是负责存储器充电状态和参数控制等;控制电流部分是是控制线圈电流的开关,控制输出功率的大小,检测电流和电压的指标。

(2)手机端电路。手机端电流包括蒸馏部分、线圈和控制电路部分,以及温度、电流和电压的检测。控制电路为接收端的控制中心,包含功率控制、检测温度、电流和电压的参数指标;线圈是电力传输的核心部件,负责将接收到的磁能转换为电能。

小结:无线充电器具有便于携带的优点,而且与有线充电比较起来,虽然在时间上比有线充电长,但是之间的差距并不是特别大。三种无线充电技术目前还存在着一定的缺陷,随着技术的不断发展,不断解决自身的缺点,将之商业化,将更加满足用户的需求。

参考文献:

[1]龚宇才,潘双来.电路理论基础[J].航空工业出版社.2000.

[2]江缉光,刘秀成.电路原理[J]清华大学出版社第二版.2007.3

无线充电技术综述

无线电能技术综述 微航磁电技术有限公司 简要:叙述了无线电能传输的概念和发展历程,着重对电磁感应式、电磁共振式和电磁辐射式三种无线电能传输进行了详细分析;电磁感应式传输距离近、效率低且需要补偿;电磁共振式是对感应式的突破。可以在几米的范围内传输中等,其研究前景较好;电磁辐射式传输距离远,功率较大,但传输较远距离时需要高效整流天线和高方向性天线,其研制难度较大。关键词:无线电能传输;电磁感应;磁谐振;微波 所谓无线电能传输(Wirelss Power Transmission——wPT)就是借助于电磁场或电磁波进行能量传递的一种技术。无线输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开采中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在无线输电方面,我国的研究才刚刚起步,较欧美落后。在此旨在阐述当前的技术进展,分析无线输电原理,为我国在无线输电方面的深入研究提供参考。 1 无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉·特斯拉(Nikola Tesla),因而有人称之为无线电能传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现.2 J。其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,又称为八木一宇田天线。20世纪60年代初期雷声公司(Raytheon)的布朗(w.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实J。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微波能量转换为了直流电。1977年在实验中使用GaAs—Pt肖特基势垒二极管,用铝条构造半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波——直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%。自从Brown 实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 a计划 ]。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波——直流的转换效率达83%。1991年,华盛顿ARCO电力技术公司使用频率35 GHz的毫米波,整流天线的转换效率为72%。1998年,5.8 GHz印刷电偶极子整流天线阵转换效率为82%。前苏联在无线电能传输方面也进行了大量的研究。莫斯科大学与微波公司合作,研制出了一系列无线电能传输器件,其中包括无线电能传输的关键器件——快回旋电子束波微波整流器。近几年,无线电能传输发展更是迅速。Wildcharge、Powercast、SplashPower、东京大学,相继开发出非接触式充电器。MIT在2007年6月宣布,利用电磁共振成功地点亮了一个离电源约2 m远的60 w电灯泡,这项技术被称为WiTricity。该研究小组在实验中使用了两个直径为50 cm的铜线圈,通过调整发射频率使两个线圈在10 MHz产生共振,从而成功点亮了距离电力发射端

浅析无线充电技术的发展历史与最新趋势

浅析无线充电技术的发展历史与最新趋势 摘要:文章主要追溯了国内外无线充电技术在近一百年里的发展历史。通过对无线充电技术最新发展现状的解读,浅析其当今发展的四大趋势,即发展领域扩展化、发展动力多重化、实现方式多样化与智能化以及发展瓶颈明朗化,并就该技术未来的发展进行展望。 关键词:无线充电;历史;发展现状;趋势 随着科技与社会的进步,人们对充电方式也提出了新的要求,无线充电,顾名思义,就是在不借助金属导线以及其他物理连接的条件下,以空气为介质实现电能传输,为设备进行充电。现阶段无线充电技术主要实现方式有三种,第一种是利用变化的电流通过线圈产生磁场实现电能传输的电磁感应式,第二种是利用电磁耦合共振效应的电磁共振式,第三种是将电力以微波的形式辐射到接收端的电磁波辐射式。目前,无线充电技术是国内外研究的热点问题之一,具有很好的发展前景。 1 发展历史与现状 1.1 国外发展历史与现状 无线充电技术(Wireless Charging Technology,WCT)并不是一项新兴的技术,早在1890年,克罗地亚的发明家、物理学家——尼古拉·特斯拉(Nikola Tesla)就提出一个大胆的构想:把地球作为导体,在地球与电离层之间建立起低频共振,利用环绕地球的表面电磁波来远距离传输电力,并且将这一设想付诸于实践。虽然这项研究最终因经费被撤、危险系数过高等原因终止,但却为人们打开了无线充电技术梦想的大门。在随后的几十年中,研究人员沿着特斯拉的脚步,对该技术有了非常多的探索,也取得了一些成就。 2007年6月,美国麻省理工学院研究团队利用电磁共振器和电源隔空点亮了一盏2 m开外的60 W电灯泡。日本昭和飞机工业公司在2009年At International 会展上展出了基于电磁感应原理无线传输电力的非接触式电源供应系统。2010年9月,日本富士通公司利用磁共振技术实现设备无线充电。2011年7月第一辆无线充电电动车在韩国首尔公园试运。2012年9月,诺基亚发布的两款智能手机:Lumia920和Lumia 820,可实现无线充电,引发公众热议。2013年芬兰首都机场,为乘客免费提供无线充电器。2013年3月,苹果公司的一项名为“保护外套综合感应充电技术”的发明专利申请书曝光。在各经济大国的研究团队与企业的共同努力下,无线充电技术有了质的飞跃,它已经从最初的概念设想发展到如今的生活实用地步。 1.2 国内发展历史与现状 我国在无线充电技术领域的起步滞后于国外,目前还处于研究的初级阶段。在国外市场旋风般的影响下,近十年来我国的无线充电技术取得了一些进展。

关于“无线充电”项目介绍方案

“无线充电”项目介绍方案 2013-1-13

一、无线充电项目概述 二、无线充电项目远景分析 三、无线充电项目近期进展 四、目前国内外公司研究状况

一、无线充电项目概述 我们都知道,无线能源似乎是一个听起来很棒的新奇概念,但是我们很 难想象会很快将它实现商业化。 据engadget 报道,美国宾州的一家公司,目前靠着这个Powercast 技术,已经和超过 百家的主要电子产品公司,签下内容尚未公 开的合作案,包括一些耗电量“相对较低” 的电子产品,诸如手机、MP3 随身听,还有汽 车零件、温度传感器、助听器,甚至是医疗 仪器等的制造业者。 基本上整个系统包含了两件东西,一个是 插在插座上的发信器,另一个是整合在电子 产品上,跟硬币大小差不多的接收器(技术 核心),只要在一定的范围内(目前是在 1 米的距离内,美国可达到10米左右),电能可 以瞬间自发信器传到对应的接受器。 该项技术之所以会得到这么多家厂商的 青睐,原因是在他独特的电磁波接收装置,能够根据不同的负载、电场强 度来作调整,同时还能维持稳定的直流电压,这也表示在空中散射的电磁 波功率, 能够被 减到最 低。(据 说这种 设备已 经获得 了FCC 认证) 最 神奇的是,这种接收器的制造成本只需要 5 美金。由于价格昂贵、产品笨重以及 不完善的解决方案,无线充电产品一直都没有能够真正的进入消费市场。 另外对于经常在外奔波的移动设备使用者,将来也可以在无线上网的同时,通过无线网络对自己的移动设备进行充电。 2010 年9 月1 日,全球首个推动无线充电技术的标准化组织——无线 充电联盟在北京宣布将Qi 无线充电国际标准率先引入中国。信息产业部通 信电磁兼容质量监督检验中心也加入该组织。

电动汽车无线充电技术文献综述

电动汽车无线充电技术的现状与展望 王利军(合肥工业大学,合肥230000) 刘小龙(合肥工业大学,合肥230000) 端木沛强(合肥工业大学,合肥230000) 景池(合肥工业大学,合肥230000) 【摘要】介绍了无线充电技术的分类、电动汽车无线充电技术的工作原理以及电动汽车无线充电技术的应用情况,对比分析电动汽车传统能源供给方式及无线充电方式的优缺点。分析电动汽车用无线充电技术的特点,并介绍应用于电动汽车的无线充电技术的研发现状。然后以行驶中的充电技术为重点,对将来电动汽车用无线充电技术的发展进行展望。Abstract:The categories, operating principles and applications of wireless charging technology are introduced in this paper. The advantages and disadvantages are analyzed by comparing traditional energy supply mode and wireless charging mode. The characteristic of wireless charging technology for EV is analyzed. And then the development present of wireless charging technology is introduced. Finally,the future of wireless charging technology for EV is described with focus on charging of a moving vehicle on road. 【关键词】电动汽车无线充电无线电力输送电磁感应 Key words:electric vehicle; wireless charging technology; wireless power transmission; electromagnetic induction; 0 引言 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车( EV) 和插电式混合动力汽车( PHEV) 的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 1 无线充电技术 无线充电技术引源于无线电力输送技术。无线电力传输也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。根据在空间实现无线电力传输供电距离的不同,可以把无线电力传输形式分为短程、中程和远程传输三大类。 1.1 短程传输 通过电磁感应电力传输(ICPT)技术来实现,一般适用于小型便携式电子设备供电。ICPT 主要以磁场为媒介,利用变压器耦合,通过初级和次级线圈感应产生电流,电磁场可以穿透一切非金属的物体,电能可以隔着很多非金属材料进行传输,从而将能量从传输端转移到接收端,实现无电气连接的电能传输。电磁感应传输功率大,能达几百千瓦,但电磁感应原理的应用受制于过短的供电端和受电端距离,传输距离上限是10 cm 左右。 1.2 中程传输 通过电磁耦合共振电力传输(ERPT)技术或射频电力传输(RFPT)技术实现,中程传输可为手机、MP3 等仪器提供无线电力传输。ERPT 技术主要是利用接收天线固有频率与发射场电磁频率相一致时引起电磁共振,发生强电磁耦合的工作原理,通过非辐射磁场实现电能的高

手机无线充电技术详解

手机无线充电技术详解 未来的愿景:每个人的手机上,只需要有个充电的APP,就可以实现无线充电,网上付费。随时随地,不受环境限制。 不久前三星Galaxy S8发布,其亮点功能之一便是无线充电。三星Galaxy S8搭配了折叠式无线充电器,利用无线充电,三星Galaxy S8的电量能被很快充满。但一个尴尬的事实是,无线充电仍然只是少数厂商的坚持。不过在三星坚持的同时,苹果也暴露了布局无线充电的野心,两大巨头的不谋而合,很可能在这个尚未被重视的领域再次开战。 就目前手机行业现状来说,无线充电尚未大面积流行,没火的原因并不是因为无线充电没有搭载的必要,而是现阶段该技术还存在诸多短板。三星的无线充电方案已经达到了手机无线充电领域最为前端的水准,但仍需要在技术方面得到质的飞跃。 有消息称,三星Galaxy S8无线充电支持Qi和PMA两种协议,这两种协议仍有两大短板尚未解决——传输距离短,摆放位置要求严格,这也是阻碍无线充电流行起来的技术门槛。为何技术难点迟迟难以攻克,我们先要从无线充电的原理讲起。 手机无线充电原理 无线充电的原理就是利用电磁波感应,其过程类似于变压器通电,在发送和接收端各有一个线圈,发送端线圈连接有线电源产生电磁信号,接收端线圈感应发送端的电磁信号从而产生电流给电池充电。无线充电技术的原理研究可以追溯到19世纪30年代,科学家迈克尔?法拉第首先发现了电磁感应原理,即周围磁场

的变化将使电线中产生电流。到了19世纪90年代,爱迪生光谱辐射能研究项目的一名助手,伟大的科学家尼古拉?特斯拉证实了无线传输电波的可能性。现阶段无线充电存在四种不同的商用技术:电磁感应技术、无线电波技术、电磁共振技术、电场耦合技术,主要用在手机无线充电的技术是电磁感应技术和电磁共振技术。当然无线供电在以后的家电,以及发展势头正猛的电动汽车上也有比较广阔的前景。一旦无线充电突破技术壁垒,在保证转化率、安全性、易用性的同时,高效快速的充电就会像科幻小说《三体》里描述的那样,给人类带来生产力的进一步发展。在这里,我们单说一下关乎手机充电的电磁感应、电磁共振。 ①电磁感应式充电 初级线圈一定频率的交流电,通过电磁感应在次级线圈中产生一定的电流,从而将能量从传输端转移到接收端。目前最为常见的手机无线充电解决方案就采用了电磁感应,手机无线充电使用的充电座和终端分别内置了线圈,二者靠近便开始从充电座向终端供电。为提高供电效率,需要使线圈之间的位置对齐,不产生偏移。 现阶段电磁感应无线充电相对于磁场共振充电能够拥有更高的转化率,充电转化率可达80%左右,目前该技术被广泛的运用到了手机无线充电领域。但这种方式的无线充电技术也存在比较明显的弊端——传输距离短、位置要求严格。现阶段上市的无线充电手机,都需要手机与充电板接触才能进行无线充电,而且对放置位置有着极为苛刻的要求。 采用这种方式的无线充电传输距离难以改进,所以厂商针对其放置位置要求严苛的情况进行了改良。2011年8月从事智能手机外设业务的日本Oar公司推出了

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

全面解析无线充电技术

摘要:扔掉电源线,给自己的智能手机进行无线充电。相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。 扔掉电源线,给自己的智能手机进行无线充电。这对于许多人来说可能有点天方夜谭。但事实上,无线充电技术很快就要进入大规模的商用化,这项此前不为大众所熟悉的技术,正悄然来到我们的面前。 老技术、新技术 以无线的方式传输电能,其实是一项非常古老的技术,它可以追溯到人类开始拥有电力的19世纪。当时对于电力的传送有两种思路,一种是以爱迪生为代表的有线派,即架设线缆用于电力的远距离传输,这种方案成熟可靠,缺点是工程量巨大,并且成本高昂。还有一种就是尼古拉·特斯拉(Nikola Tesla,世界上第一台交流电发电机的发明者)在19世纪末提出的无线传输方式,特斯拉当时构想通过电磁感应的方式,让电能以大地和天空电离层为介质进行低损耗的传送。这项实验据说获得成功,但是因政治和经济因素被中止。无线传输技术后来只是被用于电信号发送领域,也就是信息的交流,远距离能量传输从来都没有进入实用化,虽然它在物理学上是完全可行的。 诺基亚Lumia 920智能手机可实现无线充电

直到一百年后的今天,这种局面才获得改变。在电动牙刷、剃须刀等不少低功率的日用家电产品中,我们看到了非接触式无线充电技术的应用,给用户带来相当的便利。随着无源式RFID电子标签的实用化和无线网络技术的大发展,诸如隔空点亮灯泡的无线供电实验也屡见报端,这一切都点亮了人们对“无线”未来生活的无限憧憬,科学界也不遗余力地朝着这个方向努力。 2001年5月,国际无线电力传输技术会议在印度洋上的法属留尼汪岛(Reunion Island, France)召开,法国国家科学研究中心的皮格努莱特(G. Pignolet)作了一个公开实验:他利用微波技术,将电能以无线的方式传输,最后点亮了一个40米外的200瓦灯泡。其后,据研究者有关文章介绍2003年在岛上建造的10千瓦试验型微波输电装置,已开始以2.45GHz 频率向接近1km的格朗巴桑村(Grand-Bassin)进行点对点无线供电。 到2006年末,也有报道称麻省理工学院在无线电力传输技术上获得突破:以物理学助教授马林·索尔贾希克为首的研究团队试制出的无线供电装置,可以点亮相隔2.1米远的60瓦电灯泡,能量效率可达到40%,相关内容刊登在2007年6月7日的《ScienceExpress》在线杂志上。这个“隔空点灯泡”实验引起了欧美及全球各大媒体的极大关注。后来英特尔西雅图实验室的Joshua R.Smith在这一成果上进行改进研究,并将供电效率提高到75%(1米范围内),这样的效率相当了不起,对于笔记本电脑、智能手机、平板这样的设备来说已足够优秀,而英特尔也在2008年8月的信息技术峰会上对此作了演示。 不过,相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。在四年后的今天,我们在诺基亚Lumia 920智能手机上看到了商用级无线充电技术的身影,与此同时大量的手机厂商和外设厂商跟进,针对智能手机的无线充电技术一夜之间就进入爆发前夜。 无线充电四大“流派” 无线充电技术可以分为四种类型,第一类是通过电磁感应“磁耦合”进行短程传输,它的特点是传输距离短、使用位置相对固定,但是能量效率较高、技术简单,很适合作为无线充电技术使用。第二类是将电能以电磁波“射频”或非辐射性谐振“磁共振”等形式传输,它具有较高的效率和非常好的灵活性,是目前业内的开发重点。第三类是“电场耦合”方式,它具有体积小、发热低和高效率的优势,缺点在于开发和支持者较少,不利于普及。第四类则是将电能以微波的形式无线传送——发射到远端的接收天线,然后通过整流、调制等处理后使用,虽然这种方式能效很低,但使用最为方便,英特尔是这项方案的支持者。

无线充电器的设计

引言 §1.1 无线充电技术的背景 随着智能手机、数码相机以及平板电脑等移动电子产品在人们生活中的广泛应用,内置锂电池续航短问题日益凸显,在这种情况下,无线充电技术应运而生。有研究指出,全球无线充电技术将于2017年形成一个70亿美元的市场。 据了解,无线充电技术来源于日本。日本富士通公司2010年9月宣布其研究出了新的无线充电技术,可实现在距离充电器几米远的地方进行无线充电。而所谓的无线充电技术,即不用通过电源线和电缆等一切外接设备,就可给电子设备充电。其原理是利用磁共振在充电器与设备之间的空气中传输电荷,线圈和电容器则在充电器与设备之间形成共振,实现电能高效传输的技术。 综观目前的电子市场,锂电池等电子产品用电池在技术上迟迟没有取得新的突破,导致电池根本满足不了用户的用电需求。而目前出现的移动电源充电器在给电子产品充电时也需要数据线。而且移动电源容量有限,并不能从根本上解决用户移动用电的需求。无线充电技术的出现,或可解决移动电子产品的充电难题。据了解,目前在北美,大批通过近距离无线充电技术解决智能手机充电难题的创业公司开始出现。而随着无线充电网点的完善,无线充电技术有望得到更广泛的应用[1]。 §1.2 无线充电技术的先驱 根据报道和网络检索,世界上各个国家已经投入到这个领域的研究当中[2]。 Palm︱美国 Palm公司是美国老牌智能手机厂商,它最早将无线充电应用在手机上。它推出的充电设备“触摸石”,就可以利用电磁感应原理无线为手机充电。 海尔︱中国 海尔推出的概念性“无尾电视”,不需要电源线、信号线和网线。海尔称该产品采用了与麻省理工学院合作的无线电力传输技术。 Powermat︱美国 目前 Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成,售价在100美元左右。 劲量︱美国

无线充电技术三大主流标准简介

无线充电技术三大主流标准简介 虽然大部分人对无线充电技术并不感到陌生,但诺基亚Lumia 920发布以后,无线充电功能还是受到人们的普遍关注。作为主打卖点之一,无线充电让Lumia 920与目前主流的手机产品形成了差异化,个性鲜明。但实际上,诺基亚并不是最早在手机上使用无线充电技术的厂商,一年前飞利浦就曾推出过Qi无线充电标准的手机,但最终并未引起消费者关注。 实际上,目前的无线充电技术还不算成熟,不仅技术发展缓慢,标准也尚未统一。目前主流的无线充电标准有三种:Power Matters Alliance(PMA)标准、Qi标准、Alliance for Wireless Power(A4WP)标准。下面我们就针对这三种标准进行简单介绍。 1. Power Matters Alliance标准 Power Matters Alliance标准是由Duracell Powermat公司发起的,而该公司则是由宝洁与无线充电技术公司Powermat合资经营,拥有比较出色的综合实力。除此以外,Powermat还是Alliance for Wireless Power(A4WP)标准的支持成员之一。 目前已经有ATT、Google和星巴克三家公司加盟了PMA联盟(Power Matters Alliance缩写)。PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。 目前Duracell Powermat公司推出过一款WiCC充电卡采用的就是Power Matters Alliance 标准。WiCC比SD卡大一圈,内部嵌入了用于电磁感应式非接触充电的线圈和电极等组件,卡片的厚度较薄,插入现有智能手机电池旁边即可利用,利用该卡片可使很多便携终端轻松支持非接触充电。 WiCC充电卡 另外作为支持,星巴克计划在波士顿地区17家门店进行Duracell Powermat无线充电试点,这将为PMA在美国立足提供有力的支撑。星巴克首席数字官Adam Brotman表示:星巴克将在部分桌面上安置无线充电设备,看看顾客反应如何。如果顾客没有与iPhone或

电子设计大赛无线充电电动车的设计报告

本篇论文为电子设计大赛以IAP15F2K61S2单片机为控制芯片的无线充电电动车控制系统的设计,内容和格式可以作为比赛或者课程设计论文的参考,本文为原创,仅供参考请勿抄袭。 《设计报告》 摘要:本文是以IAP15F2K61S2单片机为控制芯片的无线充电电动车控制系统的设计,整个系统包含CPU模块、无线发射器模块、无线接收器模块、电机驱动模块、电源等模块,并运用超级电容作为储能原件进行设计。本系统采用ATMEL公司的51系列单片机和TI公司TPS63020芯片、LM2596稳压芯片等元件完成无线充电电动车的控制设计要求。TI公司的TPS63020芯片来进行DC-DC变换可以有效的进行直流电源的电压转换。 关键字:IAP15F2K61S2单片机、无线充电、TPS63020、超级电容。

1.方案选择与论证 (3) 1.1主控制器方案与选择 (3) 1.2电动车部分稳压模块的方案与选择 (3) 2.理论分析与计算系统相关参数设计 (3) 2.1无线充电装置分析与计算 (3) 3.电路与程序设计 (5) 3.1电路设计 (5) 4.测试方案与测试结果 (6) 4.1方案与结果 (6) 4.2测试结果分析: (7) 5.总结 (7) 6.参考文献 (8)

1.方案选择与论证 1.1主控制器方案与选择 方案一:采用可编程逻辑器件CPLD 作为控制器。CPLD 可以实现各种复杂的逻辑功能,易于进行功能扩展。采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模实时系统的控制核心。 方案二:采用IAP15F2K61S2单片机进行控制。IAP15F2K61S2结构简单,接线方便,片内大容量2048字节的SRAM ,运行快速、稳定,可在电磁干扰情况下工作。IAP15F2K61S2单片机编程方便,还可以在线编程、下载、调试。 综合考虑:选择方案二。IAP15F2K61S2单片机编程更方便合适。 1.2电动车部分稳压模块的方案与选择 方案一:采用XL4061E1稳压模块。XL4061E1为降压模块,并非升压模块,体积大,并且需要保持输入电压与输出电压差值在2V 以上。 方案二:采用TPS63020升降压转换器。TPS63020升降压转换器是德州仪器(TI)公司宣布推出业界最小型、最高性能的 4 A 开关升降压转换器,效率高达 96%。 综合考虑:采用方案二。经过对比分析,采用TI 公司的TPS63020升降压转换器,体积小,质量轻,性能好,效率高,可以更好的进行电压转换。 2.理论分析与计算 系统相关参数设计 2.1无线充电装置分析与计算 接收器与发射器简化等效电路如右图所示 上面左式中:α1,α2分别代表发射、接收线圈的简正模,τ 1、τ 2 ,τ L 分别表示发射、接受线圈以及负载的衰减指数,k 12= k 21 = k 表示发射接受两个线 圈之间的耦合系数,w 1 ,w 2 分别表示发射、接受线圈的固有的谐振频率,s 表 示驱动电压源的驱动项。

无线充电技术简介

无线充电技术 无线充电技术(Wireless charging technology;Wireless charge technology )。无线充电技术,源于无线电力输送技术。无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(充电器)将能量传送至用电的装置,该装置使用接收到的能量对电池充电,并同时供其本身运作之用。由于充电器与用电装置之间以电感耦合传送能量,两者之间不用电线连接,因此充电器及用电的装置都可以做到无导电接点外露。[1] 概述 麻省理工学院的研究团队在2007年6月7日美国《科学》杂志的网站上发表了他们的研究成果。研究小组把共振运用到电磁波的传输上而成功“抓住”了电磁波。他们利用铜制线圈作为电磁共振器,一团线圈附在传送电力方,另一团在接受电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无线传导。这项被他们称为“无线电力”的技术经过多次试验,已经能成功为一个两米外的60瓦灯泡供电。这项技术的最远输电距离还只能达到2.7米,

但研究者相信,电源已经可以在这范围内为电池充电。而且只需要安装一个电源,就可以为整个屋里的电器供电。 共振原理 麻省理工学院的科研组不是第一个提出无线能量转换的组织。科学家早在19世纪就发现了电磁转换现象,从理论上说,电力可转化为通过无形的介质传播的电磁波,实现电力的无线输送。但是电磁波向四面八方辐射,能量大量散失,因此“无线输电”的研究始终进展不大,19世纪的物理学家和工程师尼古拉·特斯拉进行了远程无线能量转换系统实验,但是当他的财力用尽后,这项最有野心的尝试(29米高的瓦登克莱弗塔)宣告失败。其他尝试包括激光等定向能量转换机制。然而,它们与麻省理工学院的工作不同,这些都需要连续的可视线路,这对住宅周围的电力设施不好。 无线充电技术给两个手机无线充电[2] 研究组成员,助理教授马林·索亚克教授和他的科研组正在改进这个设备。“这是一项还未得到发展的系统,它证明能量转换行得通。但

手机无线充电技术的研究

手机无线充电技术的研究 字数:2465 来源:数字化用户2013年36期字体:大中小打印当页正文 【摘要】手机是用户群体最大的一个电子产品,但是由于充电器携带不便,手机无电给用户带来了很多的麻烦。本文首先分析无线充电技术中的原理,然后以手机为实验对象,将无线充电与有线充电相比较,显示出无线充电的独特优点,最后分析无线充电器的内部构造,为以后的无线充电器的开发与更新提供了理论及数据依据。 【关键词】手机充电无线充电电磁感应 一、前言 电子信息产业的快速发展促进着各式各样的电子产品,手机属于电子产品中的一个大的类别,每个手机都有其相对应的充电器,每换一部手机,原来的手机充电器就废弃了。大量旧充电器给环境的处理带来了巨大的负担,主要的原因就是手机充电器不能通用。对于手机的使用者而言,携带手机充电器非常得不便。随着人们对于无线通讯的需求,手机技术的发展和生产成本的降低使得手机快速普及,同时支持无线充电功能的手机会更加受到人们的青睐。 二、无线充电技术的概述 (一)无线充电原理 无线充电的原理主要就是两个部分,一个是电磁感应,另一个就是感应电动势。电磁感应定律其主要原理是闭合电路的一部分在磁场里做切割磁感线运动时就会产生感应电动势,有了感应电动势就能够驱动电子形成电流。通过这个原理我们给线圈提供一个不断变化的磁通量,线圈内就会产生电流,再将这部分电流整合为直流为手机充电。 感应电动势的模型可以通过下图可以看出来,线圈1集成在无线充电器端,线圈2集成在手机端,充电器端的线圈半径要大于手机端的线圈。两者之前存在一定的距离,给线圈1施加一定的正弦电流,就会在线圈2出产生一定的磁感

关于无线充电技术方案实现的几点建议

关于无线充电技术方案实现的几点建议 一般见到的无线充电,运用的是电流磁效应和电磁感应的原理。1819 年,丹麦科学家厄斯特观察到一段导线上如果通有电流,四周将会产生磁场,可以让指北针偏转。后人则进一步发现,将导线围成环状,甚至绕成线圈,产生的磁场将会更强、更集中,这称为电流磁效应。 至于电磁感应,则是在1831 年由法拉第发现的。让一块磁铁或其他的磁场来源靠近一段没有电流的线圈,线圈上就会产生感应电流,称为电磁感应。值得注意的是,电磁感应的成立要点是磁场要有变化,例如磁铁愈来愈靠近(愈来愈远离其实也可以)。外加磁场若是一直保持不变,是不会有感应电流的。 总而言之,电流磁效应就是电流的流动在四周产生磁场,电磁感应则是不断变化的外加磁场使线圈产生感应电流。 利用电磁感应来充电 这两种物理现象同时运用,就可以进行无线充电。目前的无线充电设备,都包含一个充电座,里面其实正是线圈。将充电座接到家用插头后,线圈周围会因为电流磁效应而产生磁场。要充电的电子产品,里面也都有一个线圈,当它靠近充电座时,充电座的磁场将透过电磁感应,在电子产品的线圈上产生感应电流。感应电流导引到电池,就完成了充电座和电子产品间的无线充电。 你可能会问,磁场不是要改变才能有电磁感应吗?可是充电座与充电的对象距离却始终保持不变,这样为何会有电磁感应呢?原来,家用插座中流出的电是交流电,也就是说电流的方向不断的交替变化,一会儿顺着流,一会儿反着流。正因为如此,充电座线圈产生的磁场随之不断在变换方向,并非保持不变,符合电磁感应的要件。 近来愈来愈多智慧型手机、平板电脑开始提供无线充电的功能,但是不幸的是,它们充电

简析无线充电技术的发展

简析无线充电技术的发展 摘要:对无线充电技术的发展做出了简要的介绍与分析。对其基本概念,发展历史与现状,存在的问题与不足之处以及几种不同的现行行业标准做了介绍。无线充电技术是一种与传统充电技术有着很大区别的新兴技术,因其对传统充电技术的便利性,实用性,美观性,环保性的优势,它具有很大的发展空间。现在无线充电技术还处于发展的起步阶段,很多技术还不够成熟,但由于它满足了市场的发展与人们的需求,便越来越得到重视研究,现在也正处于快速发展的阶段。在未来,随着无线充电技术充电效率的提高,充电距离的增大,充电便利性,安全性的提高,充电设备的小型化等,无线充电技术将会日臻完善,最终成 为主导未来充电产品与设备的主流技术。 关键词:无线充电技术发展行业标准 0 前言 无线充电技术是近年来在各种电子电气设备的迅猛发展与普及的情况下被重视研究的一种充电技术。它与传统的充电技术有很大的区别。它通过无线能量传输的方式为电子电气设备充电,分离开供电设备与用电设备之间的物理连接,这样在提高用电设备的美观,实用性的同时,还可以提高用电设备的安全性。与此同时规范化的无线充电器可以为各种便携式电子产品(如手机,数码相机,PDA-Personal Digital Assistant)充电,这样既能节约资源,降低产品的成本,又有利于环保。[1] 这种技术的发展在现在还处于刚刚起步的阶段,但由于它的实用性与便利性的优点,它必定将带来电子电气设备发展的一场新的革命。由于人们对新的无线充电设备的需求不断增长,关于无线充电技术的研究在近年来已经进入了快速发展的阶段。并且已经取得了一些初步的阶段性的研究成果。同时,无线充电技术在未来还有很长的路要走,也具有非常大的发展空间。 1无线充电技术的基本概念 目前无线电能传输主要采取三种方式分别为:电磁感应,无线电波,共振作用。在便携式设备锂电池领域,主要采用的是电磁感应方式来传输电能。对这一概念,人们还缺乏全面而实际的了解。很多人希望它像Wi- Fi一样,只要有Wi- Fi的地方,连接上就能用。理想的情况简单认为就是没有线,到处都可以充电。无论是家里、办公室、酒店、 咖啡厅、地铁、机场都能随时连接无线充电网给手机充电。估计几年以后无线充电将覆盖每个领域,无处不在。但现实的情况是无线充电还达不到上面理想的状态,不仅仅是基础设施的问题,而是技术的问题。我们现在的无线充电,充电器和手机的距离一般都在5mm以内(现阶段的Qi标准的无线充电情况),未来的磁共振标准可以做到125px以内(A4WP标准的无线充电情况)。现在阶段的Qi标准的无线充电器需要紧贴且对好充电位置,距离充电位置越远,充电效率越低,具体10mm以上基本上不能充电,上下左右移动范围一般一般只有10mm左右,且偏离中心位置远大,充电效率越低。无线充电的充电效率一般在70%左右,好的可以做到75%左右,差一点的只有65%左右。随着技术的进步,无线充电的距离和充电效率都将会有很大改善。[2] 2无线充电技术技术的发展历史与现状 无线充电的发展历时比较长久,早在一百多年前著名的物理学家特斯拉就曾设想通过电磁共振的方式来实现无线电能的传输,被人们称为无线电能传输之父。在20 世纪60

无线充电技术分析

非技术层面 1.现状 行业新兴技术,颠覆了传统模式,目前电子无线化还不成熟,仍处于发展的初级阶段。 无线充电技术目前处于电磁感应式的初级阶段,已经形成四大行业标准。国内比亚迪公司在2005年已经推出无线充电模式。目前国内许多公司的无线充电产品已上线售卖。 新兴技术,便利性,其他PC客户终端已经在其产品中植入此技术 2.技术瓶颈 通信协议、安全密保、辐射危害、传输距离, 充电效率:在充电时间相同的情况下,常用的有线电池充电器充电后的电量为93%,无线充电器充电后的电量为88% 3.市场状况 由于其属于颠覆传统充电方式的技术和PC终端尚未更新,技术瓶颈造成相对于传统模式优势不明显,目前并未普及,但是未来行业的必然发展方向。 4.我们可以做的产品推荐 车载无线充电器兼容储电功能,移动式家用无线充电器兼容储电功能,办公场所无线充电器兼容储电功能 5.优缺点 优点: 1、利用无线磁电感应充电的设备可做到隐形,设备磨损率低,应用范围广,公共充电区域面积相对的减小,但减小的占地面积份额不会太大。 2、技术含量高,操作方便,可实施相对来说的远距离无线电能的转换,但大功率无线充电的传输距离只限制在5米以内,不会太远。 3、操作方便。 缺点: 1、虽然设备技术含量高,但设备的经济成本投入较高,维修费用大。 2、因实现远距离大功率无线磁电转换,所以设备的耗能较高。无线传输的距离越远,无用功的耗损也就会越大。 3、无线充电技术设备本身实现的是二次能源转换,也就是将网电降压(或直接)变为直流电后在进行一次较高频率的开关控制交流变换输出。由于大功率的交直交电流转换是进行电能的二次性无线传输原因,所以电磁的空间磁损率太大。 4、因为采取无线传输,磁能的无用功耗损会随着无线充电设备的功率增高而上 升。 技术层面 1.无线充电标准

电动汽车无线充电技术研究综述

电动汽车无线充电技术研究综述 发表时间:2019-07-30T09:02:44.673Z 来源:《基层建设》2019年第14期作者:李景 [导读] 摘要:目前,电动汽车无线充电的方法在不断向广域化、智能化、灵活化方向发展。 国网忻州供电公司山西省忻州市 034000 摘要:目前,电动汽车无线充电的方法在不断向广域化、智能化、灵活化方向发展。我国在电动汽车无线充电方法方面虽然起步较晚,但结合目前国内该领域专利申请的发展态势与国际发展趋势,中国在电动汽车无线充电领域的专利发展日新月异,在提高无线充电效率方面的专利发展前景十分广阔,目前龙头企业的发展模式证明,校企合作更有利于国内企业在无线充电领域实现技术创新和成果转化,应充分利用专利情报,借助产学研体系在细分领域深耕细作以获取细分领域的制高点。 关键词:电动汽车;无线充电技术;研究 1充电技术及存在问题 目前电动汽车充电方式有两种:一是充电桩充电,这需要在停车位日益紧缺的同时建立特定的充电停车位,而且为了避免雨天充电不安全,不能设置露天的充电停车位,这给充电停车位的建设带来了诸多的不便。同时由于充电电压较高,不熟悉操作的充电人员工作时具有较大的危险性;二是电动汽车无线充电技术,由于避免了与充电电源直接接触,充电设备也没有暴露在外界环境中,因此适用更多的环境条件。只需驾驶员把车辆停在特定的充电停车位里,再将车辆的接收线圈与停车位的发射互感线圈对准,便可以进行充电,电动汽车无线充电技术已经引起了普遍的关注。但由于不同品牌的电动汽车无线充电接收线圈布置位置存在差异性,因此不同的车型可能需要使用适合该车型的特定无线充电车位才可进行正常充电,否则会出现充电效率降低的情况,甚至不能进行充电。据资料显示,宝马 530eiPerformance电动汽车可以实现无线充电,其搭载容量为9.2千瓦时的电池,最高充电效率为85%,需要3.5小时左右充满,但是当接收线圈与发射互感线圈的相对偏移量增加时,其充电效率降至62%左右,充电时常延长至4.8小时左右。因此接收线圈与发射互感线圈的相对偏移量增加时,对充电效率有极大的影响。现有的电动汽车无线充电装置不能在保证充电效率的同时,适用于绝大多数电动汽车,这也降低了无线充电停车位的利用率,使电动汽车的发展受到了一定的阻碍。 2装置的结构与原理 针对充电时接收与发射线圈有相对大的偏移量问题,本文设计了电动汽车无线充电自动定位调节装置,其主要构成有测距收发装置(包括第一、第二、第三、第四无线测距收发装置)、通讯装置、控制器、执行机构电动机、检测元件等,如图1所示。其定位原理是当汽车驶入停车位时,测距收发装置开始检测相应的数据,通过系统计算得到的接收线圈的二维平面位置坐标,再由通讯装置将得到的接收线圈的位置坐标传递给控制器,控制器控制驱动电机,使发射互感线圈自动移动到指定位置,测距收发装置再次检测、系统计算得到接收线圈的二维平面位置坐标,若再次检测得到的接收线圈二维平面位置坐标为(0,0),则认为移动到目标位置;若再次检测得到的接收线圈二维平面位置坐标不是(0,0),通讯装置再次将得到的接收线圈二维平面位置坐标传递给控制器,控制器控制驱动电机,重复进行操作,直至检测出接收线圈二位平面位置坐标为(0,0)时,发射互感线圈停止移动,开始充电。此时发射互感线圈与接收线圈相对偏移量最少,从而实现最大的充电效率。 3电动汽车无线充电技术发展路线分析 3.1静态充电 静态充电指电动汽车在充电过程中处于静止状态,这一充电方式源于电磁感应充电对线圈相对位置的严格要求且只能进行一对一充电,充电过程中的电能传输效率高,传输范围大。由于发射端和接收端之间的距离和角度存在偏差都会使得充电效率降低,感应充电线圈之间磁场区域内的异物也对充电效率影响较大,因此,充电效率受线圈对准定位、线圈间充电空间环境的影响较大。于是,汽车无线充电自动泊车定位监视技术、异物检测技术、送受电线圈形状和布置方式设计,均是现有研究院所和许多企业所致力研究的问题。以宝马公司申请的发明名称为“用于通过三角测量法定位的装置和方法”的专利为例,其要解决的技术问题是感应式充电定位定位系统,主要技术构思在于通过测量电磁式距离和角度,运用三角测量法来确定地点位置,由此获知次级线圈在一定时间内相对于初级线圈的空间位置,并且系统还利用地点位置和充电位置来确定行驶轨迹。 而随着磁共振式无线充电技术的兴起,电动汽车充电设施中的位置要求开始降低,只要发射端和接收端达到相同的共振频率,就能传递能量,且支持一对多充电。该方式使得电动汽车无线充电的灵活性开始显现,但其技术缺陷在于能量损耗比较大,而且传输功率越大损耗也就越大。因此,这一阶段中,许多企业在提高充电效率的研究中侧重于减小充电过程中的损耗,同时充电控制和定位也展开研究。其中的重点专利有:丰田公司的发明名称为“车辆和非接触式供电系统”的申请,解决的技术问题是无线充电控制方法,技术构思为电力发送装置接收由车辆ECU输出的调整匹配变换器的指令,根据电力发送单元与电力接收单元之间的电力传输效率来设定匹配变换器的阻抗;三星公司的发明名称为“电力发送单元(PTU)的用于确定电力接收单元(PRU)的位置的方法和采用该方法的PTU”的申请,技术问题为磁共振充电定位,技术要点为一种电力发送单元(PTU),基于电力接收单元(PRU)的位置来无线地发送电力,PTU基于与在PTU的谐振器的电学特性的曲线上检测到的拐点相应的频率信息来确定PRU是否位于PTU的充电区域内。 3.2动态充电 “Chargingonthego”技术能够使得电动汽车在行驶途中实时充电,也称动态无线充电技术,该技术基于无线充电技术演变而来,结合了定位传感、无线通信和实时控制等多项技术。要实现移动充电,可在马路下层铺设电能发射装置,位于电动汽车车体上的接收装置能够在无需停车的情况下获取电能,然而,目前的移动供电系统仍面临有磁通分布不均匀的问题,会导致不同位置和方向上的磁通耦合效率不相同。因此,为实现道路发射磁场的均衡、提高电动车动态充电的充电接收效率是业界关注的问题,改进的方向主要有动态充电结构设计、充电线路道路布置、充电发射方式等。国内申请人存在较多相关申请,广西电网公司电力科学研究院和重庆大学都曾申请过相关专利,其中提出,通过能量发射导轨和拾取线圈来实现在电动汽车行驶过程中分段供电;东南大学也申请有“一种分段发射式电动汽车在线动态无线供电系统”等的专利。国际上的相关专利申请有:韩国技术研究院申请的发明名称为“供电道路单元为车辆传输电力的系统和方法”的专利,所要解决的技术问题为动态移动无线充电,技术构思为道路铺设线圈的通断控制,实现汽车的行驶充电。 结束语 电动汽车成为世界各国的战略性新兴产业,在十余年的发展历程中,电动汽车数量呈指数增长,市场渗透率逐年攀升。推动电动汽车

相关文档
最新文档