卡尔曼滤波器大泄密

卡尔曼滤波器大泄密
卡尔曼滤波器大泄密

授之以渔:卡尔曼滤波器....大泻蜜.........................

原创作者:highgear

(一)

一片绿油油的草地上有一条曲折的小径,通向一棵大树。一个要求被提出:从起点沿着小径走到树下。

“很简单。” A说,于是他丝毫不差地沿着小径走到了树下。

现在,难度被增加了:蒙上眼。

“也不难,我当过特种兵。” B说,于是他歪歪扭扭地走到了树………. 旁。“唉,好久不练,生疏了。”

“看我的,我有DIY 的GPS!” C说,于是他像个醉汉似地走到了树………. 旁。“唉,这个GPS 软件没做好,漂移太大。”

“我来试试。” 旁边一人拿过GPS, 蒙上眼,居然沿着小径走到了树下。

“这么厉害!你是什么人?”

“卡尔曼! ”

“卡尔曼?!你是卡尔曼?”众人大吃一惊。

“我是说这个GPS 卡而慢。”

(二)

这段时间研究了一下卡尔曼滤波器,有一些心得,写出来与大家分享。

卡尔曼滤波器与我以前讲过的FIR, IIR 滤波器完全不一样,与其说属于滤波器,不如说是属于最优控制的范畴。下面的内容涉及相当多的控制理论知识,对于在这方面不足的同学可能有些吃力。不过不要紧,大家关注结果,会应用就够了, 那些晦涩的理论和推导可以忽略。我也会用图片让大家更直观的理解卡尔曼滤波器。

(三)

首先回顾一下传统数字滤波器。

对于一个线性时不变系统,施加一个输入u(t) ,我们可以得到一个输出y(t) . 如果输入是一个冲击,则输出y(t) 被称作冲击响应,用h(t) 来表示,是系统的内核。对于任意u(t), 输出y(t) 可以通过u(t) 与冲击响应h(t) 的卷积得到,这是FIR 滤波器的基本原理。我们还可以通过系统微分方程转换为差分方程,或是通过laplace 传递函数转换到差分方程,最后得到一个递推公式,这种形式的滤波器就是IIR 滤波器。

以前讲过,一个系统可以用时域的微分方程来建立,然后可以用laplace 的传递函数来处理,把解微分方程变为多项式乘法,可以简单的求解。还有另外一种处理形式就是状态空间,以矩阵形式来处理微分方程或微分方程组,利用矩阵变换求解,类同齐次方程组的矩阵形式。例如微分方程:

y’’ +3y’ + 2y = u

让 X1 = y, X2 = y’ =X1’,则上式变为:

X2’ = -3 X2 – 2 X1 - u

X1’ = X2

矩阵形式为:

通用形式为:

X’ = A*X + B*u

Y = C*X.

可以看到,可以很轻易的微分方程或微分方程组转换到状态空间形式,而状态空间与laplace 传递函数之间可以相互转换,事实上

矩阵A 的特征值就是s传递函数的极点。系统的传递函数(阵)可以通过矩阵变换得到:

Y(s) = C * (s * I - A) -1 * B

同理,连续域的微分方程对应了离散域的差分方程,s 对应了z, 离散域状态空间相应的变为:

X(k) = A*X(k-1) + B(u-1)

Y(k) = C*X(k)

(四)

我们现在来看看蒙眼走小径的走法问题。

假设A 走过的路径是真真正的路径,为Za; B是用自己的大脑作为预测估计器,走出了一个预测路径,

为Zb; C 用测量器,走出了一条测量路径,为Zc。用图片来说明:

“系统真实输出”是A 走过的路径:Za = C * X;

“测量输出”是Zb. Zb = Za + V,

这里V 是噪声,即GPS 的漂移;

“预测估计输出”是Zc = C * X^,

X^是预测的状态。

T 是采样延时。

现在,蒙上眼的情况下有两种选择,GPS 或大脑预测估计器。如果GPS很准而预测不准,那么可以选择GPS;

如果预测准确而GPS不准,那么选择预测估计器,等等,没有反馈的预测估计器会因为累积误差而导致越来越不准。如果两个都不准,该如何取舍?如何把两者结合在一起呢?

我们可以设置一个信心指数K,K 在0 与1之间,来说明对测量值还是预测值的信任程度:

Z = K * Zb + (1 – K) * Zc = Zc + K*(Zb – Zc) (1)

可以看出,当K = 1 和0 时,分别选择了GPS 或预测估计器. 现在,可以把误差 Zb -Zc作为反馈误差,来修正预测估计器的结果。新的系统结构图如下:

这个框图,就是卡尔曼滤波器的基本构造。学过现代控制理论的同学都这个图应该很熟悉,与状态变量估计控制的图形差不多,只是其中的K = 1 而且没有噪声项和系统反馈而已。

而我们下面的任务,就是如何确定这个K值。

......

以下略去

三百字的方差,与协方差的介绍. 自己看吧:https://www.360docs.net/doc/177943708.html,/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE

........

以下略去五百字的kalman Filter Gain K 的推导。自己看吧:https://www.360docs.net/doc/177943708.html,/wiki/%E5%8D%A1%E5%B0%94%E6%9B%BC %E6%BB%A4%E6%B3%A2

关于卡尔曼滤波器的推导过程,枯燥晦涩,我就略过,直接关注结果。

(五)

计算过程:

卡尔曼滤波是一种递归的估计,即只要获知上一时刻状态的估计值以及当前状态的观测值就可以计算出当前状态的估计值,因此不需要记录观测或者估计的历史信息。

卡尔曼滤波器的递归过程:

1) 估计时刻k 的状态:

X(k) = A*X(k-1) + B*u(k)

这里, u(k) 是系统输入

2) 计算误差相关矩阵P, 度量估计值的精确程度:

P(k) = A*P(k-1)*A’+ Q

这里, Q = E{ Wj^2 } 是系统噪声的协方差阵,即系统框图中的Wj的协方差阵, Q 应该是不断变化的,为了简化,当作一个常数矩阵。

3) 计算卡尔曼增益, 以下略去(k), 即P = P(k), X = X(k):

K = P *C’ * (C * P * C’ + R) -1

这里R = E{ Vj^2 }, 是测量噪声的协方差(阵), 即系统框图中的Vj 的协方差, 为了简化,也当作一个常数矩阵。由于我们的系统一般是单输入单输出,所以R是一个1x1的矩阵,即一个常数,上面的公式可以简化为:

K = P *C’ / (C * P * C’ + R)

4) 状态变量反馈的误差量:

e = Z(k) – C*X(k)

这里的Z(k) 是带噪声的测量量

5) 更新误差相关矩阵P

P = P – K * C * P

6) 更新状态变量:

X =X + K*e = X + K* (Z(k) – C*X(k))

7) 最后的输出:

Y = C*X

现在的问题就是如何实现卡尔曼滤波,A, B, C, Q, R 这些矩阵或量如何确定?

(六)

仿真实例

下面用仿真实例来观察卡尔曼滤波器的效果。假设我们的系统是一个加热系统,热时间常数为60 秒,100度时达到热平衡。忽略系统的延迟,那么当系统加电后,温度由0 开始上升。这个上升过程大家应该很熟悉,这是一个指数函数:

y(t) = 100 * (1 – e-t/60)

其laplace 传递函数为:

y(s) = 100 / (60 * s - 1)

我们人为的加入了随机噪声来模拟测量噪声

我们假定并不知道系统的传递函数,现在只是简单的, 随便地构造了一个预测系统。

A = [1, 0; 0, 1]

B = [1; 0]

C = [1, 0]

这是一个二阶系统,其输出是一条直线,与实际的系统相去甚远:

测量噪声的协方差R = 40,此为猜测值; 系统噪声Q = 2,也是猜测值,预测模型越不准,Q 值应越大。

卡尔曼滤波器的结果,红色为滤波器输出:

可以看到,尽管我们使用了一个粗劣的预测估计器,Kalman 滤波器还是相当的皮实,基本上消除了噪声.

如果我们有一个相当精确的模型,结果会怎么样呢?

精确模型的建立

要建立一个精确的预测估计模型,我们还是要利用方差。如果一个估计的曲线与实际曲线完全重合时,他们的方差为 0. 方差越小,拟合度越高,最小二乘法的原理便是如此。具体推导过程还是省略,直接给出matlab 的拟合程序,这是一个非常非常有用的程序。

如果数学模型很精确,能不能直接数学模型的输出作为滤波器的结果呢?不能,因为没有反馈,数学模型的输出会因为没有反馈的校正造成误差不断累积,失之毫厘,谬之千里。

下面是用最小二乘法获得系统的模型并做为预测估计器,设定为 3 阶系统,得出的数学模型相当准确,所以Q值可以取一个小值,

这里Q= 0.02, 现在看看卡尔曼滤波器的结果:

效果非常好,卡尔曼滤波器的输出与实际系统的输出(即无噪声的系统输出) 几乎重合,这是精确的预测估计模型带来的好处。

现在比较两个例子中卡尔曼增益的不同

最小二乘法获得系统的模型中的增益迅速地由大变小,最后小于不准

确模型。K 值较小,意味着误差反馈量较小,使得预测输出更偏重信任预测模型的结果,通过上图可以看到 kalman 算法的自适应性。至于误差相关阵 P 的值,同样,最小二乘法获得系统的模型中的C*P*C' 的值较小,这里就不给出图形了。

结论:

从上面的例子可以看出,卡尔曼滤波器对于预测系统的要求并不高,所以,那个”卡尔曼”可以蒙上眼,拿着一个劣质的GPS 可以走到树下。若系统的预测模型很准确,卡尔曼滤波器会有一个相当良好的效果。

matlab 的验证程序z在 62, 63楼,所有程序均为原创。

ardupilot(EKF)扩展卡尔曼滤波

ardupilot(EKF)扩展卡尔曼滤波 一、初识卡尔曼滤波器 为了描述方便我从网上找了一张卡尔曼滤波器的5大公式的图片。篇幅所限,下图所示的是多维卡尔曼滤波器(因为EKF2是多维扩展卡尔曼滤波器,所以我们从多维说起),为了跟好的理解卡尔曼滤波器可以百度一下,从一维开始。 这5个公式之外还有一个观测模型,根据你实际的观测量来确定,它的主 要作用是根据实际情况来求观测矩阵H。 因为卡尔曼滤波器是线性滤波器,状态转移矩阵A和观测矩阵H是确定的。在维基百科上状态转移矩阵用F表示。在ardupilot EKF2算法中,状态转移矩阵也是用F表示的。下面是维基百科给出的线性卡尔曼滤波器的相关公式。

上述更新(后验)估计协方差的公式对任何增益K k都有效,有时称为约瑟夫形式。为了获得最佳卡尔曼增益,该公式进一步简化为P k|k=(I-K k H k)P k|k-1,它在哪种形式下应用最广泛。但是,必须记住它仅对最小化残差误差的最佳增益有效。 为了使用卡尔曼滤波器来估计仅给出一系列噪声观测过程的内部状态,必须根据卡尔曼滤波器的框架对过程进行建模,这意味着指定一下矩阵:

只要记住一点就行了,卡尔曼滤波器的作用就是输入一些包含噪声的数据,得到一些比较接近真是情况的数据。比如无人机所使用的陀螺仪和加速度计的 读值,他们的读值都是包含噪声的,比如明明真实的角速度是俯仰2°/s,陀螺 仪的读值却是2.5°/s。通过扩展卡尔曼之后的角速度值会变得更加接近2o/s 的真实值,有可能是2.1o/s。 二、扩展卡尔曼滤波器 因为卡尔曼滤波器针对的是线性系统,状态转移模型(说的白话一点就是知道上一时刻被估计量的值,通过状态转移模型的公式可以推算出当前时刻被 估计量的值)和观测模型。注:有的资料显示状态模型中有,有的没有,目前 我也不清楚是为什么,有可能和被估计的对象有关。但看多了你就会发现不管 网上给的公式有怎样的不同,但总体的流程是一样的,都是这5大步骤。我个 人觉得维基百科给的公式较为标准。 因为扩展卡尔曼滤波器(EKF,Extended Kalman filter)的使用场景为非线性系统。所以上面两公式改写为下面所示的样子,我个人的理解是,因为是 非线性系统,所以没有固定的状态转移矩阵和观测矩阵。到这儿为止卡尔曼滤 波器到扩展卡尔曼滤波器的过度就完成了(多说一句,因为传感器的数据采样 是有时间间隔的,算法的运行也是有间隔的,所以本文提到的KF和EKF都是离散型的)。下面是扩展卡尔曼滤波器的相关公式。

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems (线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。

基于FPGA的卡尔曼滤波器的设计

基于FPGA的卡尔曼滤波器的设计 时间:2010-04-12 12:52:33 来源:电子科技作者:米月琴,黄军荣西安电子科技大学摘要:针对电路设计中经常碰到数据的噪声干扰现象,提出了一种Kalman滤波的FPGA实现方法。该方法采用了TI公司的高精度模数转换器ADSl25l以及Altera公司的EPlCl2,首先用卡尔曼滤波算法 设计了一个滤波器,然后将该滤波器分解成简单的加、减、乘、除运算。通过基于FPGA平台的硬件与 软件的合理设计,成功地实现了数据噪声的滤除设计,并通过实践仿真计算,验证了所实现滤波的有效性。 关键词:卡尔曼;FPGA;最小方差估计 卡尔曼滤波是一个“Optimal Recursive Data Processing Algorithm(最优化自回归数据处 理算法)”,对于解决很大部分的问题,是最优化的,效率最高甚至是最有用的。传统的卡尔曼滤波是 在DSP上实现的。但是DSP成本相对较高,而且指令是串行执行的,不能满足有些要求较高的场合。而FPGA由于其硬件结构决定了它的并行处理方式,无论在速度还是实时性都更胜一筹。文中以基于FPGA 器件和A/D转换器的数据采集系统为硬件平台,进行了卡尔曼滤波算法设计,详述了基于FPGA的卡尔 曼滤波器的设计实现。 1 卡尔曼滤波算法 工程中,为了了解工程对象(滤波中称为系统)的各个物理量(滤波中称为状态)的确切数值,或为了 达到对工程对象进行控制的目的,必须利用测量手段对系统的各个状态进行测量。但是,量测值可能仅 是系统的部分状态或是部分状态的线性组合,且量测值中有随机误差(常称为量测噪声)。最优估计就是 针对上述问题的一种解决方法。它能将仅与部分状态有关的测量进行处理,得出从统计意义上讲误差最 小的更多状态的估值。误差最小的标准常称为估计准则,根据不同的估计准则和估计计算方法,有各种 不同的最优估计,卡尔曼滤波是一种递推线性最小方差估计的最优估计。 系统的状态方程可设定为 式(3)为系统噪声。设设备的量测噪声为Vk,系统得量测方程为

三阶卡尔曼滤波数字锁频环设计及性能分析

三阶卡尔曼滤波数字锁频环设计及性能分析 作者:李金海, 巴晓辉, 陈杰, LI Jin-hai, BA Xiao-hui, Chen Jie 作者单位:中国科学院微电子研究所,北京,朝阳区,100029 刊名: 电子科技大学学报 英文刊名:JOURNAL OF UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 年,卷(期):2008,37(5) 被引用次数:1次 参考文献(10条) 1.HINEDI S.STATMAN J I High-dynamic GPS tracking final report[JPL Publication 88-35] 1988 2.AGUIRRE S.HINEDI S Two novel automatic frequency tracking loops 1989(05) 3.HINEDI S An extended Kalmaa filter based automatic frequency control loop[TDA Progress Report 42-95] 1988 4.VILNROTTER V A.HINEDI S.KUMAR R Frequency estimation techniques for high dynamic trajectories 1989(04) 5.BAR-SHALOM Y.LI X R.KIRUBARAJAN T Estimation with applications to tracking and navigation:Theory algorithms and soRware 2001 6.张厥盛.郑继禹.万心平锁相技术 2005 7.JURY E I Theory and application of the z-transform method 1964 8.邓自立.郭一新现代时间序列分析及其应用--建模、滤波、去卷、预报和控制 1988 9.GREWAL M S.ANDREWS A P Kalman filtering:theory and practice using matlab 2001 10.ARNOLD W https://www.360docs.net/doc/177943708.html,UB A J Generalized eigenproblem algorithms and software for algebraic Riccati equations 1984(12) 相似文献(9条) 1.学位论文孙峰高动态多星座接收机捕获和跟踪技术的研究与实现2009 全球导航卫星系统(GNSS)是用于定位用户接收机地理位置的一种卫星系统。目前,GNSS包括现已投入运行的三个卫星定位系统:全球定位系统(GPS)、全球导航卫星系统( GLONASS)、北斗一代系统(BD)。鉴于多星座导航定位系统的建立,多星座接收机将大大提高卫星导航定位的可靠性、精度和实时性。 高动态接收机的捕获和跟踪技术一直是研究的热点和难点。许多学者针对高动态的特殊应用做出了一些卓有成效的研究,提出了多种设计方案,重点为伪码的快速捕获和多普勒频率的跟踪。伪码的快速捕获的主要方法为:基于FFT和匹配滤波的并行捕获方法以及串并结合的滑动相关捕获方法。这些捕获方法在捕获性能和复杂性上各有优劣。本文采用了串并结合的滑动相关捕获方法,这种算法的捕获性能较好,硬件实现简单。 载波多普勒频率跟踪的主流方案是采用锁频环(FLL)+锁相环(PLL)的环路跟踪结构。使用FLL来跟踪频率的快速变化,当频率引导到PLL可处理的范围时,通过PLL来跟踪相位的变化,精确的锁定载波频率。本文采用二阶锁频环辅助三阶锁相环的环路结构,可很好的跟踪接收机的动态。 本文的主要内容为: 1.完成了多星座卫星信号接收机的硬件设计,为系统的实现搭建了硬件平台。 2.在分析了GPS、GLONASS、BD的伪码特性的基础上,采用串并结合的时域相关捕获的方法,缩短了伪码的捕获时间。 3.研究并设计了DLL码跟踪环路。经过测试验证了设计的DLL环路的正确性。 4.载波跟踪环采用三阶二象限反正切Costas环和二阶四相锁环相结合的方法,有效的消除了高动态的影响。 本论文设计的捕获和跟踪的方法最终在高动态多星座接收机上得到了实现,测试结果表明本文的设计满足系统指标要求。 2.学位论文郑宏磊GPS在干扰环境下的可用性研究2006 全球定位系统(GPS)能在全球范围内提供精确的位置、速度和时间信息,在军事和民用领域发挥着极其重要的作用。随着GPS的广泛应用,它易受到干扰的弱点也随之暴露出来,针对GPS进行的抗干扰技术也日益成为研究的热点。本文阐述了全球定位系统的工作原理,系统组成以及信号格式,在此基础上着重分析了GPS受干扰特性,为以后的工作奠定了基础。 本文将理论分析和实验相结合,结合商用GPS接收机的实际测量结果,对GPS信号受干扰前后的特性进行了分析。针对射频RF等干扰源以及多路径 ,本文介绍了抗干扰的总体设计方案,分析了几种可行的抗干扰措施,重点对环路滤波和自适应调零天线进行了研究设计。 论文在环路滤波器设计方面采用了由锁频环(FLL)辅助的锁相环(PLL)滤波器,在自适应调零天线方面设计空间-时间自适应阵列以代替空间自适应阵列,并采用功率最小预处理算法。最后通过实验仿真得到了较为理想的结果,可在一定程度上保证GPS在干扰环境下的可用性。 3.期刊论文李国栋.崔晓伟.尹旭明.冯振明.LI Guodong.CUI Xiaowei.YIN Xuming.FENG Zhenming GPS接收机中锁 频环频率误锁的检测-清华大学学报(自然科学版)2007,47(1) 为了解决全球定位系统(GPS)接收机中的锁频环在载波同步过程中可能出现的频率误锁问题,在分析了锁频环在噪声环境下的工作原理及产生频率误锁原因的基础上,基于有无发生频率误锁时同一信息符号对应的多个预检测积分值的变化规律,提出了一种用于频率误锁检测和快速纠正的算法.仿真结果表明:该方法能够在锁频环完成工作之后及时判决是否有误锁发生,误锁时可在1~2个导航比特时间内把载波频率调整到正确频率上.该方法实现简单,可

卡尔曼滤波器及其简matlab仿真.

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。 二、卡尔曼滤波的原理

维纳最速下降法滤波器卡尔曼滤波器设计及Matlab仿真

信息融合大作业 ——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真 1.滤波问题浅谈 估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、 金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发

射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.维纳最速下降算法滤波器 2.1 最速下降算法的基本思想 考虑一个代价函数,它是某个未知向量的连续可微分函数。函数 将的元素映射为实数。这里,我们要寻找一个最优解。使它满足如下条件 (2.1) 这也是无约束最优化的数学表示。 特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法: 从某一初始猜想出发,产生一系列权向量,使得代价函数在算法的每一次迭代都是下降的,即 其中是权向量的过去值,而是其更新值。 我们希望算法最终收敛到最优值。迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。为方便起见,我们将梯度向量表示为

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

扩展卡尔曼滤波(EKF)应用于GPS-INS组合导航

clear all; %% 惯性-GPS组合导航模型参数初始化 we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s psi = 10*pi/180; %psi角度/ 弧度 Tge = 0.12; Tgn = 0.10; Tgz = 0.10; %这三个参数的含义详见参考文献 sigma_ge=1; sigma_gn=1; sigma_gz=1; %% 连续空间系统状态方程 % X_dot(t) = A(t)*X(t) + B(t)*W(t) A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0; -we*sin(psi) 0 0 0 1 0 0 1 0; we*cos(psi) 0 0 0 0 1 0 0 1; 0 0 0 -1/Tge 0 0 0 0 0; 0 0 0 0 -1/Tgn 0 0 0 0; 0 0 0 0 0 -1/Tgz 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0;]; %状态转移矩阵 B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0; 0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0; 0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵%% 转化为离散时间系统状态方程 % X(k+1) = F*X(k) + G*W(k) T = 0.1; [F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0; 0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵 %% 卡尔曼滤波器参数初始化 t=0:T:50-T; length=size(t,2); y=zeros(2,length); Q=0.5^2*eye(3); %系统噪声协方差 R=0.25^2*eye(2); %测量噪声协方差 y(1,:)=2*sin(pi*t*0.5); y(2,:)=2*cos(pi*t*0.5); Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维X=zeros(9,length); %状态估计值,9维 X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定 P=eye(9); %状态估计协方差 %% 卡尔曼滤波算法迭代过程 for n=2:length X(:,n)=F*X(:,n-1); P=F*P*F'+ G*Q*G'; Kg=P*H'/(H*P*H'+R); X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n)); P=(eye(9,9)-Kg*H)*P; end %% 绘图代码 figure(1) plot(y(1,:)) hold on; plot(y(2,:)) hold off; title('理想的观测量'); figure(2)

直流电机运行状态的卡尔曼滤波估计器设计.doc

二 〇 一 五 年 六 月 题 目:直流电机运行状态的卡尔曼滤波估计器设计 学生姓名:张傲 学 院:电力学院 系 别:电力系 专 业:风能与动力工程 班 级:风能11-1 指导教师:董朝轶 教授

摘要 卡尔曼滤波是一个迭代自回归算法,对于连续运动状态用中的大部分问题它都能够给出最优的预测。它已经广泛应用了近半个世纪,例如数据的融合,机械的导航乃至军用雷达的导航等等。卡尔曼滤波一般用于动态数据的处理,是从混沌的信号中提取有用信号消除误差的参数估计法。卡尔曼滤波是依据上一个估计数值和当下的检测数据运用递推估计算出当前的估计值。通过状态方程运用递推的方法进行估计,可以建立物体运动的模型。本文采用的工程设计对运行状态下的直流电机进行参数的计算和校验。而且直流电机的调节性能非常好只需要加上电阻调压就可以了,而且启动曲线非常好,启动的转矩大适合高精度的控制。而交流电机调速需要变频,控制相对复杂一些,而对于设计无论是哪种电机都不影响结果,所以本实验采用直流电机。简单来说卡尔曼滤波就是对被观测量进行一个物理的建模,目的是用‘道理’来约束观测结果,减少噪声的影响。因此卡尔曼滤波是根据一个事物的当前状态预测它的下一个状态的过程。 此设计主要是通过对直流电机的数学模型利用MATLAB来设计卡尔曼滤波估计,进行仿真编程建模,进而对系统进行评估,并且分析估计误差。 关键词:卡尔曼滤波器;直流电机;MATLAB

Abstract Kalman filter is an iterative autoregression algorithm for continuous motion of most of the problems with it are able to give the best prediction. And it has been widely used for nearly half a century, such as the integration of data, as well as military machinery of navigation radar navigation, and so on. Kalman filter is generally used to process dynamic data, extract useful signal parameter estimation method to eliminate errors from the chaotic signal. Kalman filter is based on an estimate on the value and the current detection data is calculated using recursive estimation current estimates. By using recursive state equation method to estimate the movement of objects can be modeled. The paper describes the engineering design of the DC motor running state parameter calculation and verification. The DC motor performance and adjust very well simply by adding resistance regulator on it, and start curve is very good, start torque for precision control. The required frequency AC motor speed control is relatively complicated, and for the design of either the motor does not affect the outcome.In order to facilitate learning, so wo use the DC motor. Simply the Kalman filter is to be observables conduct a physical modeling; the purpose is to use 'sense' to restrict the observations to reduce the influence of noise. Therefore, the Kalman filter is based on the current state of things predict its next state of the process. This design is mainly through the DC motor mathematical model using MATLAB to design the Kalman filter estimation, simulation modeling program, and then to evaluate the system and analyze the estimation error. Keywords:Kalman filter; DC;MATLAB

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

扩展卡尔曼滤波器(EKF):一个面向初学者的交互式教程-翻译

扩展卡尔曼滤波器教程 在使用OpenPilot和Pixhawk飞控时,经常遇到扩展卡尔曼滤波(EKF)。从不同的网页和参考论文中搜索这个词,其中大部分都太深奥了。所以我决定创建自己学习教程。本教程从一些简单的例子和标准(线性)卡尔曼滤波器,通过对实际例子来理解卡尔曼滤波器。 Part 1: 一个简单的例子 想象一个飞机准备降落时,尽管我们可能会担心许多事情,像空速、燃料、等等,当然最明显是关注飞机的高度(海拔高度)。通过简单的近似,我们可以认为当前高度是之前的高度失去了一小部分。例如,当每次我们观察飞行高度时,认为飞机失去了2%的高度,那么它的当前高度是上一时刻高度的98%: altitude current_time=0.98*altitude previous_time 工程上对上面的公式,使用“递归”这个术语进行描述。通过递归前一时刻的值,不断计算当前值。最终我们递归到初始的“基本情况”,比如一个已知的高度。 试着移动上面的滑块,看看飞机针对不同百分比的高度变化。 Part 2:处理噪声 当然, 实际从传感器比如GPS或气压计获得测量高度时,传感器的数据或多或少有所偏差。如果传感器的偏移量为常数,我们可以简单地添加或减去这偏移量来确定我们的高度。不过通常情况下,传感器的偏移量是一个时变量,使得我们所观测到的传感器数据相当于实际高度加上噪声: observed_altitude current_time=altitude current_time+noise current_time 试着移动上面的滑块看到噪声对观察到的高度的影响。噪音被表示为可观测的海拔范围的百分比。

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

卡尔曼滤波器

卡尔曼滤波器 来这里几个月,发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:https://www.360docs.net/doc/177943708.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

卡尔曼滤波器综述

卡尔曼滤波器综述 瞿伟军 G10074 1、卡尔曼滤波的起源 1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。 2、卡尔曼滤波的发展 卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。 不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没

拓展卡尔曼滤波

南京航空航天大学 随机信号小论文题目扩展卡尔曼滤波 学生姓名梅晟 学号SX1504059 学院电子信息工程学院 专业通信与信息系统

扩展卡尔曼滤波 一、引言 20世纪60年代,在航空航天工程突飞猛进而电子计算机又方兴未艾之时,卡尔曼发表了论文《A New Approach to Linear Filtering and Prediction Problems》(一种关于线性滤波与预测问题的新方法),这让卡尔曼滤波成为了时域内有效的滤波方法,从此各种基于卡尔曼滤波的方法横空出世,在目标跟踪、故障诊断、计量经济学、惯导系统等方面得到了长足的发展。 二、卡尔曼滤波器 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。 卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。目前,卡尔曼滤波已经有很多不同的实现。卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。 三、扩展卡尔曼滤波器 3.1 被估计的过程信号 卡尔曼最初提出的滤波理论只适用于线性系统,Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(Extended Kalman Filter,简称EKF),将卡尔曼滤波理论进一步应用到非线性领域。EKF的基本思想是将非线性系统线性化,然后进行卡尔曼滤波,因此EKF是一种次优滤波。 同泰勒级数类似,面对非线性关系时,我们可以通过求过程和量测方程的偏导来线性化并计算当前估计。假设过程具有状态向量x∈?n,其状态方程为非线性随机差分方程的形式。 x k=f x k?1,u k?1,w k?1(1.1) 观测变量z∈?m为: z k=?(x k,v k)(1.2) 随机变量w k和v k代表过程激励噪声和观测噪声。它们为相互独立,服从正态分布的白色噪声:

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

相关文档
最新文档