微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline)
微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline)

微带线剖面图

适合制作微波集成电路的平面结构传输线。与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料。导体应具有导电率高、稳定性好、与基片的粘附性强等特点。

两个方面的作用

在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。

1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。

微带线

2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。按照传输线的结构,可以将它分为微带线和带状线。

在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。最常使用的微带线结构有4种:表面微带线(surface

microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。

2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。

物理性能

带状线是介于两个接地层之间的印制导线,它是一条置于两层导电平面之间的电介质中间的铜带线。它的特性阻抗和印制导线的宽度、厚度、电介质的介电常数以及两个接层的距离有关。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数

物理盆

微带线和带状线的异同

1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。

2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.

单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关

因为微带线一面是FR4(或者其他电介质)一面是空气(介电常数低)因此速度很快,利于走对速度要求高的信号(例如差分线,通常为高速信号,同时抗干扰比较强)

带状两边都有电源或者底层,因此阻抗容易控制,同时屏蔽较好,但是信号速度慢些。

通常同样的介质条件微带线的损耗小(线宽),带状线的损耗大(线细,有过孔)。

至于速度我就不理解了。微带线是准TEM波,带状线是TEM波 ,相速都是光速。做什么电路都够了。

微带线和类微带线

适合制作微波集成电路的平面结构传输线,有微带线、共面线、槽线和鳍状线等多种形式(图1),应用最广的是微带线。微带线与金属波导相比,它的传统的微波传输线是同轴线和金属波导。随着微波频率的不断提高和微波设备的小型化,传输线的结构日益增多。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。

微带线和类微带线一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料,如氧化铝陶瓷、石榴石铁氧体和石英等。导体还应具有导电率高、稳定性好、与基片的粘附性强等特点。

优点是体积小、重量轻、使用频带宽、可靠性高和制造成本低等;缺点是损·耗稍大,功率容量小。

微带线

微带线和带状线的阻抗计算:

a.微带线(microstrip) Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)]

其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB 板材质的介电常数(dielectricconstant)。此公式必须在0.1<(W/H)<2.0及1<(Er)<15的情况才能应用。

b.带状线(stripline) Z=[60/sqrt(Er)]ln{4H/[0.67π(T+0.8W)]}

其中,H为两参考平面的距离,并且走线位于两参考平面的中间。此公式必须在W/H<0.35及T/H<0.25的情况才能应用。

(完整word版)微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

平行耦合微带线带通滤波器调试经验

1.通过分析平行耦合微带线带通滤波器的电路结构, 提出了一种消除 滤波器带宽偏离指定设计带宽和在截止频率附近缓和通带内电压驻波比波动过大的方法. 疑问:1.什么是电压驻波比?为什么会导致电压驻波比波动过大?有什么危害?解决的办法? 2.带通滤波器的基本单元:是由2 条相距很近的微带线构成的平衡耦合节, 在这2 条微带线之间会产生电磁耦合现象, 微带线的奇模、偶模通过公共接地板产生的耦合效应产生了奇模特性阻抗( Zoo) 和偶模特性阻抗( Zoe) . 当微带线长度为滤波器中心频率对应波长的1 / 4 时, 微带线就具备了带通滤波器特性, 即可构成一个平衡耦合节. 由于采用 单个带通滤波器单元不能获得良好的滤波器响应和陡峭的通带到阻带 的过渡,因此常将n + 1 个平衡耦合节级连以构成平行耦合微带线带通滤波器。平衡耦合节的两端有短路、开路2种结构 疑问:为什么微带线长度为滤波器中心频率对应波长的四分之一,微带线就具备了带通滤波器的特性? 3.带通滤波器的设计步骤: 1、制定滤波器的技术要求 2、根据技术要求, 选定设计方法和选择合适的标准低通滤波器参 gk(k = 0, 1, ?, n, n + 1) 3、确定归一化带宽、上边频和下边频, 按公式计算奇模、偶模的特征 阻抗值, 从而确定微带线的间隔、宽度、长度 4、应用EDA 工具对初步设计进行仿真、优化, 然后进行误差分析或 谐范围分析以进一步提高设计质量 5、制作样品. 疑问:史密斯圆怎么看?如何计算滤波器的技术参数:截止频率,带内衰减,带外衰减,微带线尺寸如何选择和计算。什么是带内波纹,如何计算,对滤波器有和影响? 采用ADS软件优化过后,采用手工调节曲线时发现改变某些参数时曲线将规律的变化。具体经验如下: 1.当增大s1的值时,S11曲线上移,减小时,S11曲线下移,若曲 线中通带内波纹过大,也可以通过调节S1来使得曲线变得光滑,减小带内纹波,当s1减小时还可以使得S11和S21曲线之间的 距离增大。

微带线详解

|微带线系列(共4篇) 在平时,大家对微带线的印象可能是这样的:EMC难过、串扰大、损耗小、传输速度快、加工工序多····在这里小陈将自己所知和盘托出,看能否为大家将微带线抽丝 剥茧。 第一篇文章并非原创,翻译自Eric Bogatin大神。 微带线系列-EMC 我刚从2013 IEEE EMC论坛回来,我发现很多EMC工程师都还有一个错误的观点。 大家都认为共模信号是主要的EMC来源,实际上并不是这样的,有一些共模信号 并不会向外辐射。 在EMC界,大家把common currents叫做common mode currents或者CM currents。看过我的书的人都知道我不喜欢这么叫,mode这个单词指的是一种互联关系,而共模信号只是同方向传播的电流而已。 共模电流是线缆中的净电流。共模信号的回流是在附近的任意的导体中。通常情况下我们会认为共模电流辐射很强。 实际上一个3uA的共模电流在1米长的线缆上跑100兆的时候,就过不了FCC的part 15 classB了。这么小的电流是很常见的,所以我们会认为共模电流很不好。EMC 工程师对此很警惕。 但问题是在不同条件下,共模电流可能是不好的也可能是可以无视的。 当信号与地的耦合程度不如信号线之间的耦合程度时,共模信号辐射会很强,是不好的。 但是如果工程师能将回流平面做得比较近的话,共模信号并没有太多辐射,这种情况下就可以不考虑。 添加屏蔽罩的原因也是如此,屏蔽罩并不只是去屏蔽信号辐射,也是作为一个回流平面给共模信号回流。屏蔽罩也不会影响双绞线的阻抗,提供这个回流平面之后,双绞线就不会辐射了。

微带线就是空气在上回流平面在下,所有PCB都有微带线在表底层。有一个错误的看法就是微带线辐射严重,还有一种看法是因为微带线辐射大所以要紧耦合。他们错误的原因都是一样的。 单端信号下方会有电流流过,与回流路径之间的耦合就相当于我们的差分信号。差分信号同样也会有回流,如下图所示。 Figure 1. Current density at 100 MHz in a tightly coupled microstrip differential pair, simulated with Ansoft's SI2D. 去年有5亿平方英尺的PCB板子生产出来,也就是说有10亿平方英尺的微带线,他们都是经过了EMC验证确定辐射合格的。 所有的微带线都会辐射?2012年就有10亿平方英尺辐射合格。当然,没有好的回流平面他们会辐射,同样也包括带状线。 难道我们还需要增加微带线之间的耦合去防止他们的辐射?这只是你从表面看到 的现象,从表面你只能看到信号都在表层上。用用你的脑子(Eric的名言,be the signal)。当你用脑去看的时候你会发现信号与第二层还有一部分回流。 表层差分的回流是在另一条线上,这是乱吹的,实际情况不是这样,让我们看看数据。差分对之间是互为回流,但是还有90%的回流是在平面上。 共模信号就像两条单端的传输线一样,在相邻平面回流。增加信号与地之间的耦合会减小共模信号的辐射,增加差分对之间的耦合对这没有好处。 如果你能把信号和地之间的耦合增加,那就增加这样的耦合去减小辐射吧。 微带线的损耗(1) 从刚接触PCB开始,导师就告诉我,微带线的传输速度快,损耗小。是啊,毕竟微带线有一部分能量是在空气中传播的,空气的介电常数是1,损耗角忽略不计嘛。在光口协议上也能找到这样的证据:

微带带通滤波器

射频技术 -----课程设计报告 题目平行耦合线带通滤波器基于ADS的设计专业学号通信工程 学号 学生姓名 指导教师 2016年4月16日

一、带通滤波器 (1)简介 带通滤波器是指能通过某一频率范围内的频率分量,但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 (2)工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 (3)典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率f0处的电压增益A0=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、f0、A0值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当f0=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。 此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。

微带线的产生和发展

微波技术 经典前沿类 微带线的产生和发展

目录 一、微波传输线 (4) 1.1 传输线概论 (4) 二、微带线产生 (5) 2.1 产生背景及发展历程 (5) 2.2 微带线的结构及参数 (5) 2.2.1 微带线中的主模 (6) 2.2.2微带线的基本参数及实现 (7) 三、微带线的应用 (10) 3.1 微带集成电路简介 (10) 3.2 微带线的发展趋势 (11) 3.3 微带线发展的实例 (11) 四、微带线和带状线的对比 (12) 4.1 总体对比 (12) 4.1.1 微带线 (13) 4.1.2 带状线 (13) 4.2 微带线的优缺点 (13) 五、微带线的不连续性 (14) 六、参考文献 (16)

微带线的产生和发展 作者:田鲲刘旭辉宋宇航杨继元王浩臣周阳 摘要 微带线是由支在介质基片上的单一导体带构成的微波传输线。适合制作微波集成电路的平面结构传输线。与金属波导相比,具有体积小、重量轻、使用频带宽、可靠性高和制造成本低等优点;但同时也存在损耗稍大,功率容量小等问题。本文首先讨论了微波传输线的分类,然后从微带线的产生、发展、应用三个方面对其进行了介绍。并且依据微带线发展过程中产生的实例,深入了解了蝴蝶结形DGS微带线在低通滤波器中的应用。之后也通过查阅文献,知晓了各种微带线中存在着不连续性,以及根据不连续性得到的一些应用。 关键词:微波传输线,microstrip,微波集成电路,蝴蝶结形DGS微带线,微带线不连续性 一.微波传输线 1.1传输线概况 微波传输线是用来传输微波信号和微波能量的传输线。微波传输线种类很多,按其传输电磁波的性质可分为三类:①TEM模传输线(包括准TEM模传输线),如图1(1)所示的平行双线、同轴线、带状线及微带线等双导线传输线;②TE模和TM模传输线, 如图1(2)所示的矩形波导,圆波导、椭圆波导、脊波导等金属波导传输线;③表面波传输线,其传输模

实验四微带线带通滤波器设计

实验四微带线带通滤波器 设计 Prepared on 24 November 2020

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理 滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1、滤波器的介绍 滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带 2、平行耦合微带线滤波器的理论 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 二、耦合微带线滤波器的设计的流程

微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline) 微带线剖面图 适合制作微波集成电路的平面结构传输线。与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料。导体应具有导电率高、稳定性好、与基片的粘附性强等特点。 两个方面的作用 在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。 1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 微带线 2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。最常使用的微带线结构有4种:表面微带线(surface

microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。 2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。 物理性能 带状线是介于两个接地层之间的印制导线,它是一条置于两层导电平面之间的电介质中间的铜带线。它的特性阻抗和印制导线的宽度、厚度、电介质的介电常数以及两个接层的距离有关。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数 物理盆 微带线和带状线的异同 1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。 2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关

(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以 上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

微带线

微带线 开放分类:it服务信号应用科学科学计算机术语 编辑词条分享 微带线(Microstrip Line),是一种带状导线,与地平面之间用一种电介质隔离开,其另一面直接接触空气,只有一个地平面作为参考层面。 编辑摘要 目录 1 解释 2 主要参数 3 特点 微带线- 解释 微带线剖面图 微带线是一根带状导(信号线),与地平面之间用一种电介质隔离开。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。 微带线- 主要参数 1、特性阻抗 微带线的特性阻抗公式 微带线的特性阻抗计算公式如图。 2、衰减常数 衰减常数表示微带的损耗,包括导体损耗、介质损耗和辐射损耗。 导体损耗比介质损耗大,它与导带的材料、尺寸和表面光洁度等有关。介质损耗取决于基片的介电常数、损耗角正切以及导带宽度与基片厚度之比(简称微带的宽高比)。辐射损耗也取决于基片的介电常数和微带的宽高比。微带线的任何不连续性,尤其是开路端和弯曲都将使辐射增加。把微带置于金属封闭壳内的屏蔽微带线可避免电磁能辐射。 3、传输延迟 传输延迟计算公式

4、固有电容 固有电容计算公式 固有电感计算公式 1、因为微带线一面是FR-4(或者其他电介质)一面是空气(介电常数低)因此速度很快。 2、利于走对速度要求高的信号(例如差分线,通常为高速信号,同时抗干扰比较强)。 带状线,应用学科:通信科技;通信原理与基本技术,其定义是由两个平行延伸的导体表面和其间的带状导体组成的传输线。 编辑摘要 带状线:一条置于2个平行的地平面(或电源平面)之间的电介质之间的一根高频传输导线。一般来说,地平面与导线之间是绝缘介质。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 带状两边都有电源或者底层,因此阻抗容易控制,同时屏蔽较好,但是信号速度慢些。 带状线是TEM波,而微带线是准TEM波。

微带滤波器

微带滤波器的设计 摘要:要抑制不需要的信号,就要使用滤波器, 只让需要的信号通过,多以要设计出一个具有高性能的滤波器。微带电路具有诸多优点,因此在这里设计一个微带滤波器,来实现抑制信号通过。 关键字:微带线;滤波器;高性能 Design of Microstrip Filters Abstract:To suppress unwanted signals, you should use filter, only that the signal is needed, how to design a high performance filter. Microstrip circuit has many advantages, so here the design of a microstrip filter, to achieve the inhibitory signals through. Keywords: microstrip line; filter; microstrip filter 一、引言 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 二、设计原理 1. 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。

微带线和带状线设计

MT-094 指南
微带线和带状线设计
简介 人们撰写了大量文章来阐述如何端接PCB走线特性阻抗以避免信号反射。但是,妥善运用 传输线路技术的时机尚未说清楚。 下面总结了针对逻辑信号的一条成熟的适用性指导方针。 当PCB走线单向传播延时等于或大于施加信号上升/下降时间(以最快边沿为准)时端接传输 线路特性阻抗。 例如,在Er = 4.0介电质上2英寸微带线的延时约270 ps。严格贯彻上述规则,只要信号上升 时间不到~500 ps,端接是适当的。
更保守的规则是使用2英寸(PCB走线长度)/纳秒(上升/下降时间)规则。如果信号走线超过 此走线长度/速度准则,则应使用端接。 例如,如果高速逻辑上升/下降时间为5 ns,PCB走线等于或大于10英寸(其中测量长度包括 曲折线),就应端接其特性阻抗。 在模拟域内,必须注意,运算放大器和其他电路也应同样适用这条2英寸/纳秒指导方针, 以确定是否需要传输线路技术。例如,如果放大器必须输出最大频率fmax,则等效上升时 间tr和这个fmax相关。这个限制上升时间tr可计算如下: tr = 0.35/fmax 等式 1
然后将tr乘以2英寸/纳秒来计算最大PCB走线长度。例如,最大频率100 MHz对应于3.5 ns的 上升时间,所以载送此信号的7英寸或以上走线应视为传输线路。 PCB板上受控阻抗走线的设计 在受控阻抗设计中,可以采用多种走线几何形状,既可与PCB布局图合二为一,也可与其 相结合。在下面的讨论中,基本模式遵循IPC标准2141A的规定(见参考文献1)。
Rev.0, 01/09, WK
Page 1 of 7

微带线低通滤波器设计

近代微波技术课程报告姓名王翩 学号M201071631 院系电子信息工程 专业电磁场与微波技术 类别硕士 指导老师马洪 考试日期2011年7月8日

微带线低通滤波器设计 设计参数要求 设计特征阻抗为50Ω的低通滤波器,其截止频率为f 1=2.5GHz(3dB 衰减),在f 2=5GHz 处要求衰减大于30dB ,要求有详细设计步骤,并且用分布参数元件实现。 滤波器选型 选择巴特沃兹型滤波器,其衰减特性表示为 2 21()10lg[1(/) ]n A f f f ε=+ 其中n 为滤波器阶数,这里取1ε=。 2()30A f ≥代入上式解的n ≥4.98,取n=5,即选取5阶巴特沃兹滤波器。5阶归一化 巴特沃兹低通滤波器(截止频率1/(2)πHz ,特征阻抗1Ω)有如下两种实现方式。第一种是第一个元件是串联电感,第二种是第一个元件是并联电容,以下简称电感型和电容型。 图1 第一个元件是串联电感的5阶归一化巴特沃兹LPF 图2 第一个元件是并联电容的5阶归一化巴特沃兹LPF 使用集总参数实现巴特沃兹型LPF 设待求滤波器截止频率(1f )与基准滤波器截止频率(0f )的比值为M ,则有

10 10 2.5 1.57101/(2)f G H z M f H z π= = =? 设计截止频率为1f 的滤波器,要经过频率变换,将基准滤波器中各元件值除以M 。 滤波器特征阻抗变换是通过先求出带设计滤波器阻抗与基准滤波器特征阻抗的比值K ,再用K 去乘基准滤波器中的所有电感元件值和用这个K 去除基准滤波器中所有电容元件值来实现的。公式如下: 50501K = ==待设计滤波器的特征阻抗基准滤波器的特征阻抗 通过上述两步变换可以得到实际的元件值计算公式: K/M NEW OLD L L =? C /()NEW OLD C KM = 下面以以上公式推导出待求滤波器各元件取值。 表一:电感型滤波器各元件值 表二:电容型滤波器各元件值 图3 电感型5阶巴特沃兹LPF

微带线型带通滤波器

微带线型带通滤波器朱海201222250266 航空航天学院

1.微带线 微带传输线和耦合微带线是微带线性滤波器电路中常用的传输线,也是未带原件的基本组成部分。 通常的微带线如图1所示,在相对绝缘介电常数r ε和厚度h 的基片上,具有宽度为w 厚度为t 的导体带线,在基片的底部具有良导体的地面。微带线的主模的传输特性可用如图2所示的一个双导线等效电路来表示。波在线上的传输速度既不同于真空中的光速,也不同于r ε中光速,而是两者混合的,混合介质中光速用0V 表示。 图1 微带线结构示意图 图2 微带线的双导线等效电路 混合介质相对介电常数用0ε表示。于是得到了微带线的传输特性参数为: 000 ,ελλεεε==V V εελπω ωβ2===V LC C V L V C L Z εε10===

微带线主模特性可以用两个参数表示。通常取混合有效介电常数εε和特性阻抗0Z 。εε又被称为有效介电常数。 微带传输线的特性阻抗和有效介电常数都与微带结构尺寸和介电常数有关。它们可以用准TEM 模型来近似分析。这是个静电场的边界问题。这个问题的解法很多,主要有保角变换法,迭代渐进法,格林函数法,变分法和解积分方程等。这些方法中大多数都要用数值计算。所得结果常用曲线图表表示出来。 用电磁场理论对微带线的各种模式进行全面的定量分析,现在还没有完全解决。这是由于微带线的边界问题复杂,传输模式又都是混合模,不易得到简单而明显的表示式,所以现在大都用半定量方法对其高次模进行估计,具体结构可用计算机进行模拟分析。 2.耦合微带线的特性及其电路分析 在微波集成电路中,耦合微带线除了用它们来构成振荡回路,定向耦合器,阻抗变换器以及平衡不平衡变换器等基本元件外,微带型滤波器更是利用其特性来构成不同结构的各种种类的滤波器。 在耦合微带线的结构形式,两根微带线结构是相同的。这是微带元件常用的结构,但也可以不同,下面主要讨论这种相同的对称结构。 在耦合微带线中传输的波,其主模是准TEM 波,由于耦合微带线的电磁场分别集中在两个中心导带附近,只有部分电磁场使两根导带相耦合,如果耦合微带线的间距大于4倍的耦合线宽度,则两根导带之间的耦合甚弱,就可以看成两根无耦合的微带线。 分析耦合微带线的主模传输特性,常把任意激励的耦合微带线分成两种对称激励方式来计算,一种是用等幅同相电压e V 激励,称为偶模激励;另一种是用等幅反相电压0V 激励,称为奇模激励。图3示出这些激励情况(a )图中用两个等幅同相的电压e V 来激励,图(b )中用两个等幅反相电压0V 来激励,由于偶模和奇模电压是由任意电压1V 和2V 分解而来,故它们之间的关系是: ??=-=+2010V V V V V V e e 或??? ????-=+=2221021V V V V V V e (1)

微带线初学入门

射频/微波传输线 微波传输线是用来传输微波信号和微波能量的传输线。微波传输线种类很多,按其传输电磁波的性质可分为三类:TEM模传输线(包括准TEM模传输线),如图3―1―1(1)所示的平行双线、同轴线、带状线及微带线等双导线传输线;TE模和TM模传输线, 如图3―1―1(2)所示的矩形波导,圆波导、椭圆波导、脊波导等金属波导传输线;表面波传输线,其传输模式一般为混合模,如图3―1―1(3)所示的介质波导,介质镜像线等。

在射频/微波的低频段,可以用平行双线来传输微波能量和信号;而当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大,因此在微波的高频段,平行双线不能用来作为传输线。 为了避免辐射损耗,可以将传输线做成封闭形式,像同轴线那样电磁能量被限制在内外导体之间,从而消除了辐射损耗。因此,同轴线传输线所传输的电磁波频率范围可以提高,是目前常用的微波传输线。但随频率的继续提高,同轴线的横截面尺寸必须相应减小,才能保证它只传输TEM模,这样会导致同轴线的导体损耗增加,尤其内导体引起损耗更大,传输功率容量降低。因此同轴线又不能传输更高频率的电磁波,一般只适用于厘米波段。 一微带传输线结构 微带传输线应用于低电平射频微波技术中。它的优点是制造费用省,尺寸特别小,重量特别轻,工作频带宽,以及具有与固体器件的良好配合性;其主要缺点是损耗较大,不能在高电平的情况下使用。由于微带线结构简单,便于器件的安装和电路调试,产品化程度高,使得微带线已成为射频/微波电路中首选的电路结构。 微带线的结构如图3―3―1所示。它是由介质基片的一边为中心导带,另一边为接地板所构成,其基片厚度为h,

微波射频笔记3.微带线与带状线介绍

微带线 1.随便介绍一下 ①用途:微带功分器、微带耦合器、微带滤波器、PCB板布线、微带天线... ②优点:易于有源、无源电路集成 ③走线原则:①尽量短②尽量平滑③尽量正交 微带布线的弯曲,宽度突变,接头处会引入寄生电抗,影响匹配,可以通过去处一部分导体来实现补偿,可借鉴下图:

2.选用指南 微带板导体一般选用金银铜这三种,最常用的铜箔厚度有35um和18um两种。铜箔越薄,越易获得高的图形精密度,所以高精密度的微波图形应选用不大于18um的铜箔。 目前的铜箔类型有压延铜箔和电解铜箔两类。压延铜箔较电解铜箔更适合于制造高精密图形,所以在材料订货时,可以考虑选择压延铜箔的基材板。 压延法制造的铜箔要求铜纯度高(一般≥99.9%),铜箔弹性好,适用于挠性板、高频信号板等高性能PCB的制造,在产品说明书中用字母“W”表示。电解铜箔则用于普通PCB的制造,铜的纯度稍低于压延法所用的铜纯度(一般未99.8%),并用字母“E”表示 3.高段位玩法 在射频微波电路中,微带线结构可以模拟实现集总参数元件;若传输线长度<λ/8,则给定频率时,L正比于Z0,C反比于Z0,若使Z0很大,则L很大,C 很小以至于可以忽略。故串联电感可用高阻抗微带线代替,同理并联电容可用低阻抗微带线实现。 如上图,一段半波长微带线跨接在主传输线上,两端开路,其中长度<λ/4的相当于电容,而>λ/4的相当于电感。

带状线 1.结构: 一般是微带线上在盖一层相同厚度的基板,上下都接地,也可以看成是同轴线的一种;带状线也支持高阶TM模和TE模,因此需要避免,可采用: 一、短路螺钉将上下两面地短路;二、两平面间距离小于λ/4。 2.用途:常用于耦合器 3.优点: 封闭的电磁场,故损耗比微带线小,相同频率下比微带更小型化; 4.其余各项要求性能与微带线相似。

什么是微带线

微带线 一般的传输线由两个或两个以上的导体组成,用来传输横电磁波(TEM波),常见 的传输线有双线、同轴线、带状线和微带线等。其中,微带线是最普遍使用的平面传输 线之一,微带线可以用光刻工艺制作,并且易于与其他无源和有源器件集成,因此被广 泛应用于印刷电路板中。 在精密电路设计中,人们往往容易忽略印刷电路板本身的电特性设计,而这对整个 电路的功能可能是有害的。如果电特性设计得当,它将具有减少干扰和提高抗干扰性的 优点。在高速电路中,应该把印制迹线作为传输线处理。常用的印制电路板传输线是微 带线和带状线。微带线是一种用电介质将导线与接地面隔开的传输线,印制迹线的厚度、 宽度和迹线与接地面间介质的厚度,以及电介质的介电常数,决定微带线特性阻抗的大小。 微带线的几何形状如图(a)所示,导带的宽度w 是印在薄的、接地的介质基片上, 基片的厚度为d,相对介电常数,电磁场示意图如图(b)所示。 实际上,微带线的准确场是一个混合TE-TM波,需要更加先进的分析技术,但在大 部分的实际应用中,介质基片电气上很薄(d <<),所以场是准TEM波。换句话说, 场本质上与静电场是相同的。因此,通过静态或准静态解,可得到相近的相速、传播速 度和特性阻抗。 1. 微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽 度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。 2. 带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介 质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关 3. PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB走线特性阻抗 的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 4. 当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感 的传输线,而且在高频下会有趋肤效诮和电介质损耗,这些都会影响传输线的特征阻抗。 按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。

微带线设计报告

一、任务及要求:用matlab软件绘制微带线特性阻抗曲线 二、过程: ⒈微带线概念及基本原理 ①基本知识:微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导(信号线).与地平面之间用一种电介质隔离开。。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关微带线。 适合制作微波集成电路的平面结构传输线。与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料。导体应具有导电率高、稳定性好、与基片的粘附性强等特点。 ②作用:在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。 1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。最常使用的微带线结构有4种:表面微带线(surface microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。 ⒉特性阻抗方程: ①带状线: TEM模传输线特性阻抗的计算公式为 式中L1和C1分别为带状线单位长度上的分布电感和分布电容;vp为带状线中TEM模的传播速度。 零厚度中心导带带状线特性阻抗的精确公式:

微带线带通滤波器

引言 滤波器的基础是谐振电路,它是一个二端口网络,对通带内的频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。微波带通滤波器在无线通信系统中起着至关重要的作用,尤其是在接收机前端。滤波器性能的优劣直接影响到整个接收机性能的好坏,它不仅起到频带和信道选择的作用,而且还能滤除谐波,抑制杂散。平行耦合微带线滤波器是一种分布参数滤波器,它是由微带线或耦合微带线组成,其具有重量轻、结构紧凑、价格低、可靠性高、性能稳定等优点,因此在微波集成电路中,它是一种被广为应用的带通滤波器。 在以往设计各种滤波器时,往往需要根据大量复杂的经验公式计算及查表来确定滤波器的各级参数,这样的方法不但复杂繁琐,而且所设计滤波器往往性能指标难以达到要求。本文将先进的微波电路仿真软件ADS2008与传统的设计方法相结合设计一个平行耦合微带线滤波器,并进行建模、仿真、优化设计。 平行耦合微带线带通滤波器 边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成,单个带通滤波器单元如图1(a)所示。根据传输线理论及带通滤波器理论,带通滤波元件是由串臂上的谐振器和并臂上的谐振器来完成,但是在微带上实现相间的串联和并联谐振元件尤为困难,为此可采用倒置转换器将串并联电路转化为谐振元件全部串联或全部并联在线上。因此,单个耦合微带滤波器单元能够等效成如图 1 (b)所示的一个导纳倒置转换器和接在两边传输线段的组合。

这种单独耦合线节单元虽然具有典型的带通滤波器的特性,但是单个带通滤波单元难以具有良好的滤波器响应及陡峭的通带—阻带过度。因此,通常情况下,采取级联多个这些基本耦合单元来构成实用的滤波器。如图2所示为一级联耦合微带线节单元构成的带通滤波器的典型结构,其每一个耦合线节左右对称,长度约为四分之一波长(对中心频率而言)。带通滤波器有N + 1个图1所示的耦合线带通滤波器单元构成,而每一段耦合线又可等效为如图1(b)所示的电路结构,因此导纳倒置转换器之间为特性阻抗为Z0、电角度为2θ的传输线段。Z0o与Z0e分别为耦合线的奇模与偶模特性阻抗,并可由下列公式确定: BW为带通滤波器的相对带宽,g为标准低通滤波器参数,Z0为滤波器输入、输出端口的传输线特性阻抗,下标i,i+1表示如图2所示的耦合段单元。

基于ADS的微带线带通滤波器设计

项目名称:基于ADS优化的微带带通滤波器设计 一、实验目的 (1) 了解低通滤波器、带通滤波器、高通滤波器等滤波器原理 (2) 利用ADS2008软件设计,以切比雪夫滤波器为原型,设计一种微带线带通滤波器。 二、实验设备 (1) PC机一台; (2) ADS2008软件; 三、实验内容和要求 (1) 设计一个微带线带通滤波器,以切比雪夫低通滤波器为原型; (2) 中心频率:2G+学号*50MHz;(2G+10*50MHz=2.5GHz) (3) 相对带宽:8%;(2.5GHz*8%=200MHz) 四、实验原理 1.滤波器原理 滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。典型的频率响应包括低通、高通、带通和带阻特性。镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。Richard变换和Kuroda恒等关系提供了这个手段。 2.微带线 微带线(microstrip1ine)是现在混合微波集成电路和单片微波集成电路使用最频繁的一种平面传输线。它可用光科程序制作,且容易与其他无源微波电路和有源微波器件集成,从而实现微波部件和系统的集成化。微带线是在金属化厚度为h的介质基片的一面制作宽度为W,厚度为t的导体带,另一面作接地金属平板而构成的。 3.耦合微带线 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称为耦合传输线。耦合微带传输线由靠得很近的3个导体构成。这 种结构介质厚度为d,介质相对介电常数为η,,在介质的下面为公共导体 接地板,在介质的上面为2个宽度为W、相距为S的中心导体带。 五、实验步骤与结果 1.设定滤波器指标 中心频率:2.5GHz

实验四微带线带通滤波器设计

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理 滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1、滤波器的介绍 滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带 2、平行耦合微带线滤波器的理论 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 二、耦合微带线滤波器的设计的流程 1、确定滤波器指标 2、计算查表确定滤波器级数N 3、确定标准滤波器参数 4、计算传输线奇偶模特性阻抗 5、计算微带线尺寸 6、仿真 7、优化再仿真得到波形图 设计参数要求: (1)中心频率:2.4GHz; (2)相对带宽:9%;

相关文档
最新文档