几种生物质的TG_DTG分析及其燃烧动力学特性研究_梁爱云

几种生物质的TG_DTG分析及其燃烧动力学特性研究_梁爱云
几种生物质的TG_DTG分析及其燃烧动力学特性研究_梁爱云

生物质燃料的燃烧特性

生物质燃料的燃烧特性 目前,生物质最主要的利用方式就是生物质燃烧。研究生物质燃料的组成成分,了解其燃烧特点,有利于进一步科学、合理地开发利用生物质能。从刘建禹、翟国勋等[20]对生物质燃料特性的研究可以发现,生物质燃料与化石燃料相比存在明显的差异。从化学的角度上看,生物质属于碳氢化合物,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于褐煤中的含碳量。因此,生物质燃料不抗烧,热值较低;若生物质燃料中含氢量变多,挥发分就明显增多。生物质燃料中的碳元素多数和氢元素结合成小分子的碳氢化合物,燃烧需要长时间的干燥,在一定的温度下热分解而析出挥发物。所以,生物质燃料易被引燃,燃烧初期,烟气量较大;生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低,但易于引燃;生物质燃料的密度小于煤炭,其质地较疏松,特别是农作物秸杆和一些粪类,因此生物质燃料易于燃烧和燃尽,但其热值较低,发热量小,灰烬中残留的焦碳量少于燃烧煤炭;生物质燃烧排放烟气中硫氧化物和氮氧化物含量较少,故对环境的污染将小于燃烧煤炭等化石燃料,燃烧时无需设置控制气体污染装置,从而降低了成本,这也是生物质优于化石燃料的一方面[22]。生物质燃料的燃烧过程主要分为挥发份的燃烧和残余焦炭的燃。 本文有宇龙机械整理。 4 烧,其主要燃烧过程的特点是[23]: (1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损失较高; (2)生物质燃料的密度较小,结构比较疏松,燃烧时受风面积大,较易造成悬浮燃烧,容易产生一些黑絮; (3)由于生物质热值低,发热量小,在锅炉内比较难以稳定的燃 烧; (4) 由于生物质挥发份含量高,燃料着火温度较低,一般在250℃ ~350℃温度下挥发份就大量析出并开始剧烈燃烧,此时若空气供应量不足,将会增大燃料的化学不完全燃烧损失; (5)挥发份析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃烧速度缓慢、燃尽困难,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 生物质燃烧利用现状 涂装生物质燃烧机第一品牌-淳元将陆续为你带来行业新资讯。 生物质是全球应用最广泛的可再生能源,自从远古时代人类开始使用这种能源。人们主要是将生物质进行燃烧,其产生的热能可以用于做饭,取暖等日常生活;或者将生物质进行厌氧发酵生产沼气,也可以用来替代生物质能源,尤其是在发展中国家[20]。我国是一个发展中的农业大国 ,生物质资源十分丰富,每年农作物秸秆产量达几亿吨。生物质是唯一可转化成可替代常规液态石油燃料和其他化学品的烧,其主要燃过程的特点是[23]:(1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损

提升系统动力学与运动学.(DOC)

第一节矿井提升运动学 一、提升速度图 竖井提升速度图因提升容器的不同一般可分为箕斗提升速度图(六阶段速度图)和罐笼提升速度图(五阶段速度图)。 图5一l所示为常采用的交流拖动双箕斗提升系统六阶段速度图,因它具有六个阶段而得名。速度图表达了提升容器在一个提升循环内的运动规律,现简述如下: 图5-1 箕斗提升六阶段速度图 (1)初加速度阶段t0 提升循环开始,处于井底装载处的箕斗被提起,而处于井口卸载位置的箕斗则沿卸载曲轨下行。为了减少容器通过卸载曲轨时对井架的冲击,对初加速度a0及容器在卸载曲轨内的运行速度v0 。要加以限制,一般取Vo≤1.5 m/s 。 (2)主加速阶段t1 当箕斗离开曲轨时,则应以较大的加速度a1运行,直至达到最大提升速度vm ,以减少加速阶段的运行时间,提高提升效率。 (3)等速阶段t2箕斗在此阶段以最大提升速度v m运行,直至重箕斗将接近井口开始减速时为止。 (4)减速阶段t3重箕斗将要接近井口时,开始以减速度a3运行,实现减速。 (5)爬行阶段t4重箕斗将要进入卸载曲轨时,为了减轻重箕斗对井架的冲击以及有利于准确停车,重箕斗应以低速v4爬行。一般v4=0.4~0.5m/s,爬行距离v4 =2.5~5m。 (6)停车休止阶段t5当重箕斗运行至终点时,提升机施闸停车。处于井底的箕斗进行装载,处于井口的箕斗卸载。箕斗休止时间可参考表5—1。 图5—2所示为双罐笼提升系统五阶段速度图。因为罐笼提升无卸载曲轨,故其速度图中无t0阶段。为了准确停车,罐笼提升仍需有爬行阶段,故罐笼提升的速度图为五阶段速度图。罐笼进出车休止时间参考相应手册。

二、最大提升速度 由式(1-1)计算的经济速度v j ,并不是提升机的最大提升速度v m ,但值尽可能是接近值。而最大提升速度值应如何确定呢?提升机的卷筒是由电动机经减速器拖动的。提升机卷筒圆周的最大速度与电动机额定转数n e 及减速器传动比i 有关,其关系如下式所示: )/(60s m i Dn v e m π= 5-1) 式中:D 为提升机卷筒直径,m ;i 为减速器传动比, n e 为电动机额定转数,r /min 由式(5—1)计算的最大提升速度v m ,因每台提升机所选配的电动机转数的不同和减速器速比的不同而具有有限的几个数值,这有限的几个数值均称为提升机的标准速度—最大提升速度。应该注意的是,选取v m 时,即选择转速n e 和传动比i 时,应使v m 值接近v j 值。其办法可从下列有关的表中查找(各表(见课本)的值是据式(5—1)计算得出的)。 在表中找出与v j 值最接近的v m 值,该值即为确定的提升最大速度——标准速度,这样,即可定出与确定的v m 值相对应的电动机转速和减速器的传动比。 根据式(8—1)得到的标准速度值必须符合《煤矿安全规程》对提升最大速度的有关规定: (1) 竖井中升降物料时,提升容器最大速度不得超过下式算出的数 )/(6.0s m H v m ≤ (5-2) (2)竖井中用罐笼升降人员的最大速度不得超过下式算出的数值,且最大不得超过16m /s 。)/(5.0s m H v m ≤ (5-3)三、提升加速度和减速度的确定

生物质燃料特性指标

1、生物质成型燃料 木质颗粒燃料 以农林剩余物(锯末、林木剪枝等)为原料,经(粉碎)、干燥、压缩成型、冷却、包装等工艺过程生产出不同规格的颗粒状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖等领域。 秸秆颗粒燃料 以农林剩余物(玉米秸秆、豆秸、棉秸、花生壳等)为原料,经粉碎、(干燥)、压缩成型、冷却、包装等工艺过程生产出不同规格的颗粒状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖、农村炊事采暖、生物质发电等领域。

秸秆块状燃料 以农林剩余物(玉米秸秆、豆秸、棉秸、花生壳等)为原料,经粉碎、(干燥)、压缩成型、冷却、包装等工艺过程生产出的块状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖、农村炊事采暖、生物质发电等领域。 木片燃料 以林业剩余物(林木修枝、林业加工剩余物等)为原料,通过专业设备加工成一定形状和尺寸的燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、农村炊事采暖、生物质发电等领域。 生物质型煤 生物质型煤是指煤中按一定比例加入可燃生物质( 如秸秆)和添加剂后压制成型的产 品。生物质型煤层状燃烧可以有效提高热效率、减少污染物排放,是一种清洁能源。生物质型煤清洁燃烧机理:一是起火温度低、燃烧快,减少了高温燃烧产生的氮氧化物; 二是由于

生物质直接燃烧技术

生物质直接燃烧技术 、引言 目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。 、生物质燃烧的特性 了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。 由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低; 3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小, 尤其是农作物秸秆。因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。 三、生物质燃料直接燃烧技术 直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。 目前,生物质直接燃烧技术主要有以下几种: 3.1 生物质直接燃烧流化床技术 采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。 生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可

弹性联轴器运动与动力特性

弹性联轴器运动与动力特性 1.1 弹性联轴器的刚度和阻尼 弹性联轴器由于具有能产生较大弹性变形和阻尼作用的弹性元件,因此除能补偿两轴相对位移外,还能起缓冲和吸振的作用。弹性联轴器能适应载荷的波动,所以其应用较广,类型也较多。这种联轴器的缓冲和吸振性能主要与其刚度和阻尼有关。 联轴器的刚度可分为径向刚度、周向刚度和扭转刚度。由于载荷变化多数以扭矩波动形式出现,由此引起的振动也是以扭转振动为主,所以联轴器最主要的刚度是扭转刚度。扭转刚度易产生单位扭转变形所需的扭矩表示。通常,由于传动轴系中其它零件的刚度都比弹性联轴器的刚度大得多。所以为了简化起见,其它零件的弹性可以略去不计。仅考虑联轴器弹性,并根据这一情况以联轴器的刚度作为传动轴系的刚度。 刚度可用下式表示: C=T/(3-1) 式中 T——联轴器传递的扭矩; ——在扭矩作用下两半联轴器的相对扭转角。 当轴系接近发生共振时,刚度随扭矩增大而增大,改变传动轴系的固有频率与振动频率之间的关系,就能避开共振。 弹性联轴器在传递不稳定扭矩的过程中,弹性元件的弹性变形随扭矩的改变而增减。由于变形的不稳定,在弹性元件相对运动的接触表面上产生外摩擦,同时在弹性元件内部还存在内摩擦。这些摩擦将吸收一部分动能转化为热能,使温度升高。这就是联轴器的阻尼作用。阻尼作用能实现缓冲和衰减振动。联轴器的阻尼性能可以用阻尼系数表示。它是每一次载荷循环中产生的阻尼能和储存在扭转弹性元件中的变形能之比,即ф=W d/W e。在振动运动微分方程中,粘滞阻力系数用γ来表示,它与阻尼系 数之间的关系为γ=,ω为振动频率或绕动力矩变化频率。阻尼系数大,由于摩擦而消耗的能量就多,反之,阻尼系数小,由于摩擦而消耗的能量就少。 弹性联轴器一般都有缓冲和吸振功能,但是具有某一定值弹性的联轴器,并不是在任意的变扭矩作用下都能产生减振的效果,有时反而会引起更强烈的振动。其原因不在于此联轴器的刚度大小。可见,只有刚度和整个传动轴系的其他参数和载荷协调时,才能产生减振效果。因此,必须根据课题条件,通过计算来定出联轴器的刚度。 1.2 周期性载荷作用下的动力特性计算 对于某一已定的传动轴系,转动惯量和固有频率可由计算求得,如果已知所传扭矩的变化规律,如振幅和频率等,就能建立起轴系在扭转振动式的运动微分方程,对该方程求解,即可得到所需的联轴器的刚度。 为了便于求解运动微分方程,需要对传动轴系中联轴器的主动和从动两侧的转动惯量和刚度作力学模型的简化。根据具体结构情况,可以将轴系简化为若干个等效转动惯量圆盘,以具有某一刚度的周联系起来。通常比较典型的是简化为两个等效的圆

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。 伽利略发现了等加速直线运动中,距离与时间二次方成正比的规律,建立了加速度的概念。在对弹射体运动的研究中,他得出抛物线轨迹,并建立了运动(或速度)合成的平行四边形法则,伽利略为点的运动学奠定了基础。在此基础上,惠更斯在对摆的运动和牛顿在对天体运动的研究中,各自独立地提出了离心力的概念,从而发现了向心加速度与速度的二次方成正比、同半径成反比的规律。

生物质燃料燃烧特性

生物质燃料燃烧特性 Prepared on 22 November 2020

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

生物质燃料燃烧特性

生物质燃料燃烧特性 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

生物质直接燃烧技术

生物质直接燃烧技术 一、引言 目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。 二、生物质燃烧的特性 了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。 由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低;(3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小,尤其是农作物秸秆。因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。 三、生物质燃料直接燃烧技术 直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。 目前,生物质直接燃烧技术主要有以下几种:

3.1生物质直接燃烧流化床技术 采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。 生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可燃气体和固体颗粒进一步燃尽,同时可以将烟气中所携带的飞灰、床料分离下来,减轻尾部受热面和除尘设备的磨损。现在我国部分锅炉厂家与高等院校合作,已开发出甘蔗渣、稻壳、果穗、木屑等生物废料的流化床锅炉,并取得成功运行。 3.2生物质直接燃烧层燃技术 生物质直接燃烧层燃技术使用的燃料主要可分为农林业废弃物及城市生活垃圾,由于这两种生物质燃料的燃烧特点不同,因此,所设计的层燃锅炉结构也有所不同。 3.2.1农林业废弃物焚烧技术 一般农林业废弃物的挥发物含量高,析出速度快,着火迅速,而固定碳的燃烧则比较慢,因此对于此类锅炉的设计主要采用采用风力吹送的炉内悬浮燃烧加层燃的燃烧方式。农林业废弃物进入喷料装置,依靠高速喷料风喷射到炉膛内,调节喷料风量的大小和导向板的角度以改变草渣落入

常见生物质颗粒燃料的规格参数及性能指标

生物质颗粒燃料的规格参数及性能指标

根据外形尺寸,致密生物质颗粒可分成颗粒与压块两类。颗粒是指压缩而成的圆柱状生物质小段,其最大直径一般是25mm。压块可以是圆柱形的,也可以是方形的或者其他形状的,其直径应大于25mm,长度不能超过直径的5倍。 根据瑞典的标准,生物质颗粒被分成3级,其中第1级最好。

生物质颗粒燃料的介绍 生物质能源指由植物的光合作用固定于地球上的太阳能,通过生物链转化为地球生物物质形态,经过加工为社会生活提供原料的能源。 生物质颗粒燃料是以木屑、竹屑、树枝等为原料,经过专业机械、特殊工艺,无任何化学添加剂,高压低温压缩成型的颗粒状燃料。生物质颗粒燃料发热量高,清洁无污染,是替代化石能源的高科技环保产品。 生物质颗粒燃料在燃烧时所释放出的CO2大体上相当于其生长时通过光合作用所吸收的CO2,所以生物质颗粒的温室气体CO2为零排放。 生物质燃料属于可再生能源。只要有阳光存在,绿色植物的光合作用就不会停止,生物质能源就不会枯竭,温室气体保持动态平衡。没有任何的环境污染问题。 生物质颗粒燃料的加工程序如下:原料粉碎–原料筛选–烘干–高温压制成型–冷却–包装。 生物质颗粒燃料结合我公司研发的生物锅炉或燃烧器可替代现有煤、油、气、电等化石能源和二次能源,为工业蒸汽锅炉、热水锅炉、室内取暖壁炉等提供系统改造工程。在现有最节能的前提下,为使用单位节约能源消耗成本30%以上。 服务对象有:有供热需求的工厂企业(电镀、五金、喷涂、陶瓷、制衣印染、铝型材加工、制鞋底厂等)、星级酒店宾馆、大型综合性医院、高档写字楼、大学等的锅炉改造。 根据原材料不同,目前颗粒产品分为:杉木颗粒、松颗粒和秸杆颗粒。经过国际权威检测机构SGS公司专业检测,木质颗粒燃料全部产品所 1:

生物质能直接燃烧技术

生物质直接燃烧技术的发展研究 摘要:随着能源危机和环境问题的日益严重,人们不断致力于开发研究低污染、可再生的新能源。在众多的可再生能源中,生物质能是一种储量丰富、清洁方便的绿色可再生能源,具有极大的开发潜力。为了大力开发利用生物质资源,分析比较了国内外生物质直接燃烧技术发展现状,提出应根据生物质燃料的燃烧特性,开发相应的燃烧技术和燃烧设备,以实现生物质资源的大规模集中高效利用。关键词:生物质;燃烧;锅炉 众所周知,人类的生存和发展离不开能源。随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。 生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,其主要来源是:农林废弃物、工业废水和废渣、城市生活垃圾以及人畜粪便等。目前,生物质的开发利用技术主要包括生物质的固化、气化、液化,以及生物质直接燃烧。国外许多国家都相继制定了各自的生物质能源研究开发计划,如美国的能源农场、日本的阳光计划、巴西的酒精能源计划以及印度的绿色能源工程等。就我国的基本国情和生物质利用开发水平而言,生物质直接燃烧技术无疑是最简便可行的高效利用生物质资源的方式之一。 1生物质燃料的燃烧特性 研究生物质燃料的组成成分,掌握其燃烧特性,有利于进一步科学、合理地开发利用生物质能。从对生物质燃料特性的研究中可以发现,生物质燃料与化石燃料相比存在明显的差异,如表1所示。由于生物质燃料特性与化石燃料不同,从而导致了生物质燃料在燃烧过程中的燃烧机理、反应速度以及燃烧产物的成分与化石燃料相比也都存在较大差别,表现出不同于化石燃料的燃烧特性。生物质

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

生物质燃料和固体矿物质燃料(煤)的主要差别

生物质燃料直接燃烧过程特性的分析 1 生物质燃料和固体矿物质燃料(煤)的主要差别 生物质燃料和煤碳相比有以下一些主要差别 1)含碳量较少,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于生成年代较少的褐煤的含碳量。特别是固定碳的含量明显地比煤炭少。因此, 生物质燃料不抗烧,热值较低。 2)含氢量稍多,挥发分明显较多。生物质燃料中的碳多数和氢结合成低分子的碳氢化合物,遇一定的温度后热分解而折出挥发物。所以,生物质燃料易被引燃燃烧初期,析出量较大,在空气和温度不足的情况下易产生镶黑边的火焰。在使用生物质为燃料的设备设计中必须注意到这一点。 3)含氧量多。生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低, 但易于引燃。在燃烧时可相对地减少供给空气量。 4)密度小。生物质燃料的密度明显地较煤炭低,质地比较疏松,特别是农作物秸杆和粪类。这样使得这类燃料易于燃烧和燃尽,灰烬中残留的碳量较燃用煤炭 者少。 5)含硫量低。生物质燃料含硫量大多少于 0."20%,燃烧时不必设置气体脱硫装置降低了成本,又有利于环境的保护。 2 生物质燃料的燃烧过程 生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质过程。燃烧除去燃料存在外,必须有足够温度的热量供给和适当的空气供应。它可分作: 预热、干燥(水分蒸发)、挥发分析出和焦碳(固定碳)燃烧等过程。燃料送入燃烧室后,在高温热量(由前期燃烧形成)作用下,燃料被加热和析出水分。随后,然料由于温度的继续增高,约250C左右,热分解开始,析出挥发分,并形成焦碳。气态的挥发分和周围高温空气掺混首先被引燃而燃烧。一般情况下,焦碳被挥发分包 围着,燃烧室中氧气不易渗透到焦碳表面,只有当挥发分的燃烧快要终了时,焦碳及

生物质燃烧技术的研究进展

生物质燃烧技术的研究进展 摘要:生物质燃烧技术是生物质能转化利用途径研究较成熟的一种主要方式。从影响生物质燃烧特性的因素出发,综述了生物质燃料组分、理化特性和运行条件在生物质燃烧技术中的作用,介绍了生物质燃烧过程的动力学模拟研究现状,对生物质燃烧过程中存在的问题进行了总结和探讨,并对今后生物质燃烧技术的发展进行了展望。 生物质是指来源于生物有机体的材料,尤其是基于植物体的材料,包括大量的草本植物、淀粉、纤维素、木质素等。但目前生物质原料不仅仅局限于植物类的废弃物,还包括农林畜产品废弃物、食品加工产业废弃物、餐饮废弃物和城市有机生活垃圾等。生物质能是绿色植物通过光合作用将光能储存为生物有机体内的化学能,与煤相比,生物质能作为新兴能源,受到全世界越来越多的关注,主要因其具有如下特点:①生物质能是一种绿色能源,符合可再生、可持续利用能源的目标,成为当前最洁净的能源之一,对环境污染小,可以降低对传统化石能源的依赖性;②生物质能在成长过程中吸收环境中的CO2,在生命周期内可以实现CO2的零排放或零增长,降低使用化石燃料造成的温室气体排放量;③生物质中灰分比重低、含硫量少和挥发分含量高;④生物质种类繁多、来源广泛、总量丰富,且具有本土特性。 生物质能由于其在社会效益、环境效益和经济效益中的可持续发展而备受世界各方重视并得以大力推广。目前生物质能提供全球总量10%~15%的能源供应,是世界上排名第四的能源。在工业发达国家中,生物质能占到能源总量的9%~14%,而在发展中国家则更高,占到25%~30%,部分地区甚至高达50%~90%。但在这些国家中,大部分生物质能被当地低收入者用于炊事和供暖用能,商业化程度并不高,且热利用效率极低。 随着科技的进步,生物质能的转化利用形式也多种多样,改变了简单的直燃模式下利用效率低的缺点。当前生物质能转化的方式主要可以归结为:热裂解、气化、液化、超临界流体提取、厌氧消化、厌氧发酵、酸解、酶解和酯化降解等,但这些生物质转换技术由于成本、技术的成熟度和使用效率等方面的原因,难以大面积推广,生物质能的应用仍以直接燃烧为主。到目前为止,生物质燃烧所利用的能源约占全球生物质能利用的95%。为了提高热利用效率,如何对其燃烧利用技术进行深入地研究,已成为国内外各方相关人员普遍关注的问题。 1生物质燃烧特性的影响因素

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

ADAMS软件在汽车前悬架-转向系统运动学及动力学分析中的应用上课讲义

ADAMS软件在汽车前悬架-转向系统 运动学及动力学分析中的应用 尤瑞金 北京吉普汽车有限公司 摘要:本文介绍利用国际上著名的ADAMS软件对工程上多刚体系统进行运动学和动力学分析的 方法,并用这一方法模拟了某货车悬架-转向系统的运动学及动力学特性,研究开发了前、后处理专 用程序,使该软件适用于车辆系 统,并得出了许多具有工程意义的结果。 主题词:汽车总布置-计算机辅助设计县架转向系 一、前言 汽车悬架和转向的动学及动力学分析是汽车总布置设计、运动校核的重要内容之一, 也是研究平顺性、操纵稳定性等汽车性能的基础。由于汽车前悬架一转向系统是比较复杂的空间机构,特别是前独立悬架,一般多设计成主销内倾和后倾,并且控制臂轴也大多倾斜布置。这些就给运动学、动力学分析带来较大困难。过去多用简化条件下的图解法一般的分析计算法进行分析计算。所得的结果误差较大,并且费时费力。近年来,随着计算机技术和计算方法的不断提高,国外研制了IMP、ADAMS及DAMN等很多专用程序,用于车辆运动学及 动力学分析。 本文是在消化吸收引进的ADAMS软件过程中,结合汽车设计,解决运动学及动力学问题,从而提高设计质量。 二、ADAMS软件概述 ADAMS(Automatic Dynamic Analysis of Mechanical Systems,即机械系统动力学自动化分析软件包)是由美国机械动力公司开发的。由于该软件采用的比较先进的计算方法,大大地缩短了计算时间,其精确度也相当高,因上,被广泛应用于机械设计的各个领域。 1.ADAMS软件功能如下: 一般ADAMS分析功能如下: (1)可有效地分析三维机构的运动与力。例如可以利用ADAMS来模拟作用在轮胎上的垂直、转向、陀螺效应、牵引与制动、力与力矩;还可应用ADAMS进行整个车辆或悬架系统道路操纵性的研究。 (2)利用ADAMS可模拟大位移的系统。ADAMS很容易处理这种模型的非线性方程, 而且可进行线性近似。 (3)可分析运动学静定(对于非完整的束或速度约束一般情况的零自由度)系统。 (4)对于一个或多外自由度机构,ADAMS可完成某一时间上的静力学分析或某一时 间间隔内的静力学分析。

流体力学第三章流体运动学与动力学基础

第三章流体运动学与动力学基础 主要内容 ●基本概念 ●欧拉运动微分方程 ●连续性方程——质量守恒* ●伯努利方程——能量守恒** 重点 ●动量方程——动量守恒** 难点 ●方程的应用 第一节研究流体运动的两种方法 ●流体质点:物理点。是构成连续介质的流体的基本单位,宏观上无穷小(体积非常 微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许 多流体分子的统计学特性)。 ●空间点:几何点,表示空间位置。 流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。 一、拉格朗日法(跟踪法、质点法)Lagrangian method 1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。 2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。 3、方程:设任意时刻t,质点坐标为(x,y,z) ,则: x = x(a,b,c,t) y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。 5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。 缺点:不便于研究整个流场的特性。 二、欧拉法(站岗法、流场法)Eulerian method

1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。 2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。 3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。 位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t ) 同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。 加速度: z u u y u u x u u t u a x z x y x x x x ??+??+??+??= z u u y u u x u u t u a y z y y y x y y ??+??+??+??= z u u y u u x u u t u a z z z y z x z z ??+??+??+??= 全加速度=当地加速度+迁移加速度 当地加速度:在一定位置上,流体质点速度随时间的变化率。 迁移加速度:流体质点所在的空间位置的变化而引起的速度变化率。 说明:两种方法具有互换性。但由于欧拉法较简单,且本书着重讨论流场的整体运动特性。所以,采用欧拉法研究问题。 四、流场分类 1、 三元流场:凡具有三个坐标自变量的流场称为三元流场(或三维流场)。 一般来说,速度是三个坐标自变量的函数:V =V (x,y,z,t) 2、二元流场:凡具有两个坐标自变量的流场。 3、一元流场:具有一个坐标自变量的流场。 管截面A=A(l ),若人们研究的是各截面上流动的平均物理参数,则它可以简化为一元流场B=B(l , t)。 k y x j xy i xy u 542 1221+-=——二维流场

生物质燃烧技术的研究进展

生物质燃烧技术的研究进展 摘要:生物质燃烧技术是生物质能转化利用途径研究较成熟的一种主要方式?从影响生物质燃烧特性的因素出发,综述了生物质燃料组分?理化特性和运行条件在生物质燃烧技术中的作用,介绍了生物质燃烧过程的动力学模拟研究现状,对生物质燃烧过程中存在的问题进行了总结和探讨,并对今后生物质燃烧技术的发展进行了展望? 关键词:生物质燃烧;转化利用途径;动力学模拟 Progress of Biomass Combustion Technology Abstract: Biomass combustion is a mature and major way of biomass utilization. Based on the characteristics of biomass combustion, the effects of biomass fuel constitutes, physicochemical properties and operation conditions on biomass combustion technology were reviewed. The research status of kinetics numerical simulation on biomass combustion was introduced. The problems in biomass combustion were summarized and discussed. The development prospects of biomass combustion technology were also put forward. Key words: biomass combustion; way of utilization; kinetics simulation 生物质是指来源于生物有机体的材料[1],尤其是基于植物体的材料,包括大量的草本植物?淀粉?纤维素?木质素等?但目前生物质原料不仅仅局限于植物类的废弃物,还包括农林畜产品废弃物?食品加工产业废弃物?餐饮废弃物和城市有机生活垃圾等?生物质能是绿色植物通过光合作用将光能储存为生物有机体内的化学能,与煤相比,生物质能作为新兴能源,受到全世界越来越多的关注,主要因其具有如下特点[1-4]:①生物质能是一种绿色能源,符合可再生?可持续利用能源的目标,成为当前最洁净的能源之一,对环境污染小,可以降低对传统化石能源的依赖性;②生物质能在成长过程中吸收环境中的CO2,在生命周期内可以实现CO2的零排放或零增长,降低使用化石燃料造成的温室气体排放量;③生物质中灰分比重低?含硫量少和挥发分含量高;④生物质种类繁多?来源广泛?总量丰富,且具有本土特性? 生物质能由于其在社会效益?环境效益和经济效益中的可持续发展而备受世界各方重视并得以大力推广?目前生物质能提供全球总量10%~15%的能源供应[1],是世界上排名第四的能源[5]?在工业发达国家中,生物质能占到能源总量的9%~14%,而在发展中国家则更高,占到25%~30%,部分地区甚至高达50%~90%[1]?但在这些国家中,大部分生物质能被当地低收入者用于炊事和供暖用能,商业化程度并不高,且热利用效率极低[1,6]?

相关文档
最新文档