难点05 求解函数解析式

难点05  求解函数解析式
难点05  求解函数解析式

难点5 求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.

●难点磁场

(★★★★)已知f (2-cos x )=cos2x +cos x ,求f (x -1).

●案例探究

[例1](1)已知函数f (x )满足f (log a x )=)1(1

2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式.

(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式.

命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.

知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.

技巧与方法:(1)用换元法;(2)用待定系数法.

解:(1)令t=log a x (a >1,t >0;0

因此f (t )=1

2-a a (a t -a -t ) ∴f (x )=1

2-a a (a x -a -x )(a >1,x >0;0

?????=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且f (1)、f (-1)、f (0)不能同时等于1或-1,所以所求函数为:f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.

[例2]设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.

命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.

错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.

技巧与方法:合理进行分类,并运用待定系数法求函数表达式.

解:(1)当x ≤-1时,设f (x )=x +b

∵射线过点(-2,0).∴0=-2+b 即b =2,∴f (x )=x +2.

(2)当-1

∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1

∴f (x )=-x 2+2.

(3)当x ≥1时,f (x )=-x +2

综上可知:f (x )=??

???≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成.

●锦囊妙计

本难点所涉及的问题及解决方法主要有:

1.待定系数法,如果已知函数解析式的构造时,用待定系数法;

2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;

3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );

另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.

●歼灭难点训练

一、选择题

1.(★★★★)若函数f (x )=

34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A.3 B.23 C.-2

3 D.-3 2.(★★★★★)设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )

A.f (x )=(x +3)2-1

B.f (x )=(x -3)2-1

C.f (x )=(x -3)2+1

D.f (x )=(x -1)2-1

二、填空题

3.(★★★★★)已知f (x )+2f (x

1)=3x ,求f (x )的解析式为_________. 4.(★★★★★)已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________.

三、解答题

5.(★★★★)设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式.

6.(★★★★)设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值.

7.(★★★★★)动点P 从边长为1的正方形ABCD 的顶点A

出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表

示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的

简图.

8.(★★★★★)已知函数y =f (x )是定义在R 上的周期函数,周

期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]

上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取

得最小值,最小值为-5.

(1)证明:f (1)+f (4)=0;

(2)试求y =f (x ),x ∈[1,4]的解析式;

(3)试求y =f (x )在[4,9]上的解析式.

参考答案

难点磁场

解法一:(换元法)

∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1

令u =2-cos x (1≤u ≤3),则cos x =2-u

∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)

∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4)

解法二:(配凑法)

f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5

∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4). 歼灭难点训练

一、1.解析:∵f (x )=3

4-x mx . ∴f [f (x )]=334434--?-?

x mx x mx

m =x ,整理比较系数得m =3. 答案:A

2.解析:利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1.

答案:B

二、3.解析:由f (x )+2f (

x 1)=3x 知f (x 1)+2f (x )=3x 1.由上面两式联立消去f (x 1)可得f (x )=x 2-x .

答案:f (x )= x

2-x 4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1,

∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1.

故2a +b =b +1且a +b =1,解得a =

21,b =21,∴f (x )=21x 2+21x . 答案:21x 2+2

1x 三、5.解:利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=17

8722++x x . 6.解:(1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4.

(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩

形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=27

64,当且仅当2t 2=2-t 2,即t =36时取等号.∴S 2≤27

864?即S ≤9616,∴S max =9616. 7.解:(1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为:

f (x )=???????≤<-≤<+-≤<+-≤≤)43(

4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解

.

如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2

时,S △ABP =

21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=2

1;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x ).

故g (x )=???????????≤<-≤<≤<-≤≤)43( )4(2

1)32(

21)21( )1(21)10( 0x x x x x x 8.(1)证明:∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.

(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-

2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).

(3)解:∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,又f (1)=k ·1=k ,∴k =-3.∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -

5)=

-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2

-5.∴f (x )=???≤<--≤≤+-)96(

5)7(2)64( 1532x x x x .

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

函数图象重难点分析

函数图象重难点分析 本资料为woRD文档,请点击下载地址下载全文下载地址www.5y kj.co m 用“五点法”画函数的简图,及函数,,的图像与正弦曲线的联系,参变数A,对图像的影响是本课的重点.弄清函数与图像的关系,特别是和对图形的影响是本课学生的一个难点. 克服难点的办法,是要让学生弄清: (1)在函数中,对函数性质所起的作用; (2)函数的图像是通过怎样的方法由正弦曲线变化而得到,三个参数在图像变换中起什么作用. 本节运用了对图像的三种变换: 振幅变换,是由A的变化引起的; 周期变换,是由的变化引起的; 相位变换(也叫沿x轴方向的平移变换):是由的变化引起的. 将函数图像与各点的横坐标不变,纵坐扩大到原来的2倍,得到的图像,将图像上各点的纵标不变,横坐标扩大到原来的2倍,得到的图像.在这里,学生往往弄不明白为什么沿y轴“扩大到2倍”是乘以2,沿x轴“扩大到2倍”

却是除以2?函数图像在横纵两个坐标轴上的拉伸为什么不一致.也弄不明白在横纵两轴的平移究竟是什么样子.其实这些问题在学生们学习了坐标轴的变换及曲线与方程的关系后很容易理解.我们可以通过“点变换”去认识“线变换”. (1)的图像与的图像上横坐标相同的相应两点与之间的关系要满足,可见,将图像点横坐标不变,纵坐标伸长(A>1)或压缩(A<1)到原来的A倍,变成了的图像.(2)的图像与的图像纵坐标相同的相应两点和,之间的关系要满足,即 ,因此,将图像上各点的纵坐标不变,横坐标压缩或伸长到原来的倍,就变成了的图像. 可以用类似的方法解释为什么时,把的图像向左平移个单位得到的图像,而时,要把的图像向右平移个单位得到的图像. 在图像变换的教学中,要教给学生利用观察、对比、分析找出变换的规律,弄清变换的原因,理解变换的过程,而不能死记变换的结论.特别要掌握“变换”中的辩证观点:由点变换认识线变换. “五点法”作图,是作函数的静态图,在学习初期对了解函数图像的形状有益,继续学习时,必须从国家的变换角度研究图像间的关系,也就是要教给学生在运动变化中,寻

函数解析式的求解方法例题

函数解析式的求解方法 1.配凑法 例1.已知f (x + x 1)=2x +21x ,求()f x 的解析式 例2.已知3311()f x x x x +=+ ,求()f x 例3.已知f(x+1)=x-3, 求()f x 2.换元法(整体思想) 已知形如[()]y f x ?=的函数求解()f x 的解析式:令()x t ?=,反解()x t φ=,代入[()]y f x ?=,即可求解出。 例4.已知x x x f 2)1(+=+,求)1(+x f 例5.22)1(2++=+x x x f 求)3()(),3(+x f x f f 及 3.构造方程组法 若式子中,同时含有()f x 与()f x -,或者同时含有()f x 与1()f x ,那么将式子中的x 用x -替换,或是x 用1x 替换,得到另一个方程,通过求解方程组求解()f x

例6.设,)1(2)()(x x f x f x f =-满足求)(x f 例7.设)(x f 满足关系式x x f x f 3)1(2)(=+求函数的解析式 4.特殊值法 当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例8.已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f 例9.已知函数)(x f 对于一切实数 x,y 都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 1.求)0(f 的值 2.求)(x f 的解析式 5.待定系数法(知道函数类型) 例10已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。 例11 已知f(x)是二次函数,且442)1()1(2 +-=-++x x x f x f ,求)(x f

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

解析函数

第2章 解析函数 2.1 解析函数的概念及C-R 条件 复数作为复数域的向量,是一维向量,或复数是复数域上的一维线性空间. 2-1 ()f z 在000i z x y =+点可导的充分必要条件是( ). (A )在00(,)x y 点,u v 可导,且满足C-R 条件,即,u v u v x y y x ????==-????在00(,)x y 成立 (B )()f z 在00(,)x y 点的一个邻域内可导 (C )在00(,)x y 点,u v 可微,且满足C-R 条件 (D )在00(,)x y 点,u v 具有连续的偏导数,且满足C-R 条件 解 由上题的推导过程知,若()f z 在0z 点可导,则,u v 在00(,)x y 可微,且 ,.u v u v a b x y y x ????==- ==???? 在00(,)x y 点成立. 反之,若,u v 在00(,)x y 可微,且满足C-R 条件,则 ()i f z u v z z ??+?=?? i()(||)(i )i(i )(||) (i )(||)x y x y x x x x x u x u y v x v y o z z z u x y v x v y o z z z u v z o z z z ?+?+?+??=+ ???+?+?+??=+ ??+??=+ ?? 故 0() lim x x z f z u iv z ?→?=+? 选(C ). 2-2 若22 2 22,0(,),(,),()i 0,0xy x y x y u x y v x y xy f z u v x y 2?+≠?+===+??+=? ,则函数() f z ( ). (A )仅在原点可导 (B )处处不可导 (C )除原点外处处可导 (D )处处可微 解 (,)u x y 在原点虽有 0y v x y ??==??但不可微;而除原点外,u v 可微但不满足C-R 条件,因此,()f z 处处不可导. 选(B ). ()f z z =如此简单一个函数却处处连续但不可导! 2-3 若2 2 ()()i(32)f z x y ax by cxy x y =-+++++处处解析,则(,,)a b c =( ). (A )(3,2,2) (B )(2,3,2)-- (C )((2 ,3,2)- (D )(2,3,2)- 解 由C-R 条件及 2,2,3, 2.u u v v x a y b cy cx x y x y ????=+=-+=+=+????故2,2, 3.c a b ===- 2-3 若22 ()i f z xy x y =+则()f z ( ). (A )令在直线y x =上可导 (B )仅在直线y x =-上可导 (C )仅在(0,0)点解析 (D )仅在(0,0)点可导

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

函数概念及解析式

函数的概念及解析式 【复习目标】 1. 理解函数的概念; 2. 掌握函数的表示方法; 【知识梳理】 1. 设A 、B 是____的数集,如果按某种对应关系f ,__________________________________________.,那么这样的对应叫做从A 到B 的一个函数。 2. 函数的三要素:____________、________________、________________________; 3. 常用函数的表示方法:_____________________、______________、_____________; 4. 分段函数是指____________________________________________________________________; 【基础达标】 1. f(1-x)=x 2,则f(x)=____________, 2. 若f(x -221)1x x x +=, 则f(x)=__________. 3. 已知f(x)=11+-x x ,则f(x)+f()1x =_____________. 4. 若f(x)=x 2-mx+n,f(n)=m,f(1)=-1,则f(-5)=____________. 5. 已知)3(4 1)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________. 6.已知f(1-cosx)=sin 2x ,则f(x)=________________. 【典型例题】 例1.求函数解析式 ⑴.求一次函数f(x),使f[f(x)]=9x+1; ⑵.设二次函数()y =f x 的最大值为13,且3(1)5f f ( )=-=,求()f x 的解析式. ⑶.已知2(31)23f x x x +=-+,求(1)f x -=. ⑷.已知2 21)1(x x x x x f ++=+,求f(x);

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

1 / 4 张喜林制 [选取日期] 高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法; 2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解 例1 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x ) 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;01,x >0;0

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

高一函数重难点突破

高一函数重难点突破 一、 求复合函数的定义域的四种题型 1. 已知f[x]的定义域,求f(g(x))的定义域 例1设函数f(x)的定义域为(0,1),求函数f(lnx)的定义域 2. 已知f[g(x)]的定义域,求f(x)的定义域 例2已知f(3-2x)的定义域为x € [-1,2], 求函数f(x)的定义域 3. 已知f[g(x)]的定义域,求f(h(x))的定义域 例3若函数f(2 x )的定义城为[-1,1], 求f(log 2X )的定义域 4. 已知f x 的定义域,求四则运算型函数的定义域 例4已知函数f x 定义域为是[a,b],且a b 0 求函数h x = fx ,m 「fx -m ]〔m - 0的定义域 b - m : b m ,又 a - m : b m 要使函数h x 的定义域为非空集合,必须且只需 a ? m 空b - m ,即0 ::: m 乞b 「a 2 此时函数h x 的定义域为{x|a+m]l :二:…iT (} 求函数解析式的六种题型 1?待定系数法:在已知函数解析式的构造时,可用待定系数法 例1设f(x)是一次函数,且f[f (x)] =4x ?3,求f(x) a —m^x^ b —m .a+m^x^b+m m 0, a - m :: a m

2. 配凑法或换元法:已知复合函数f[g(x)]的表达式,求f (x)的解析式。 f[g(x)]的表达式容易配成g(x)的运算形式时,常用配凑法。但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。 1 1 例 2 ( 1)已知f(x + _)=x2+p (x>0),求f (x)的解析式 x x (2)已知f(x 1) =x 2 x,求 f (x 1) 3?构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组, 通过解方程组求得函数解析式。 例3 设 f (x)满足 f (x) -2f (1Hx,求f(x) x

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

函数的单调性重难点分析

《函数的单调性》内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学. 这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系. 重点:理解函数单调性的概念明确概念的内涵,用定义证明函数的单调性。 难点:求函数的单调区间,及其证明过程. 这一节课是概念课,重点在于理解函数单调性的概念并用概念解决问题。因而对于概念的深度剖析就非常重要,概念的本质属性以及引入这一概念的作用都将帮助学生理解概念。因而再给出概念前要做好铺垫工作,即根据函数图象观察走势再进行数学的严格刻画。由于该概念是根据函数图象性质而来,因此数形结合的思想方法就显得格外重要。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。学生在学习过程中应动手操作,积极参与到教学活动中,注意概念的本质属性理解概念的内涵,积极思考善于观察。

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

专题:一次函数重难点题型专题讲练

专题:一次函数重难点题型专题讲练 ※题型讲练 【例1】已知一次函数y=(2m+1)x+m–3,分别解答下列各题: (1)求m的取值范围; (2)若该函数是正比例函数,求m的值; (3)若该函数图象在y轴的截距为-2,求m的值; (4)若该函数图象平行直线y=3x–3,求m的值; (5)若该函数图像y随着x的增大而减小,求m的取值范围; (6)若该函数图像经过一、二、三象限,求m的范围; (7)若该函数图像不过第二象象限,求m的范围; (8)若该函数图像必过二、四象限,求m的范围; (9)若函数图像必过三、四象限,求m的范围; (10)若该函数图像过点(–1,–2),求函数解析式; (11)若该函数图像是由函数y=–5x+n–3的图像延y轴向上平移2个单位得来,求m和n的值; (12)若该函数图像与函数y=(n–5)x+2n–2关于x轴对称,求m和n的值; (13)若该函数图像与函数y=–x+3的图像同时交于函数y=3x+19上一点,求函数解析式; (14)该函数图像是否过定点?若过,请求出这个定点;若不过,请说明理由. 【例2】已知y+1与x+2成正比例,且当x=4时,y=-4. (1)求y关于x的函数关系式; (2)若点(a,2)和(2,b)均在(1)中函数图像上,求a、b的值. (3)当-2≤x≤6时,求y的取值范围.

【例3】已知某一直线过点(1,-4)和点(4,-2), (1)求该直线所在的一次函数关系式; (2)求该直线与两坐标轴所围成的三角形的面积; (3)若函数图像上有两点(a,m+3)、(b,-2m+6)且a>b, 求m的取值范围. 【例4】一次函数y=kx+b的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求该一次函数的解析式. 【例5】如图,函数y=ax+b和y=kx的交于点P,则根据图象可得: (1)方程ax+b-kx=0的解是; (2)方程组y=ax+b, y=kx的解 是__________; (3)不等式ax+b

求解函数解析式

求解函数解析式 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. ●难点磁场 (★★★★)已知f (2-cos x )=cos2x +cos x ,求f (x -1). [例1](1)已知函数f (x )满足f (log a x )=)1 (1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x ) 的表达式. (2)已知二次函数f (x )=ax 2 +bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

第三版实变函数论课后答案

1. 证明:()B A A B -=的充要条件是A B ?. 证明:若() B A A B -=,则()A B A A B ?-?,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?,又x B ?∈,若x A ∈, 则 ()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有 () x B A A ∈-.故 ()B B A A ?-,从而有()B A A B -=。 证毕 2. 证明c A B A B -=. 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?. 另一方面, c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-. 综合上两个包含式得c A B A B -=. 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理 9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则 A B λλλλ∈∧ ∈∧ ? . 证:若x A λλ∈∧ ∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈,这说明 A B λλλλ∈∧ ∈∧ ? . 定理4中的(4): ()()( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 证:若 () x A B λ λλ∈∧ ∈ , 则 有 'λ∈∧ ,使 ''()( )()x A B A B λλλλλλ∈∧ ∈∧ ∈?. 反过来,若()( )x A B λλλλ∈∧ ∈∧ ∈则x A λλ∈∧ ∈或者x B λλ∈∧ ∈ . 不妨设x A λλ∈∧ ∈,则有'λ∈∧使'' '()x A A B A B λλλλλλ∈∧ ∈?? . 故( )()()A B A B λλλ λλλλ∈∧ ∈∧ ∈∧ ? . 综上所述有 ()( )( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 定理6中第二式()c c A A λλλλ∈∧ ∈∧ = . 证:( )c x A λλ∈∧ ?∈,则x A λλ∈∧ ? ,故存在'λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ?? 从而有( )c c A A λλλλ∈∧ ∈∧ ? . 反过来,若c x A λλ∈∧ ∈ ,则'λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴? ,从而()c x A λλ∈∧ ∈

相关文档
最新文档