压力容器焊接工艺设计说明书

压力容器焊接工艺设计说明书
压力容器焊接工艺设计说明书

压力容器焊接工艺说明书

一、零件的名称、批量及材料:

名称:压力容器批量:年产100件材料:20钢

二、零件的作用:

工业生产中具有特定的工艺功能并承受一定压力的设备,称压力容器。贮运容器、反应容器、换热容器和分离容器均属压力容器。

为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:

(1)最高工作压力≥9.8104Pa(1Kgf/cm2);

(2)容积≥25L,且工作压力与容积之积≥200L.Kgf/cm2(1960104L.Pa);

(3)介质为气体、液化气体或最高工作温度高于标准沸点的液体。

压力容器的用途十分广泛。它是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。

三、零件工艺分析:

如零件图所示,其结构不复杂,且是单件小批量生产。体积较大,选用铸造明显不现实,焊接是首选。焊接制造该零件的过程中,虽然零件结构简单,在焊接过程中,主要考虑是零件的氧化。上、下封头拉伸成型后,因开口端变形大,冷变形强化严重,加上板材纤维组织的影响,在残余应力作用下很容易发生断裂。为防止裂纹产生,拉伸后应进行再结晶退火;为了减少焊接缺陷,焊件接缝附近必须严格清楚铁锈、油污;为去除焊接残余应力并改善焊接接头的组织与性能,瓶体焊接后应该进行整体正火处理,至少要进行去应力退火。

四、确定毛坯的制造形式:

对于该零件,由于它的生产批量为单件或小批量,零件的本身不复杂,主要考虑的是零件的封闭性以及在焊接过程中防止发生焊缝氧化。零件的壁厚都比较小,相对于铸造成型,采用焊接的方法来制造毛坯是经济而高效的方法。故对该零件的毛坯选择焊接来制造。

五、零件的焊接工艺分析:

该零件的焊接结构,构造不复杂,但尺寸较大,设计时将它合理的划分成二个部件,然后再进行组焊。在焊接中,合理布置焊缝可以直接减少焊接工作量,节约熔敷金属总量,同时还可以减少焊接变形,增加焊接结构的安全可靠性。故在焊接中可采用一些必要的措施。

在该零件的焊接中,焊接方法选择应根据材料的焊接性、工件厚度、生产率要求、各种焊接方法的使用范围和现场设备条件等综合考虑决定。

在该零件的焊接中,可能出现的缺陷主要是焊接变形及氧化。从而引起零件的精度不够以及以后零件在使用过程中会发生泄露现象,零件焊接后,由于焊缝的氧化则影响零件的工作寿命。因此,这种危害性比较严重,应尽量避免。在生产中,一般采用合理的焊接方法,将零件的氧化降到最低程度,并在焊后在焊缝处涂上一层防腐蚀涂料,可以达到更理想的效果。

六、零件的焊接工艺确定:

1、确定焊缝的位置

方案(a)共有三条焊缝,其中包括两条环形焊缝和一条轴向焊缝。方案(b)只有一条环形焊缝。方案(a)的优点是上下封头的拉伸变形小,容易成型;缺点是焊缝多,焊接工作量大。同时,因为筒体上的轴向焊缝处于拉应力最高的位置(径向拉应力为轴向拉应力的两倍),破

坏的可能性很大。方案(b)只在中部有一环缝,完全避免了方案(a)的缺点,因此选用方案(b)。

2、设计焊接接头

连接瓶体与瓶嘴的焊缝,采用不开坡口的角焊缝即可。而瓶体主环缝的接头形式,宜采用衬环对接或缩口对接,如果所示。这样便于上、下封头定位装配。为确保焊透,尽管焊件厚度不大,仍然开V型坡口。

3、选择焊接方法和焊接材料

瓶体的焊接采用生产率高、焊接质量稳定的埋弧自动焊。焊接材料可用焊丝H08A、H08MnA 或H10Mn2A,配合HJ431。

瓶嘴的焊接因焊缝直经小,用手弧焊焊接。焊条可取E4303(J422)。

七、具体工艺过程:

(一)、分件工艺:

1、筒体:材料:20钢

(1)落料、拉深:

①拉深: 440m×440mm×3mm,如图所示,矫正变形。

②拉深: 440mm×440mm×3mm,如图所示,矫正变形。

(2)钳:去毛刺,整形,再结晶退火。

2、罐顶:材料:20钢

(1)冲孔:冲一个半径为52mm的圆孔。

(2)钳:去毛刺,修磨表面,除锈。

(二)、整件工艺

(1)备料:备齐上述各件,并检查各件尺寸。

(2)组焊

1)将瓶嘴和上瓶体按图样要求尺寸点固定好,并焊接。

2)将上瓶体和下瓶体按图样要求尺寸点固定好,除锈并焊接。

(3)钳:矫正焊后变形,去毛刺。

(4)正火处理

(5)水压试验

(6)气密试验

附:工艺说明:

(1)本件功能上起容器的作用,要求表面平整,并要求整体变形不能过大。并要求焊缝的氧化较小。

(2)焊接材料及焊机的选择:

材料为:20钢,厚度为3mm,埋弧自动焊时,选用H08A焊丝,直径:1.6mm,焊接电流:I=115-500A。因焊机焊接电流都有一较宽的调节范围,500A以下均行,可以按具体情况选择,可以选用MZ6-2-500。手弧焊时,焊条取E403(J422)。

压力容器焊接技术要求.

压力容器焊接技术要求

概述 ?1、焊接是压力容器制造的重要工序,焊接质量在很大程度上决定了压力容器的制造质量; ?2、影响焊接质量包含诸多方面内容:焊接接头尺寸偏差、焊缝外观、焊接缺陷、焊接应力与变形、以及焊接接头的使用性能等; ?3、容器产品的设计是获得性能优良的焊接接头的基础:焊接母材的、焊接坡口形式、焊接位置、焊材、无损检测、焊后热处理等的选择,直接关系到焊接质量。

一、压力容器焊接的基本概念 ?1、焊缝形式与接头形式: 从焊接角度看,容器是由母材和焊接接头组成的;焊缝是焊接接头的组成部分。 焊缝有5种:对接焊缝、角焊缝、端接焊缝、塞焊缝和槽焊缝。 焊接接头有12种:对接接头、T型接头、十字接头、搭接接头、角接接头等。 ?2、焊缝区、熔合区和热影响区

?3、焊接性能、焊接工艺评定和焊接工艺规程--压力容器焊接的三个重要环节 焊接性能是焊接工艺评定的基础,焊接工艺评定是焊接工艺规程的依据,焊接工艺规程是确保压力容器焊接质量的行动准则。 ? 3.1、焊接性能:材料对焊接加工的适应性和使用可靠性。 ? 3.2、焊接工艺因素:重要因素;补加因素;次要因素。 ? 3.3、焊接工艺评定: JB4708《钢制压力容器焊接工艺评定》 JB/T4734《铝制焊接容器》 JB/T4745《钛制焊接容器》 ? 3.4、焊接工艺规程:

二、常用焊接方法及特点 ?1、手工电弧焊(SMAW) ?2、埋弧焊(SAW) ?3、钨极气体保护焊(GTAW)?4、熔化极气体保护焊(GMAW)?5、药芯焊丝电弧焊(FCAW)?6、等离子弧焊(PAW) ?7、电渣焊(ESW)

焊接工艺方案设计

T/P92钢焊接工艺方案设计 1 、T/P92钢焊接性简述 T/P92钢的标准化学成分和机械性能列入表1和表2。欧洲开发的新型马氏体耐热钢—E911钢属于T/P92钢。日本开发的新型马氏体耐热钢—NF616钢属于T/P92钢,已列入ASTM/ASME A 213 T91和ASTM/ASME A335 P92标准。 表1 T/P92钢的化学成分 表2 T/P92钢的机械性能 1.1 T/P92在T/P91钢的基础上加入了1.7%的钨(W),同时钼(Mo)含量降低至0.5%,用钒、铌元素合金化并控制硼和氮元素含量的高合金铁素体耐热钢,通过加入W元素,显著提高了钢材的高温蠕变断裂强度。在焊接方面,除了有相应的焊接材料,并由于W是铁素体形成元素,焊缝的冲击韧性有所下降外,其余对预热、层间温度、焊接线能量,待马氏体完全转变后随即进行焊后热处理以及热处理温度、恒温时间的要求都是比较相近的。 1.2 T/P92钢中有关C、S、P等元素含量低、纯净度较高,且具有高的韧性,焊接冷裂纹倾向大为降低,但由于其钢种的特殊性,仍存在一定的冷裂纹倾向,所以焊接时必须采取一些必要的预防措施。 1.3 T/P92钢中添加W元素,促进了δ铁素体的形成,使冲击韧性比

T/P91有所降低,所以焊缝的冲击韧性与其母材、HAZ和熔合线的韧性相比,也存在明显降低的问题。

1.4与T/P91钢相似,存在焊接接头热影响区“第四类”软化区的行为。焊接接头经过长期运行后,焊接断裂在远离焊缝区的软化带,此软化带强度明显降低。 2、 T/P92钢的应用 2.1 T/P92钢具有与T/P91优良的常温及高温力学性能。通过加入W 元素,显著提高了钢材的高温蠕变断裂强度,T/P92钢的工作温度比T/P91钢高,可达630℃。 2.2 T/P92钢中碳的含量保持在一个较低的水平是为了保证最佳的加工性能,高温蠕变断裂强度非常高,抗腐蚀性能好,提高了耐热钢的工作温度,减少了钢材的厚度,降低了钢材的消耗量,降低了管道热应力。在国内首台USC机组玉环电厂机组对主蒸汽管道的设计中,曾有两套方案,若采用P91钢材,其规格为φDn349×103mm;若采用P92钢材,由规格可减为φDn349×72mm。 2.3用于替代电厂锅炉的过热器和再热器的不锈钢(不锈钢焊接有严重的晶间腐蚀及与铁素体、珠光体钢等异种钢的焊接问题),用于极苛刻蒸汽条件下的集箱和蒸汽管道(主蒸汽和再热蒸汽管道),其热传导和膨胀系数也远优于奥氏体不锈钢。 2.4由于T/P92钢的含碳量低于T/P91钢材,是低碳马氏体钢,须在马氏体组织区焊接,其预热温度和层间温度可以大大降低,据国外资料研究,通过斜Y型焊接裂纹试验法测定的止裂预热温度为100-250℃左右。 3 、T/P92钢焊接接头质量的各种影响因素的分析 3.1影响T/P92焊接接头质量的主要因素及影响结果见表1

压力容器焊接通用工艺

压力容器焊接通用工艺 QB/YR·HJ·T03-2005 № 编制:巩林廷 审核:姚大宝 批准:王桂明 江苏省工业设备安装公司压力容器制造安装厂

钢制压力容器焊接通用工艺 1.适用范围 本工艺适用于江苏省工业设备安装公司压力容器厂制造安装的压力容器产品的焊接工作。 2.焊接工艺评定和焊工 施焊下列各类焊缝的焊接工艺必须按JB4708《钢制压力容器焊接工艺评定》评定合格。 a.受压元件焊缝; b.与受压元件相焊的焊缝; c.熔入永久焊缝的定位焊缝; d.受压元件母材表面堆焊、补焊; e.上述焊缝的返修焊缝。 施焊下列各类焊缝的焊工必须按《锅炉压力容器压力管道焊工考试与管理规则》的规定考试合格; a.受压元件焊缝; b.与受压元件相焊的焊缝; c.熔入永久焊缝内的定位焊缝; d.受压元件母材表面耐蚀层堆焊。 焊接压力容器的焊工取得合格证后,才能在有效期内担任相应合格项目范围内的压力容器产品焊接工作。持证焊工从事产品焊接时,应严格按产品焊接工艺文件的要求进行操作,不得擅自更改工艺。 3.焊接材料 焊接材料主要系指焊条、焊丝、焊剂、气体、电极等。 焊接材料选用原则 应根据母材的化学成份、力学性能、焊接性能结合压力容器的结构特点和适用条件综合考虑选用焊接材料,必要时通过试验确定。 焊缝金属的性能应高于或等于相应母材标准规定值的下限或满足图样规定的技术要求。对各类钢的的焊缝金属要求如下: 相同钢号相焊的焊缝金属

a.碳素钢、低合金钢的焊缝金属应保证力学性能,且不应超过母材标准规定的抗拉强度的上限值加30MPa。 b.高合金钢的焊缝金属应保证力学性能和耐腐蚀性能。 c.不锈钢复合钢板基层的焊缝金属应保证力学性能,且其抗拉强度不应超过母材标准规定的上限值加30MPa;复层的焊缝金属应保证耐腐蚀性能,当有力学性能要求时还应保证力学性能。复层焊缝与基层焊缝以及复层焊缝与基层钢板交界处推荐采用过渡层。 不同钢号相焊的焊缝金属 a.不同钢号的碳素钢、低合金钢之间的焊缝金属应保证力学性能,且其抗拉强度不应超过强度较高母材标准规范的上限值。 b.奥氏体高合金钢与碳素钢或低合金钢之间的焊缝金属应保证抗裂性能和力学性能。宜采用铬镍含量较奥氏体高合金钢母材高的焊接材料。 焊接材料必须有产品质量证明书,并符合相应标准的规定,且满足图样的技术要求,并按JB4708规定通过焊接工艺评定。进厂时按《焊接材料管理制度》的规定验收或复验,合格后方可使用。 焊接材料熔敷金属硫、磷含量规定应与母材一致,选用GB/T5118标准的焊条,应符合下列要求: a.型号为EXXXX—G的焊条应规定出焊缝金属夏比V型缺口冲击吸收功。 b.铬钼钢焊条的焊缝夏比V型缺口冲击吸收功常温时不小于31J。 c.用于焊接低温钢的镍钢焊条的焊缝金属夏比V型缺口冲击吸收功在相应低温时应不小于34J。 常用钢号推荐选用的焊接材料见表1,不同钢号相焊推荐选用的焊接材料见表2。

焊接工艺规程完整

手工电弧焊焊接工艺规程 ——编号HG—0001 目录 1、用途及说明 2、焊接设备及工辅具 3、焊接材料 4、焊工 5、焊接工艺 6、焊接质量检验 手工电弧焊工艺规程 (焊接说明书) 1 用途及说明 本工艺规程适合用于专业厂、生产车间生产的手工电弧焊总成,同时也是技术科、检查科、生产车间进行工艺设计、焊接质量检查及产品验收的依据。 2 焊接设备及工辅具 2.1 手工电弧焊电源种类 2.1.1 交流弧焊机 常用型号:BX-500、BX1-300、BX3-300等。 2.1.2 旋转式直流弧焊发电机 常用型号:AX1-500、AX3-300等。 2.1.3 弧焊整流器 常用型号:ZXG1-250、ZXG1-400等。 2.1.4 逆变弧焊整流器 常用型号:ZX7-250、ZX7-315等。 2.2 对设备的性能要求 2.2.1 要求弧焊电源具有良好的动特性及徒降的外特性。 2.2.2 应有较高的空载电压,使焊接过程中电弧燃烧稳定。 2.2.3 按GB8118-87规定要求,应具有一定的焊接电流可调围。 2.3 设备的选择依据 2.3.1 选择设备时要以产品图作为依据,根据焊接金属材质、焊条类型、焊接结构来选择弧焊电源的类型。 2.3.1.1使用酸性焊条焊低碳钢时,应优先考虑用交流焊机。 2.3.1.2使用碱性焊条焊接重要结构或合金钢、铸铁时,需选用弧焊整流器、弧焊发电机等直流电源。 2.3.1.3在弧焊电源数量有限,而焊接材料的类型又较多时,可选用通用性较强的交直流两用电源。 2.3.2 根据焊接结构所用材料、板厚围、结构形式等因素确立所需弧焊电源的容量,然后参照弧焊电源技术数据,选用相应的设备。

压力容器焊接工艺卡

焊接工艺课程设计任务书 题目:ZY-1型反应釜的焊接工艺制定 材料:16MnR 焊接方法:CO2气体保护焊 要求: 1、看懂图纸 2、根据相关标准画出焊缝布置图,并标注焊缝类别 3、制定焊接工艺总则 4、设计焊接工艺卡 5、重要的焊缝制定相应的焊接工艺卡 6、工艺卡中应标明焊接检验的方法及标准 学生: 班级:指导教师: 1 / 26

2 / 26

16MnR的焊接性分析: 16MnR的成分: 热裂纹:16MnR 为热轧或正火。属低合金高强度钢,含Mn量较低。16MNR作为压力容器用钢,S,P含量比16Mn要少一些。含碳量比较低,且Mn/S比较高,正常情况下不会出现热裂纹,但材质成分不合格或者因严重偏析使局部C、S含量偏高时,可能会出现热裂纹。 解决措施是:工艺上尽量减小熔合比,选择焊材是采用低碳焊丝H03MnTi和含Si02较低的焊剂(本次CO2保护焊不需要焊剂),以此降低焊缝中的含碳量,从而解决热裂纹的问题。 冷裂纹:钢种的淬硬倾向、含氢量和拘束应力是焊接时产生冷裂纹的三大主要因素。下面也从这三方面分析16MnR的冷裂纹倾向。 1、淬硬倾向: 16MnR的碳当量计算: CE=C+1/6Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V =0.15+1/6 x1.38 +1/15x0.01+1/5x0.017 =0.15+0.23+0.0007+0.0034 =0.3841 碳当量CE=0.3841<0.4可以看出其基本么有淬硬倾向 其含碳量低,在淬火时,如冷却速度不是太快,就会得到低碳马氏体组织,或者是铁素体珠光体组织,这些组织的硬度不高,故其淬硬倾向小,只有在冷却速度较快时,才会得到高碳马氏体组织,则有一定的淬硬倾向。 2、含氢量:焊缝中的氢主要来源于焊接材料中的水分、焊件坡口处的铁锈、油污,以及环境湿度等。对16MnR来说,只要板厚不太大且冷却速度控制得当,由于焊接温度高,增强了氢的活动能力,大部分氢从焊缝中扩散逸出。同时,当焊缝冷却时,其组织会由奥氏体向铁素体等转变,由于氢在奥氏体中的溶解度大大高于在铁素体中的溶解度,又会有部分氢逸出。最后,焊缝中的残余氢量就不足以形成冷裂纹。 3、拘束应力:焊缝中的应力主要包括热应力、组织应力和由于白身拘束条件所造成的应力。目前,普遍采用拘束度(R)综合表示这三种应力的大小,拘束度的计算可采用如下公式:R=K*δ 式中K为板厚拘束度系数,δ为板厚。 由上式可见,拘束度与材料板厚有很大关系,板厚越大,所造成的拘束度也越大,则拘束应力也就越大。本次课程设计用的钢板内壁为12mm,外壁为6mm,属于较薄的板,其拘束度较小。 综上以上几点可以得出以下结论:16MnR钢在板厚不是太大,冷却速度适当的情况下不会出现冷裂纹,只有在板厚(40mm以上)太大,冷速较快的情况下,才有出现冷裂纹的倾向,我们可以通过采用较小线能量+焊前适当预热等措施来预防。 热影响区脆化、软化问题: 3 / 26

压力容器现场组焊工艺标

压力容器现场组焊工艺标 1.0适用范畴 本标准规定了压力容器现场组对和焊接的差不多要求和工艺流程,不包含设备内件和附件安装。 本标准适用于分段或分片到货的压力容器现场组焊。不适用于球形储罐、钢制立式储罐的现场安装。 容器施工中的安全技术及劳动爱护应按《石油化工施工安全技术规程》SH3505有关规定执行。 容器的现场组焊除应符合本标准外,尚应符合现行有关法规和标准的规定。 2.0引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文,本标准公布时,所引用标准均为有效。若下列标准被修订,本标准中所引用的下列标准的相关条文在使用时应参考最新版本。 GB 150-1998 钢制压力容器 SH3524-1999 石油化工钢制塔、容器现场组焊施工工艺标准 JB4708-2000 钢制压力容器焊接工艺评定 JB/T 4709-2000 钢制压力容器焊接规程 JB 4730-1994 压力容器无损检测 压力容器安全技术监察规程 3.0施工预备 3.1 施工技术预备 3.1.1 容器现场组焊应具有下列技术文件: 1设计图样和制造厂出厂文件; 2焊接工艺评定报告和焊接工艺规程; 3施工方案; 4施工及验收标准和规范。 3.1.2 容器组焊前应组织有关专业技术人员进行施工图会审,审查要点为: 1设计图样、制造厂出厂文件及使用的标准、规范; 2总装配图与各专业零部件图样之间的衔接及材质、标高、方位和要紧尺寸; 3容器结构在施工时的可行性和稳固性; 4采纳的新技术、新工艺、新材料在施工中的可行性。 3.1.3 关于新工艺、新技术,必要时施工单位应组织技术人员和工人进行调研和培训。 3.1.4 施工前应进行技术交底,明确任务的特点、施工进度、施工方法、技术要求、质量标准以及安全措施。

6156铝合金平板对接焊焊接工艺及夹具设计设计说明书

焊接课程设计 说明书 班级: : 学号: 专业

目录 设计任务书-------------------------------------------------------------------------------1第一部分焊接工艺设计 一、6156铝合金板焊接性分析-----------------------------------------------------2 二、焊接方法的选择-------------------------------------------------------------------3 三、MIG焊工作原理及工艺特点---------------------------------------------------4 四、、焊接工艺参数-------------------------------------------------------------------5 五、焊接注意事项----------------------------------------------------------------------7 六、外观检验---------------------------------------------------------------------------7 七、无损检测-----------------------------------------------------------------------------8第二部分夹具设计 一、夹具设计的目的意义及要求-------------------------------------------------8 二、定位------------------------------------------------------------------------------------8 三、夹具设计-----------------------------------------------------------------------------9 四、夹紧材料的设计-------------------------------------------------------------------12 五、夹紧尺寸公差及粗糙度---------------------------------------------------------14结论------------------------------------------------------------------------------------------14参考文献-----------------------------------------------------------------------------------15附录 焊接工艺卡-----------------------------------------------------------------------------装配图--------------------------------------------------------------------------------------零件图-----------------------------------------------------------------------------------

焊接工艺课程设计

[文档标题]

焊接工艺课程设计 1绪论 1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环

境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 1.2.1对焊条的基本要求 (1)焊条的熔敷金属应具有良好的力学性能 (2)焊条的熔敷金属应具有规定的化学成分,以保证其使用性能的要求

Q235钢板焊接工艺设计说明书

焊接1531 王翔 Q235钢板的焊接工艺设计说明书 目录 1 母材的基本数据与焊接性 (2) 1.1 母材的基本数据 (2) 1.1.1 Q235钢的介绍 (2) 1.1.2 碳钢按含碳量的分类 (2) ......................................................................................................... 错误!未定义书签。 1.1.4 Q235钢的化学成分与基本力学性能 (3) 1.2 Q235钢的焊接性 (4) 1.2.1 碳当量分析 (5) ......................................................................................................... 错误!未定义书签。 1.2.3 焊接时存在的问题 (6) 2 焊接方法的选择 (7) 3 焊接工艺 (8) 3.1 焊前准备 (8) 3.1.2 工件表面的清理 (9) 3.1.3 焊条烘干 (9) 3.2 焊接工艺参数的制定 (9) 3.2.1 焊条直径的选择 (9) 3.2.2 焊接电流 (10) 3.2.3 焊接电压 (11) 3.2.4 焊接层数 (12)

3.2.5 焊接速度 (12) 3.2.6 电流极性的选择 (12) 3.2.7 反变形 (13) 4 操作要点及注意事项 (13) 4.1.1 引弧焊接前引燃电弧的过程叫做引弧。引弧常用划檫法和直击法。 (13) 4.1.2 运条 (13) 4.1.3 收尾 (14) 4.1.4 敲渣 (14) 5 常见缺陷及解决措施 (14) 5.1.1 气孔 (14) 5.1.2 残余应力与变形 (15) 5.1.3 冷裂纹 (15) 1 母材的基本数据与焊接性 1.1 母材的基本数据 1.1.1 Q235钢的介绍 Q235钢又称A3钢,是铁和碳的合金,碳钢中除了以碳作为合金元素外,还有少量的Mn和Si有益元素,还有少量的S、P等杂质。Q代表的是这种材质的屈服极限,235代表的是屈服值,由于这种材料的含碳适中,综合性能较好,强度、塑性和焊接等性能得到较好配合,用途最广泛。 1.1.2 碳钢按含碳量的分类 表1 碳钢按含碳量的分类

GB4708 2000钢制压力容器焊接工艺评定

钢制压力容器焊接工艺评定 JB4708-2000 1 范围 本标准规定了钢制压力容器焊接工艺评定规则、试验方法和合格指标。 本标准适用于钢制压力容器的气焊、焊条电弧焊、埋弧焊、熔化极气体保护焊、钨极气体保护焊、电渣焊、耐蚀堆焊等焊接工艺评定。 2 总则 (1)焊接工艺评定应以可靠的钢材焊接性能为依据,并在产品焊接之前完成。(2)接工艺评定一般过程是:拟定焊接工艺指导书、施焊试件和制取试样、检验试件和试样、测定焊接接头是否具有所要求的使用性能、提出焊接工艺评定报告对拟定的焊接工艺指导书进行评定。 3 对接焊缝、角焊缝焊接工艺评定规则 (1)评定对接焊缝焊接工艺时,采用对接焊缝试件。对接焊缝试件评定合格的焊接工艺亦。试件用角焊缝缝焊接 工艺时,可采缝用于角焊(厚度不限)。评定非受压角焊适。反,之亦可于管材的对接焊缝对接焊缝试件评定合格的焊接工艺适用(2)板材压用于非受缝,反之亦可(的定合格的焊接工艺适用于板材角焊试(3)管与 板角焊缝件评 )。限度的有效范围不角焊缝焊件时,焊件厚 。素、和次要因素工艺因素分为重要因素、补加因(4)焊接接工 艺因素。接头抗拉强度和弯曲性能的焊重要因素:是指影响焊接需验时,试艺因素。当规定进行冲击性补加因素:是指影响焊接接头冲击韧的焊接工素。增加补加因。响明显影的焊接工艺因素素次要因:是指 对测定的力学性能无(5)评定规则焊接方法需重定新评焊接 方法-改变。工艺评定焊接素a 当变更任何一个重要因时都需要重新试冲焊击 韧性,时则可按增加或变更的补加因素增何b当增加或变更任一个补加因素行试验。件进书。但需重新编制焊接工艺指导艺要更c 当变次要因素时不需重新评定焊接工,别接方法分工艺或焊接可以缝一条焊使用两种或两种上焊接方法时,按每种焊同d 当评定。合焊接焊方法,焊接工艺接试件,进行组种两亦行进评定;可使用种或两以上应,但艺法、焊接工焊种用,于合组合评定格后用焊件时可以采其中一或几种接方有件焊厚度的于适方焊每确条相,不因补素要其保证重因、加素变按关款定种接法用。范效围则规定评别组-材母 a 当重要因素、补加因素不变时,某一钢号母材评定合格的焊接工艺可以用于同

压力容器用焊接材料的复验要求

压力容器用焊接材料的复验要求 中国化工装备协会朱海鹰辛忠智辛忠仁 (北京100011) 摘要:压力容器安全技术规范提出了压力容器用焊接材料的复验要求。哪些压力容器用焊接材料需要复验,复验要求,依据标准和复验的目的,本文对此进行了讨论。 关键词;压力容器焊接材料复验要求 1、压力容器用焊接材料的复验 在2009版《固定式压力容器安全技术监察规程》(以下简称新《容规》)第2.12(3)条和1999版《压力容器安全技术监察规程》(以下简称旧《容规》)第26条中都对焊接材料的复验提出了要求,其中2009版《固定式压力容器安全技术监察规程》第2.12(3)条要求:“用于制造压力容器受压元件的焊接材料,应当满足相应标准。焊接材料应当附有质量证明书和清晰、牢固的标志。” “压力容器制造单位应建立并严格执

和回收制度。” 但新《容规》和旧《容规》都没有具体指出用于哪些压力容器的焊接材料需要复验、复验项目和依据标准。总结相关压力容器产品标准认为:下列情况下制造的压力容器用焊接材料需要按照新《容规》第2.12(3)条要求进行复验: ①按照GB150附录C制造的低温压力容器,需按GB150附录C的C2.2.3条要求对焊条按批进行药皮含水量或熔敷金属扩散氢的复验,其检验方法按相应的焊条标准或技术条件要求。 ②按照GB12337-1998《钢制球形储罐》标准制造的钢制球形储罐,需按GB12337的4.6.1.2条要求对焊条按批号进行扩散氢复验。 ③按照GB50094-98《球形储罐施工及验收规范》标准制造的钢制球形储罐,需按GB50094的4.3.1.3条要求对焊条和药芯焊丝按批号进行扩散氢复验。 ④按照JB/T4780-2002《液化天然气罐

压力管道焊接工艺规范标准设计

压力管道设计说明书 设计题目:压力管道焊接工艺设计 设计参数: 2.1工作压力:5MPa 2.2工作温度:-10~80摄氏度 2.3外形:圆柱体 2.4工质:原油 2.5材料:L245管线钢 设计要求: 3.1压力管道结构受力分析 3.2强度计算,确定最小壁厚 3.3焊接工艺分析 3.4编写焊接工艺卡 3.5.编写热处理工艺卡 3.6绘制焊接工艺草图 一、总体概述 长输管道作为铁路、公路、海运、民用航空和长输管道五大运输行业之一,其输送介质除常见的石油、天然气外,还有工业用气体如氧气、二氧化碳、乙烯、液氧等介质。大部分输送介质管道在国内均有成功建设和运行业绩。 近几年,我国管道建设发展非常迅速。在管线的建设施工中,环焊缝焊接方法从传统的手工焊、管道下向手工焊、半自动下向焊到现在的全自动焊,管线的钢级从Q235 、16Mn、L290(X42)、L360(X52)、L415(X60)、L450(X65)和L485(X70)提高到目前的L550(X80),直径从200mm增加到1219 mm,水管线直径已超过2000 mm,壁厚从6 mm增加到30 mm,输送压力从4MPa增加到15MPa。 从广义上理解,压力管道是指所有承受内压或外压的管道,无论其管内介质如何。压力管道是管道中的一部分,管道是用以输送、分配、混合、分离、排放、计量、控制和制止流体流动的,由管子、管件、法兰、螺栓连接、垫片、阀门、其他组成件或受压部件和支承件组成的装配总成。

压力管道具有以下特点: (1)、压力管道是一个系统,相互关联相互影响,牵一发而动全身。 (2)、压力管道长径比很大,极易失稳,受力情况比压力容器更复杂。压力管道内流体流动状态复杂,缓冲余地小,工作条件变化频率比压力容器高(如高温、高压、低温、低压、位移变形、风、雪、地震等都有可能影响压力管道受力情况)。 (3)、管道组成件和管道支承件的种类繁多,各种材料各有特点和具体技术要求,材料选用复杂。 (4)、管道上的可能泄漏点多于压力容器,仅一个阀门通常就有五处。 (5)、压力管道种类多,数量大,设计,制造,安装,检验,应用管理环节多,与压力容器大不相同。 运输管道承受着所运输介质的压力和温度的作用,同时还遭受所通过地带各种自然环境和人为因素的影响,对钢材的强度、韧性、以及可焊性提出了相当高的要求,在使用过程中可能发生各种破漏或断裂事故。为确保管道的安全运行和预防管道事故产生应从设计、施工和操作三方面这首,其中设计中的合理选择材料和焊接工艺是相当重要的。 二、受力分析内容: 参照标准:SHJ.41-91《石油化工企业管道柔性设计规范》 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况 1)因应力过大或金属疲劳而引起管道破坏; 2)管道接头处泄漏; 3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4)管道的推力或力矩过大引起管道支架破坏。 2.分析步骤: 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计

焊接工艺

焊接工艺 5.1 焊接工艺评定 5.1.1 焊接工艺评定的依据 1.《建筑钢结构焊接技术规程》 JGJ81-2002 2.《钢结构工程施工质量验收规范》 GB50205-2001 3.设计图纸及设计总说明 5.1.2 焊接工艺评定分析

5.1.3 ****二期焊接工艺评定方案(表18) 序号材质 试件厚 度(mm) 覆盖厚 度(mm) 接头 形式 焊接 方法 焊接 位置 备注 1 Q345C 30 22.5~45 对接埋弧焊平焊 2 Q345C 60 45~90 对接埋弧焊平焊 3 Q345C 30 22.5~45 对接CO2焊平焊 4 Q345C 60 45~90 对接CO2焊平焊 5 Q345C 30/30 22.5~45 角接CO2+双丝 埋弧焊 平焊 6 Q345C 60/60 45~90 角接CO2+双丝 埋弧焊 平焊 7 Q345C 20/20 15~40 十字形CO2焊立焊 8 Q345C 60/60 45~90 十字形CO2焊立焊 9 Q345C 30/60 15/33~ 30/66 T形电渣焊立焊 10 Q345C 80/80 40~88 十字形CO2焊/电 渣焊 立焊 11 Q345C Φ19× 200/δ40 20~80 T形栓钉焊平焊 5.2 焊工培训及焊工资格 从事本工程焊接工作的焊工、焊接操作工及定位焊工,必须是按照 JGJ81-2002《建筑钢结构焊接技术规程》的有关规定经考试合格,取得相应项目合格证且在合格证在有效期内的焊工。 在焊工上岗前,应针对本工程的箱型构件焊接接头多的特点,着重对手工操作焊工进行针对性地的复训与考核,从施焊人员的素质方面保证工程焊接质量等级达到优良。拟考试的接头型式及焊接位置如下,具体考试方案经监理同意后实施: (1)板材对接接头焊接位置示意:

焊接专业压力容器焊接工艺设计的课程设计

目录 1、任务分析 ........................................... 错误!未定义书签。 1.1、设计要求........................................ 错误!未定义书签。1.2、概述........................................... 错误!未定义书签。 2、焊接工艺准备 ....................................... 错误!未定义书签。2.1、制造材料的选取................................. 错误!未定义书签。 2.2、设计图样及焊缝位置.............................. 错误!未定义书签。 2.3、锅筒及封头的厚度确定............................ 错误!未定义书签。 2.4、板材的成形...................................... 错误!未定义书签。 2.5、焊接坡口....................................... 错误!未定义书签。 2.6、焊接材料的选择.................................. 错误!未定义书签。 3、焊接方法和工艺参数 ................................. 错误!未定义书签。 3.1、焊接方案........................................ 错误!未定义书签。3.2、工艺参数....................................... 错误!未定义书签。 3.4、焊接顺序........................................ 错误!未定义书签。 3.5、预热............................................ 错误!未定义书签。 3.6、定位焊.......................................... 错误!未定义书签。 3.7、焊接要求........................................ 错误!未定义书签。 3.8、焊后热处理...................................... 错误!未定义书签。 4、焊接检验和返修 ..................................... 错误!未定义书签。 4.1、焊前检验........................................ 错误!未定义书签。 4.2、施焊过程中检验.................................. 错误!未定义书签。 4.3、焊后检验........................................ 错误!未定义书签。 4.4、焊缝返修........................................ 错误!未定义书签。 5、心得体会 ........................................... 错误!未定义书签。参考文献 .............................................. 错误!未定义书签。

焊接工艺设计

焊接工艺设计级生产大作业 学院:材料科学与工程学院 专业班级:焊接1301班 小组成员:马永亮(130200814) 徐壮(130200812) 孙建(130200116) 何星池(130200112) 郝绪文(130200101) 汪颖(130200525) 马鸣檀(130200530) 经戌末(130200109) 陈诗函(130200802) 作业时间: 2016年11月01日

12mm板厚Q345真空电子束焊接工艺 一、发展背景 电子束的发现迄今已100多年的历史。电子束焊接技术起源于德国,1948年前西德物理学家K.H.Steigerwald首次提出电子束焊接的设想;1954年法国的J.A.Stohr博士成功焊接了核反应堆燃料包壳,标志着电子束焊接金属获得成功;1957年11月,在法国巴黎召开的国际原子能燃料元件技术大会上公布了该技术,电子束焊接被确认为一种新的焊接方法;1958年开始,美国、英国、日本及前苏联开始进行电子束焊接方面的研究,20世纪60年代后,我国开始从事电子束焊接研究。 电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法。它具有其它熔焊方法难以比拟的优势和特殊功能:其焊接能量密度极高,容易实现金属材料的深熔透焊接、焊缝窄、深宽比大、焊缝热影响区小、焊接残余变形小、焊接工艺参数容易精确控制、重复性和稳定性好等。 随着航空航天、微电子、核能、交通运输及国防工业的飞速发展,各种高强度、高硬度、高韧性的铝合金、镁合金、钛合金和耐高温合金等金属材料以及复合材料广泛应用,加之构件形状日趋复杂化,对焊接工艺、加工精度和表面完整性提出了更高的要求。传统的焊接工艺难以适应高技术制造领域的发展趋势,对这些材料采用包括电子束焊接在内的高能束焊接技术优势较大。 正是由于电子束焊接的上述优点,使该技术获得长足发展,已经成功地应用于各种工业领域,并广泛应用在各种材料上。厚大截面不锈钢的电子束焊接由于能够节约成本且满足质量要求而得到青睐。有许多文献已经证明电子束焊接在航空和医药钛合金上得到了成功应用。有色金属如铜、镍及其合金的电子束焊接以及运输工业中异种材料的电子束焊接正迅猛增长。 二、目的 为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接参数的选择和焊接设备的使用与维护,安排了为期一周的课程设计。通过本次焊接工艺设计,锻炼学生们的分析问题的能力,提高焊接操作技能。

压力容器焊接标准规范

压力容器焊接标准规范 目录 JB 4708---2000《钢制压力容器焊接工艺评定》标准释义一、前言...................................................................... ... 2 二、标准原 理.................................................................. ..... 3 三、范 围 ................................................................. ......... 8 四、术 语.................................................................. ........ 9 五、总 则.................................................................. ....... 10 六、对接焊缝、角焊缝焊接工艺评定规 则 ................................................. 12 七、耐蚀堆焊工艺评定规 则 (30) 八、试验要求和结果评 价 ............................................................... 31 九、附录A 不锈钢复合钢焊接工艺评 定 ................................................. 41 十、型式试验评定方 法 ................................................................. 43 十一、焊接工艺评定一般过 程 ........................................................... 45 十二、

焊接工艺学课程设计

课程设计论文(说明书) 课程:焊接工艺学课程设计 题目:09MnD钢焊接性试验设计 院、系:材化学院 学科专业:金属材料工程 学生: / 学号: / 校对: / 指导教师: / 2012年 11月

1.前言 09MnD属于无镍低温钢,常用于石油、化工技术和压力容器设备,用于制造使用温度在-50℃的压力容器构件、重要锻件,石油化工中的压力容器。含碳量为0.2%,硅含量在0.17%到0.35%之间,锰含量在0.95%到1.35%之间,磷含量和硫含量均小于0.25%,钒含量小于等于0.03%。其化学成分见:表1.1,其机械性能见:表1.2。 牌号化学成分(质量分数)(%) C Si Mn P S V 09MnD ≤0.12 0.17-0.35 0.95-1.35 ≤0.025 ≤0.025 ≤0.03 表1.1 09MnD的化学成分 牌号抗拉强度/MPa 屈服强度/MPa 伸长率(%)冲击功/J 09MnD 400-540 ≥240 ≥26 ≥21 表1.2 09MnD的机械性能 本实验主要通过熔化极混合气体保护焊对焊接材料为09MnD厚度为10mm 板材的焊接性及焊接特点进行探索,在制出实验试板后,根据国家的一系列标准对此次焊接工艺进行焊后组织及力学性能进行评定,进而分析09MnD的焊接性能。 2.焊接工艺 2.1 09MnD的焊接特点 焊接材料的选择应保证接头与母材有同样的低温性能,焊条、焊丝、焊剂都必须保证焊缝中的油含杂质S、P、N、O最少。焊接时需要最大限度地减小过热程度,防止出现粗大的铁素体或粗大的马氏体组织。 2.2 焊接方法及焊丝的确定 低温钢的焊接方法可选焊条电弧焊、埋弧焊及熔化极气体保护焊。采用含Ni低温焊条电弧焊,虽可保证低温韧性,但成本高、生产效率低且焊缝成形差。故选用普通的焊丝H08Mn2SiA,用混合气体保护半自动焊,其生产成本为焊条电弧焊的55%-60%,生产率高2-3倍。焊材选择见:表2.2.1。

不锈钢压力容器的焊接技术

不锈钢压力容器的焊接技术 一、压力容器用不锈钢及其焊接特点 所谓不锈钢是指在钢中加入一定量的铬元素后,使钢处于钝化状态,具有不生锈的特性。为达到此目的, 其铬含量必须在12%以上。为提高钢的钝化性,不锈钢中还往往需加入能使钢钝化的镍、钼等元素。一般 所指的不锈钢实际上是不锈钢和耐酸钢的总称。不锈钢并不一定耐酸,而耐酸钢一般均具有良好的不锈性能。 不锈钢按其钢的组织不同可分为四类,即奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、奥氏体-铁素体双相不锈钢。 1.奥氏体不锈钢及其焊接特点 奥氏体不锈钢是应用最广泛的不锈钢,以高Cr-Ni型最为普遍。目前奥氏体不锈钢大致可分为Cr18-Ni8型、Cr25-Ni20型、Cr25-Ni35型。奥氏体不锈钢有以下焊接特点: ①焊接热裂纹奥氏体不锈钢由于其热传导率小,线膨胀系数大,因此在焊接过程中,焊接接头部位的高温停留时间较长,焊缝易形成粗大的柱状晶组织,在凝固结晶过程中,若硫、磷、锡、锑、铌等杂质元素含量较高,就会在晶间形成低熔点共晶,在焊接接头承受较高的拉应力时,就易在焊缝中形成凝固裂纹,在热影响区形成液化裂纹,这都属于焊接热裂纹。防止热裂纹最有效的途径是降低钢及焊材中易产生低熔点

共晶的杂质元素和使铬镍奥氏体不锈钢中含有 4 %?12%的铁素体组织。 ②晶间腐蚀根据贫铬理论,在晶间上析岀碳化铬,造成晶界贫铬是产生晶间腐蚀的主要原因。为此,选择 超低碳焊材或含有铌、钛等稳定化元素的焊材是防止晶间腐蚀的主要措施。 ③应力腐蚀开裂:应力腐蚀开裂通常表现为脆性破坏,且发生破坏的过程时间短,因此危害严重。造成奥氏体不锈钢应力腐蚀开裂的主要原因是焊接残余应力。焊接接头的组织变化或应力集中的存在,局部腐蚀介 质浓缩也是影响应力腐蚀开裂的原因。 ④焊接接头的b相脆化b相是一种脆硬的金属间化合物,主要析集于柱状晶的晶界。Y相和S相都可 发生b相转变。比如对于Cr25Ni20型焊缝在800'C?900'C加热时,就会发生强烈的丫转变。对于铬镍型奥氏体不锈钢,特别是铬镍钼型不锈钢,易发生S T b相转变,这主要是由于铬、钼元素具有明显的 b化作用,当焊缝中S铁素体含量超过12%时,S T b的转变非常显著,造成焊缝金属的明显的脆化,这也就是为什么热壁加氢反应器内壁堆焊层将S铁素体含量控制在3%?10%的原因。 2.铁素体不锈钢及其焊接特点 铁素体不锈钢分为普通铁素体不锈钢和超纯铁素体不锈钢两大类,其中普通铁素体不锈钢有Cr12~Cr14型, 如00Cr12、0Cr13AI ; Cr16~Cr18 型,女口1Cr17Mo; Cr25~30 型。 由于普通铁索体不锈钢中的碳、氮含量较高,故加工成形及焊接都较困难,耐蚀性也难以保证,使用受到 限制,在超纯铁素体不锈钢中严格控制了钢中的碳和氮总量,一般控制在0.035 %~0.045 %、0.030 %、 0.010 %~0.015 %三个层次,同时还加入必要的合金元素以进一步提高钢的耐腐蚀性和综合性能。素体不 与普通铁锈钢相比,超纯高铬铁素体不锈钢具有很好的耐均匀腐蚀、点蚀及应力腐蚀性能,较多的应用于石 化设备中。铁素体不锈钢有以下焊接特点:

相关文档
最新文档