3730测序结果说明

测序结果说明

1.测序完成后,我们用对每个样品提供一份测序报告,其中包括:

测出的序列彩色峰图(请用Chromas软件打开)

序列文件

拼接后结果(需要测通的样品)

2.在进行DNA测序时,紧接引物的10~30碱基有时不一定能完全读清楚。

3.正常情况下,3730测序仪保证800bp的有效长度,但是有时由于DNA结构上的原因,有时会出现反应中断无法进行的情况。如:G/C rich;G/C Cluster;Poly A/T/C/G的连续结构等。

此外,另一种情况为反应中途出现的套峰现象,此种情况一般为DNA结构中的重复序列,造成测序用引物和模板之间有两个以上结合位点。

以上情况是由于DNA结构原因造成了无法正常进行DNA测序,对这种情况,我们会根据具体测序结果进行相应收费。出现以上情况后,我们提倡从另一端进行测序,或者用高级试剂盒进行测序。4.备注说明

一般正常的菌液和质粒自收样日至发送报告日周期为二--三天,PCR产物(纯化及未纯化)为三--四天。对于三个工作日内无法得到满意测序结果的,我们会用E-mail或电话与客户或代理商联系。并不是所有的样品都能得到满意的测序结果,对于测序结果不好的,我们会尽力找到可能的原因,以建议进一步如何操作。

测序常见问题解答

Q1.为什么提供新鲜的菌液?如何提供新鲜的菌液?

A1.首先,新鲜的菌液易于培养,可以获得更多的DNA,同时最大限度地保证菌种的纯度。如果您提供新鲜菌液,用封口膜封口以免泄露;也可以将培养好的4~5ml菌液离心沉淀下来,

倒去上清液以方便邮寄。同时邮寄时最好用盒子以免邮寄过程中造成离心管挤压破裂。

Q2.DNA测序样品用什么溶液溶解比较好?

A2.溶解DNA测序样品时,用灭菌蒸馏水溶解最好。DNA的测序反应也是Taq酶的聚合反应,需要一个最佳的酶反应条件。如果DNA用缓冲液溶解后,在进行测序反应时,

DNA溶液中的缓冲液组份会影响测序反应的体系条件,造成Taq酶的聚合性能下降。

有很多客户在溶解DNA测序样品时使用TE Buffer。TE Buffer能增加DNA样品保存期间的稳定性,并且TE Buffer对DNA测序反应的影响也较小,但根据经验,

我们还是推荐使用灭菌蒸馏水来溶解DNA测序样品。

1

Q3.提供DNA测序样品时,提供何种形态的比较好?

A3.我们推荐客户提供菌体,由我们来提取质粒,这样DNA样品比较稳定。如果您可以提供DNA样品,但一定要注意样品纯度、浓度及体积量。如果提供的DNA浓度不够,

我们就需要对质粒进行转化,此时需收取转化费。

提供的测序样品为PCR产物时,特别需要注意DNA的纯度和体积量。PCR产物必须进行切胶回收,否则无法得到良好的测序效果。

有关DNA测序样品的详细情况请严格参照“测序样品的提供”部分的说明。

Q4.提供的测序样品为菌体时,以什么形态提供为好?

A4.一般,菌体的形态有:平板培养菌、穿刺培养菌,甘油保存菌或新鲜菌液等。我们提倡寄送穿刺培养菌或新鲜菌液。

平板培养菌运送特别不方便,我们收到的一些平板培养菌的培养皿在运送过程中常常已经破碎,面目全非,需要用户重新寄样。这样既误时间,又浪费客户的样品。

一旦是客户非常重要的样品时,其后果更不可设想。而甘油保存菌则容易污染。

制作穿刺菌时,可在1.5 ml的Tube管中加入琼脂培养基,把菌体用牙签穿刺于琼脂培养基(固体)中,37℃培养一个晚上后便可使用。穿刺培养菌在4℃下可保存数个月,并且不容易污染,便于运送。

Q5.PCR产物直接测序有什么要求?

A5.(1) 扩增产物必须特异性扩增,条带单一。如果扩增产物中存在非特异性扩增产物,一般难以得到好的测序结果。

(2) 必须进行胶回收纯化。

(3) DNA纯化在1.6~2.0之间,浓度50ng/μl以上。

Q6.为什么PCR产物直接测序必须进行Agarose胶纯化?

A6.如果不进行胶纯化而直接用试剂盒回收,经常会导致测序出现双峰甚至乱峰。这主要是非特异性扩增产物或者原来的PCR产物去除不干净导致。大多数所谓的PCR“纯化试剂盒”实际上

只是回收产物而不能起到纯化的作用。对于非特异扩增产物产物肯定是无法去除,而且通常它们不能够完全去除所有的PCR引物,这会造成残留的引物在测序反应过程中参与反应而导致乱峰。

Q7.如何进行PCR产物纯化?

A7.PCR产物首先必须用Agarose胶电泳,将目的条带切割下,然后纯化。使用凝胶回收试剂盒回收。产物用ddH2O溶解。

Q8.对于测序用的质粒DNA的要求有哪些?

A8. 对于测序用质粒DNA的一般要求:

(1) DNA纯度高,1.6~2.0之间,不能有混合模板,也不能含有RNA,染色体DNA,蛋白质等。

(2) 溶于ddH2O中,溶液不能含杂质,如盐类或EDTA等螯合剂,否则将干扰测序反应的正常进行。

Q9.如何鉴定质粒DNA浓度和纯度?

2

A9.我们使用水平琼脂糖凝胶电泳,并在胶中加入0.5ug/ml的EB,加入一个已知浓度的标准样品。电泳结束后在紫外灯下比较亮度,判断浓度和纯度。此方法可以更直接、准确地判断样品中

是否含有染色体DNA、RNA等,也可以鉴别抽提的质粒DNA的不同构型。

质粒DNA的3种构型是指在抽提质粒DNA过程中,由于各种原因的影响,使得超螺旋的共价闭合环状的质粒(SC)的一条链断裂,变成开环状(OC)分子,如果两条链发生断裂,就变成线状(L)。这3种分子有不同的迁移率,通常,超螺旋(SC)迁移速度最快,其次是线状(L)分子,最慢为开环状(OC)分子。使用紫外分光光度计检测,或者用EB标准浓度DNA比较法只能检测抽提到的

产物中的浓度,甚至由于抽提的质粒DNA中含有RNA、蛋白质、染色体DNA等因素的干扰,浓度检测的数值也是没有多少意义的。

Q10.对测序引物的要求有哪些?

A10.对测序引物的一般要求:

(1) 特异性与测序模板结合,不能有多于4个碱基以上的错配现象

(2) 不能含有混合碱基

(3) 长度17~25碱基

(4) 纯度高,最好PAGE纯化

(5) 用ddH2O溶解,不要用TE缓冲液溶解。

Q11.为什么测序引物必须特异地与DNA模板结合?

A11.测序引物与待测样品DNA分子只能有一个结合位点是测序成功的关键。如果测序引物在DNA模板分子上有不只一个的结合位点,将造成测序反应过程中引物链在几个结合位点处同时扩增,

反映在测序峰图上将出现双峰或乱峰,无法读取序列。

Q12.测序结果有很多套峰(出现很多N),还照常收费,为什么?

A12.DNA模板上出现二处以上的引物结合位点,或者DNA模板上有严重的重复序列,以及测序引物不纯时, 测序结果便会出现套峰现象(见图4)。出现这种现象的原因由DNA模板本身或者引物本身

所造成,对这些结果(公司保证进行2次以上的测序工作),公司会根据具体情况进行收费(详细见测序结果说明)。

Q13.为什么用PCR产物测序时,经常会出现套峰现象?

A13.PCR产物测序出现套峰现象,一般有以下几种原因:

(1) PCR用模板不纯或PCR用引物特异性不好,扩增出的产物除了目的片段外,还有与目的片段长度相近的片段,即使用凝胶电泳也无法分离开,这样的PCR产物测序结果是套峰。

(2) 结构上的原因,造成了PCR产物测序出现套峰的现象。PolyA/G/C/T以及原因不明的复杂结构的存在,都会出现测序结果套峰的情况。

Q14.出现套峰的原因是什么?

A14.在测序反应中,模板或引物的原因都可能造成套峰的形成,归结其形成原因有以下几点

(1) 测序引物在模板上有两个结合位点形成套峰

(2) 模板不纯,如果是质粒或是菌液,原因是非单克隆,如果是PCR,原因为非特异性条带

3

(3) 模板序列的特殊结构,如poly结构、发卡结构等

(4) 引物降解,引物不纯,或引物的特异性不好

Q15.测序结果不到800 Bases,还照常收费了,为什么?

A15.如在DNA样品中的DNA序列分布匀称,没有复杂结构时,正常的测序反应能保证达到800 Bases以上。但有一些DNA样品立体结构复杂,造成聚合酶延伸反应终止,测序信号突然减弱或消失,或者测序结果出现套峰现象。出现这些现象的原因由DNA模板本身所造成(公司保证进行2次以上的测序工作)。对这些结果,公司会根据具体测序情况,进行收费(详细见测序结果说明)。

出现这些情况的原因分析如下:

(1) G/C rich、G/C Cluster:这种情况一般表现为测序信号突然减弱或消失(见图1);

(2) A、T的连续结构:这种情况一般表现为A、T连续结构后面的测序结果出现套峰(见图2)。根据文献记载,原因在于聚合酶进行聚合反应时,由于A或T的连续,聚合酶难以识别完整的

每个A或T,在某个A或T的后面便开始进行A或T连续结构以后序列的聚合反应(打滑现象),造成测序结果紊乱,出现套峰。出现这样的情况,建议反向测序。

一般在多少个A或T的后面能出现这种情况呢? 现在还没有这方面的报道。根据我们的经验,这一情况的出现和A或T的连续结构后面的序列的排列情况有着直接的关系。有时10多个A或T的

连续结构后面便出现套峰,但有时60~70个A或T的连续结构后面的序列也一样可以完整地读出来。具体情况还有待考证。

一般来说,PCR片段直接测序时,A或T的连续结构后面的序列测序结果都会出现套峰。原因在于测序时经历了PCR反应及测序反应(测序反应本身也是PCR反应)二次聚合酶的打滑现象。(3) 原因不明的复杂结构,测序结果出现突然信号减弱或消失。从序列上看,DNA碱基排列并无特别异常。估计是DNA整体出现复杂结构,从某一位置开始聚合酶的聚合反应便无法进行(见图3)。

4

5

Q16.为什么在测序报告上找不到引物序列?

A16.这里分四种情况:

(1) 的确找不到测序使用的引物序列。目前使用的测序方法是在ddNTP上做荧光标记,测序仪通过检测ddNTP上的荧光来读取序列,因为引物本身是不做荧光标记的,所测序列是从引物3' 末端后

第一个碱基开始的,所以在测序结果上找不到测序引物的序列。如果是PCR产物,要想得到PCR引物的序列,可以将PCR产物进行双链测通或者将PCR产物克隆到载体上,用载体上的引物

(注意此引物也不能离插入片段太近)测序

(2) 找不到克隆片段的扩增引物。原因可能是您在构建质粒时采用的工具酶的酶切位点距离您的测序引物太近,由于荧光染料的干扰在序列开始的部分不会十分准确

(3) 还有一种可能是您的插入片段的插入方向是反的,这时您不妨找一下您引物的互补序列

(4) 存在单引物扩增,有一条引物的特异性不好,有多个结合位点导致只有一条引物参与扩增

Q17.在测序结果上,找不到测序用引物后面的序列,为什么?

A17.由于测序仪自身缺陷,紧接引物之后的测序结果信号较弱,一般在测序用引物后面几个至数十个(严重时40~50个)碱基会读不出来(或者读错),请引起注意。

Q18.PCR片段直接测序和PCR片段经克隆后测序的结果有何区别?

A18.众所周知,PCR扩增过程中会出现很多错配现象,但不可能所有的错配都发生在同一位置。PCR片段直接测序时,其结果是PCR片段众多分子的混合物的结果。如果在某一个点上出现了几十次

错配现象,但大多数分子(或许是几十万个分子)在这个点上应该还是正确的,在测序时,错配现象也就反映不出来了。因此,PCR片段直接测序的结果反映的是PCR用模板最原始的结果。

而PCR片段经克隆后测序是测定了某一个分子的DNA序列。在几十个循环的PCR扩增过程中,很难保证某一个分子的任何点都不发生错配。因此,PCR片段经克隆后的测序结果,往往存在着

一些错配的序列,和PCR片段直接测序的结果相比有些碱基会有所不同。这种错配现象的多少取决于PCR扩增时使用的DNA聚合酶的保真性能。要减少PCR扩增过程中的错配现象,在PCR反应时,请选用保真性能高的DNA聚合酶。

Q19.测序结果和文献资料不一样,为什么?

6

A19.原因有很多,如同一种动物,在不同的种族之间,或者不同的个体之间,基因序列也不一定完全一样。如果是PCR产物克隆测序, 那还有PCR过程中的错配因素等等。我们提供的测序结果是

客户样品序列的忠实结果,不能保证和文献序列完全一致,请理解。

Q20.我的基因序列与标准序列为什么有差别?

A20.一段基因序列经扩增后,克隆到载体中进行测序。在两个层次上可能导致序列发生变化。首先,在PCR扩增过程中就可能产生错误,将片段克隆到载体中也有可能发生突变;其次,测序的准确率

问题。ABI公司承诺其仪器的测序精度在一定范围内可以达到98.5%以上。由于仪器准确率的限制,在一个较长的序列中发生碱基序列错误是难以避免的。在确认克隆无误的情况下,通过双向测序可

以最大限度减少测序的错误。您如果想得到您的最准确的序列,进行双向测序是很有必要的。只进行简单的单向测序,我们无法保证所测序列的完全准确性,这是由仪器的精度决定的。

Q21.怎样选择(设计)测序用引物?

A21.测序用引物要求非常严格,不同于PCR用引物。PCR用引物一般只要能和模板结合,3' 端的几个碱基能完全配对,即使引物长达80~100多个碱基,只要调整PCR反应条件,也能成功进行PCR

反应。

而测序用引物要求就不一样,必须严格符合以下要求。本公司的测序用引物全用引物设计软件Oligo设计。在本公司测序时,我们可免费帮助设计测序用引物。

●长度在15~25个碱基左右,一般选择20个碱基(根据GC含量作适当调整),3' 端尽量选择G或C碱基(但不绝对),以增加与模板的结合能力。

●Tm温度应选择50℃~70℃左右。

●GC含量应选择在50%左右,尽量避开A、T、G、C的连续结构。

●避开引物自身形成发夹结构或引物二聚体结构等复杂结构。

●保证引物和模板100%匹配,特别是3'端的几个碱基一定要100%匹配。同时必须严格保证引物和模板之间只能有一个结合位点。

Q22.觉得你给我的结果完全不是我需要的序列?

A22.出现这样的情况只有两种可能:

(1) 我们给您的测序结果对应的不是您的样品

(2) 您的样品插入部分与您预期的不一致。作为提供测序服务的一方,我们无法判断测得的序列是否与您预期的结果一致,我们可以为您做的是,检查发送给您的测序结果与您提供来的样品是否一致。出现您这样的问题,我们常规的做法是进行验证实验。验证实验的方法是取您的原始菌液重新抽提质粒进行测序。验证实验如在可靠范围内结果与前次不同则说明我们前次的测序结果是有问题的,

前次测序的费用免除;如结果仍然相同,那么说明前次测序的结果准确,则您还需要支付验证测序的费用。

Q23.我的样品上有一个杂合位点,为什么在你们的报告上看不到杂合的信号?

A23.在检查报告时,设备和我们的技术员都倾向于提供给客户一个单一的信号,所以在出现杂合的位置上给出的信号往往是比较强的一个信号。所以如果您的PCR样品上是存在杂合位点的,请在测序

订单上注明,我们在修改报告时会加以注意。但如果在您预期出现杂合信号的位置上只有单一的信号,那么我们是不会人为将其修改为杂合位点的。出现这样的情况可能是在您的样品中杂合成份太少

的信号强度不足以被检查到,也许有其他更加灵敏的检测手段可以满足您的要求。

Q24.全自动荧光测序的准确性如何?

7

A24.ABI3730xl测序仪采用AB公司配套的Big Dye Terminator cycle sequencing Kit,其准确性达到800碱基只有1个以下的错误,并且该测序仪对碱基的判读有一个自身的评判值(Quality Value),

根据QV值的大小,也可以帮助我们来判断每一个碱基的准确程度

Q25.用测序的方法检测点突变可靠吗?

A25.有的客户想用测序的方法检测点突变体,我认为该方法可靠性不高。主要有以下两个原因。首先,我们并不清楚突变的序列与正常的序列的比例是多少。测序反应的信号强度直接与模板的量有关,如果突变的模板所占的比例很少,将直接作为背景噪音了,很难检测出来。只有当测序反应体系中正常的和突变的模板量比较接近时,才能较可靠地检测到突变体的存在。其次,在同一位置,

不同碱基的信号强度一般是不一样的。这样即使突变的模板所占的比较较高时,也不一定能准确检测到突变的存在。

另外,测序仪是设计用来测序正常的碱基序列的,软件在对扫描的结果进行处理时,会尽量提高主峰而将背景信号尽量压低,以得到尽可能好的结果。因此,当某处出现双峰时,测序仪一般会认

为信号弱的峰为背景信号,在处理过程中,将弱的峰进一步压低,这样不利于突变体的检测。因此认为,用测序的方法检测突变体的存在不是一个好的方法。

Q26.我要求5’到3’正向测序,为什么你们给我的序列是反的?

A26.您指的可能是插入片段的方向,而我们并不清楚您的样品是如何构建的。我们只能根据质粒上的序列来确定测序方向,所以在测序引物一栏中请不要使用3’引物和5’引物这样的字样,因为我们手中的资料在注明方向时可能和您手中的资料方向相反,请以T7,T3,SP6,M13f,M13r这样的形式来填写,或注明酶切位点方向比如“测序方向EcoRI到HindIII”。我们手中等质粒资料有限,

有时还需要您提供质粒的相关资料。

Q27.我的样品在你们所说的可靠范围内有一处存在疑问,能否重新测一次?

A27.我们希望您能够告诉我们存在疑问的位点的位置,如果从测序报告上的确无法作出准确判读,我们会重新进行实验。如果您指出的位点信号清晰准确,您仍然要求再进行一次实验,那么实验结果

和验证实验是相同的。

Q28.我的样品你们已经测通了,但为什么在overlap区有这么多的错配,给出的全序列和单个报告也存在差异,我该相信谁?

A28.给出的全序列是一个拼接的结果,当互相拼接的两个序列存在差异时,应该以序列质量更好的应该为主,这也就是为什么会出现错配和全序列与单个测序结果的差异。

Q29.你们为什么在primer walking时总将引物设计的那么靠前?

A29.我们在设计引物时有两个准则。一是设计引物区域的序列必须准确,二是在引物区后必须还有足够的准确序列以便拼接。这样我们设计引物的位置就必然比较靠前,在满足软件设定的条件下,

我们总会选取最靠近3’端的引物来作为最终的测序引物。

Q30.样品送测序前已经鉴定过了,有插入片段的,为什么测序结果是一个空质粒?

A30.测序是对样品的最好验证。结果为空载,可能如下:

(1) 可能在培养过程中发生插入片段的丢失,这种情况的发生无法事先预期

(2) 提供的克隆是假阳性克隆

8

测序常见峰图及原因说明

Q-1.PCR产物电泳检测条带单一,为什么测序结果说模板杂?

A-1.PCR产物电泳检测的结果只是一个粗略的定性结果。对于与目的片段条带大小只相差几个碱基的非特异性PCR扩增产物是无法用肉眼区分开的。但是DNA测序反应敏感而客观,可以直接反应出模板本身的情况。需要强调的是,高质量的PCR产物才可能得到高质量的测序结果,如果您对PCR产物的纯度不很确定,希望您可以将PCR产物进行克隆处理,以确保得到好的测序结果。

以下图为例:该反应的背景信号较高,不利于碱基的判读。

解决办法:改变PCR条件,重新扩增。或者可以将该PCR产物克隆到质粒中,初步筛选后进行单克隆测序。

Q-2.什么是碱基缺失?

A-2.以下图为例:

9

碱基缺失常见在PCR产物中,特别是从基因组中扩增得到的PCR片段,上图的186位缺失两个连续的T

解决方法:

(1) 使用反向引物继续测序,以矫正缺失位点并达到测通的目的。或者将该PCR产物克隆到质粒中,挑取单克隆测序。

(2) 如果可以确定该PCR片段中不应该有缺失的位点,那么可以改变PCR反应条件,重新扩增。

Q-3.什么是引物不纯?

A-3.以下图为例:

引物不纯造成移码现象,该种现象与模板杂在峰图都表现为背景峰较杂,但是引物不纯在峰图上表现的更有规律,一般在每一个主峰前或者后都有一个同一碱基的小峰。

解决办法:重新合成引物,或者将引物进行PAGE纯化后再进行测序。

Q-4.重复结构对测序有哪些影响?

A-4.以下图为例:

10

11

重复结构将导致测序复制框的滑移,重复结构之后峰型混乱。

解决办法:使用反向引物对模板进行测序,测到该重复结构处,即可完成模板全长的拼接。

Q-5.什么是模板不单一? A-5.以下图为例: (1) 菌液为非单克隆:

下图是pGEM-T 载体测序的结果,在83位点处测序结果出现双峰(插入后双峰),即模板中含有两个或两个以上的相同载体,但是插入片段不同。 解决办法:重新挑取单克隆或者重新提取质粒。需要注意的是,重新进行PCR 反应或者酶切鉴定仅能证明该克隆含有插入片段,并不足以证明模板的单一。

12

(2) PCR 产物不纯,如下图所示:

在197bp前测序峰表现为杂或有明显套峰,且在197bp位置有一个高高的A峰,这个A峰标志着此PCR产物中有一个片段大小为200bp左右的小片段。

注:PCR产物测序都是以A高峰终止。

解决方法:对PCR产物切胶纯化,再进行测序。

Q-6.Poly结构的测序结果是怎样的?

A-6.以下图为例:

13

14

以polyT 为例,在polyA/T 结构之后往往出现移码、双峰、套峰现象,而在polyG/C 之后会往往导致测序信号的衰减或者直接中断。

解决办法:使用反向引物对模板进行测序,测到该poly 结构处,即可完成模板全长的拼接。如果是较长的PloyG/C ,建议客户使用3.0试剂盒进行测序。

Q-7.含有回文结构的模板测序结果是怎样的? A-7.以下图为例:

15

位点94至137是一个回文结构,该结构导致后面的信号衰减,出现错误的判读。

解决方法:使用反向引物对模板进行测序,测到该回文结构处,即可完成模板全长的拼接。

A-8.测序峰图为前双峰的结果是什么样的?

A-8. (1) 产物中含有小片段PCR 产物;(2) 引物有两个结合位点,其中一个结果中断

解决方法:换引物反向测序。

Q-9.测序峰图为后双峰是什么样的?

A-9.原因和解决方法同回文结构及插入后双峰。

16

DNA测序常见问题及分析

DNA测序过程可能遇到的问题及分析 对于一些生物测序公司(如Invitrogen等),我们的菌液或质粒经过PCR和酶切鉴定都没问题,但几天后的测序结果却无法另人满意。 为什么呢? PCR产物直接进行测序,在PCR产物长度以后将无反应信号,机器将产生许多N值。这是由于Taq酶能够在PCR反应的末端非特异性地加上一个A碱基,我们所用的T载体克隆PCR产物就是应用该原理,通常PCR产物结束的位点,PCR产物测序一般末端的一个碱基为A(绿峰),也就是双脱氧核甘酸ddNTP终止反应的位置之前的A,A后的信号会迅速减弱。 N值情况一般是由于有未去除的染料单体造成的干扰峰。该干扰峰和正常序列峰重叠在一起,有时机器377以下的测序仪无法正确判断出为何碱基。有时,在序列的起始端的小片段容易丢失,导致起始区信号过低,机器有时也无法正确判读。在序列的3’端易产生N值。一个测序反应一般可以读出900bp以上的碱基(ABI3730可以达到1200bp),但是,只有一般600bp以前的碱基是可靠的,理想条件下,多至700bp的碱基都是可以用的。一般在650bp以后的序列,由于测序毛细管胶的分辩率问题,会有许多碱基分不开,就会产生N值。测序模板本身含杂合序列,该情况主要发生在PCR产物直接测序,由于PCR产物本身有突变或含等位基因,会造成在某些位置上有重叠峰,产生N值。这种情况很容易判断,那就是整个序列信号都非常好,只有在个别位置有明显的重叠峰,视杂合度不同N值也不同。 测序列是从引物3’末端后第一个碱基开始的,所以就看不到引物序列。有两种方法可以得到引物序列。1.对于较短的PCR产物 (<600bp),可以用另一端的引物进行测序,从另一端测序可以一直测通,可以在序列的末端得到该引物的反向互补序列。对于较长的序列,一个测序反应测不通,就只能将PCR产物片段克隆到载体中,用载体上的通用引物(T7/SP6)进行测序。载体上的通用引物与所插入序列间

高通量测序常用名词科普

高通量测序常用名词汇总 一代测序技术:即传统的Sanger 测序法,Sanger 法是根据核苷酸在待定序列模板上的引物点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以 A、T、C、G结束的四组不同长度的一系列核苷酸,每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧 核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-0H基团,使延长的寡聚核苷酸选择性地在G A、T或C处终止,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,通过检测得到DNA碱基序列。 二代测序技术:n ext gen eration seque ncing ( NGS又称为高通量测序技术,与传统测序相比,二代测序技术可以一次对几十万到几百万条核酸分子同时进行序列测定,从而使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序 (Deep sequencing )。NGS主要的平台有Roche(454 &454+), lllumina ( HiSeq 2000/2500、GAIIx、MiSeq),ABI S0LiD 等。 基因:Gene是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。 DNA:Deoxyribonucleic acid ,脱氧核糖核酸,一个脱氧核苷酸分子由三部分组成:含氮碱基、脱氧核糖、磷酸。脱氧核糖核酸通过3',5'- 磷酸二酯键按一定的顺序彼此相连构成长链,即DNA 链,DNA链上特定的核苷酸序列包含有生物的遗传信息,是绝大部分生物遗传信息的载体。RNA:Ribonucleic Acid ,,核糖核酸,一个核糖核苷酸分子由碱基,核糖和磷酸构成。核 糖核苷酸经磷酯键缩合而成长链状分子称之为RNA链。RNA是存在于生物细胞以及部分病 毒、类病毒中的遗传信息载体。不同种类的RNA链长不同,行使各式各样的生物功能,如

DNA测序技术发展简史

DNA测序技术发展简史 摘要:本文回顾了1965年一来DNA测序技术的发展,重点介绍了双脱氧链终止测序法及Maxam-Gillbert DNA化学降解法的出现,以及其他的一些相关技术的发展,以简练清晰的脉络梳理了DNA测序技术的发展史。 关键词:DNA测序;双脱氧链终止测序法;Maxam-Gillbert DNA化学降解法 l953年,Watson和Crick提出DNA双螺旋结构模型以后,人们就开始探索研究DNA 一级结构的方法。1965年,美国Cornell大学以Rober Holley为首的科学家小组,第一次完成了长度为75个核苦酸的酵母丙氨酸tRNA的全序列测定并将结果发表在Science杂志上。其办法是利用各种RNA酶把tRNA降解成寡核苷酸,经分离纯化之后,再分别测定这些寡核苷酸短片段的核苷酸顺序掀开了DNA测序技术研究的序幕[1]。但那时由于没有找到分别降解四种脱氧核糖核酸的专一酶,只能通过测定RNA 的序列来推测DNA的序列,即先将RNA用酸水解或外切酶降解,再经双向电泳同系层析将其分开(小片段重叠法)。 1971年,华裔分子生物学家吴瑞博士(Dr.Ray Wu)在1968年独创性地设计了一种崭新的引物-延伸测序策略,发展出了测定DNA核苷酸序列的第一个方法,提高了DNA序列分析的速度,并于1971年首次成功地测定了λ噬菌体两个粘性末端的完整序列[2]。 l977年,英国剑桥大学分子生物学实验室的Fred Sanger领导的研究小组在吴瑞博士的基础上分别在Nature和PNAS发表文章,提出DNA聚合酶的双脱氧链终止原理测定核苷酸序列的方法,Sanger作为世界上第一个解决DNA测序的科学家,再一次荣获诺贝尔奖(1980年)[3]。DNA双脱氧链终止测序法,也称酶法或末端终止法,是利用2’,3’-双脱氧三磷酸核苷(2’,3’-ddNTP或简称ddNTP)来终止DNA的复制反应。ddNTP可以在DNA聚合酶作用下通过其5’-磷酸基团掺入到正在增长的DNA链中,但由于ddNTP在脱氧核糖的3’位置缺少一个羟基,它们不能同后续的dNTP形成磷酸二酯键(由M.R.Atkinson等人于1969年发现),从而中断延伸反应。该法将待测DNA样品分成四组,在每组DNA合成反应混合物的四种普通dNTP中加入少量的一种ddNTP,这样一来,链延伸将与偶然发生但却十分特异的链终止展开竞争,最终得到反应一系列的核苷酸链,其长度取决于从用以起始DNA合成的引物末端到出现过早链终止的位置之间的距离,由于这四组独立的酶反应中分别采用四种不同的ddNTP,将产生四组分别终止于模板链的每一个A、G、C或T的位置上的寡核苷酸,使用变性测序凝胶电泳分析这四组反应的产物,即可从放射自显影片上直接读出DNA的序列[4]。 而美国哈佛的Alan Maxam和Walter Gilbert领导的研究小组也几乎同时发明出DNA序列测定方法——Maxam-Gillbert DNA化学降解法测序,其基本原理是用特异的化学试剂修饰DNA分子中的不同碱基,然后用哌啶切断反应碱基的多核苷酸链。该法设计四组特异的反应:①G反应,用硫酸二甲酯使鸟嘌呤上的N7甲基化,加热引起甲基化鸟嘌呤脱落,导致多核苷酸链可在该处断裂;②G+A反应,用甲酸使A和G嘌呤环上的N原子质子化,从而使其糖苷键变得不稳定,再用哌啶使键断裂;③T+C反应,用肼使T和C的嘧啶环断裂,再用哌啶除去碱基;④C反应,在有盐存在时,只有C与肼反应,并被哌啶除去。这样一来,同一个末端标记的DNA片段在四组互相独立的化学反应中分别得到部分降解,每一组反应特异地针对某一种或某一类碱基,生成四组放射性标记的分子,从共同起点(放射性标记末端)延续到发生化学降解的位点,每组混合物中均含有长短不一的DNA分子,其长度取决于该组反应所针对的碱基在原DNA全片段上的位置。最后,通过聚丙烯酰胺凝胶电泳进行分离此后组产物,再从放射自显影片上即可读出序列[5]。

纳米孔测序是极具前景的下一代测序技术

纳米孔测序是极具前景的下一代测序技术 Nanopore Sequencing 2019 - Patent Landscape Analysis 随着各种技术的新产品推出,哪些公司将在知识产权方面引领纳米孔测序? 纳米孔测序是极具前景的下一代测序技术 据麦姆斯咨询介绍,纳米孔测序是新一代测序(NGS)技术之一,被认为能够彻底革新DNA分析。随着时间地推移,目前已经开发出了不同形式的纳米孔测序技术,包括蛋白质纳米孔、固态纳米孔和复合纳米孔。该技术可以高速生成超长读数,减少样品制备时间以及将读数重组成原始序列所需要的数据处理时间。 这项新技术可以开发一个需要遗传指纹来快速识别癌症类型和病原体的全新客户群。根据DataBridge的数据,全球下一代测序市场将快速增长,市场规模预计将从2017年的48.3亿美元增长到2024年的163.5亿美元,2018~2024年期间的复合年增长率(CAGR)预计为19.2%。 目前,Oxford Nanopore Technologies是唯一一家将基于纳米孔的测序仪推向市场的公司。不过,还有其它几家公司正在开发自己的相关技术,Oxford Nanopore Technologies公司可能很快将不再是纳米孔测序仪的唯一供应商。例如,Two Pore Guys公司宣布将在2019年春季发布其产品套件。 随着新产品在未来的相继推出,了解纳米孔测序市场相关参与者的知识产权(IP)状况和策略,同时发现专利新申请人及其所带来的威胁至关重要。为此,著名市场研究机构Yole 子公司Knowmade深入调研了基于纳米孔的测序技术(蛋白质、固态和复合)及其应用(肿瘤学、植物遗传学等)中涉及的知识产权主要参与者。本报告可以帮助读者发现业务风险和机遇,预测新兴应用,支持战略决策以加强市场地位。 纳米孔测序全球专利申请趋势 对专利申请趋势的分析表明,从2008年到2013年,纳米孔测序相关的专利申请获得了重要增长。这一增长源自于学术研究团队(哈佛大学和加州大学)对纳米孔测序概念的验证。

一代测序常见问题及解决策略

测序常见问题及解决策略 一、PCR常见问题 1.假阴性,不出现扩增条带 PCR出现假阴性结果,可从以下几个方面来寻找原因: 1)模板:①模板中有杂蛋白;②模板中有Taq酶抑制剂;③在提取制备模板时丢失过多;④模板核酸变性不彻底。 2)酶:酶失活或反应时忘了加酶。 3)Mg2+浓度:Mg2+浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR 扩增产量甚至使PCR扩增失败而不出扩增条带。 4)反应条件:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。 5)靶序列变异:靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。 2.假阳性 假阳性:出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。常见原因有: 1)引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引 物太短,容易出现假阳性。需重新设计引物。 2)靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。二是空气中的 小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。 3.出现非特异性扩增带 PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带。非特异性条带的出现,其原因:一是引物

20个测序常见的问题

20个测序常见的问题 1.为什么需要新鲜的菌液? 首先,新鲜的菌液易于培养,可以获得更多的DNA,同时最大限度地保证菌种的纯度。2.如何提供菌液? 如果您提供新鲜菌液,用封口膜封口以免泄漏;也可以将培养好的4~5ml菌液沉淀下来,倒去上清以方便邮寄。同时邮寄时最好用盒子以免邮寄过程中压破。 3.如何制作穿刺菌? 用灭菌过1.5ml或2ml离心管加入LB琼脂(7g/L)斜面凝固,用接种针挑取分散良好的单菌落穿过琼脂直达管底,不完全盖紧管盖适当温度培养过夜,然后盖紧盖子加封口膜,室温或4度保存。 4.PCR产物直接测序有什么要求? (1)扩增产物必须特异性扩增,条带单一。如果扩增产物中存在非特异性扩增产物,一般难以得到好的测序结果; (2)必须进行胶回收纯化; (3)DNA纯度在1.6—2.0之间,浓度50ng/ul以上。 5.为什么PCR产物直接测序必须进行Agarose胶纯化? 如果不进行胶纯化而直接用试剂盒回收,经常会导致测序出现双峰甚至乱峰,这主要是非特异性扩增产物或者原来的PCR引物去除不干净所导致。大多所谓的PCR“纯化试剂盒”实际上只是回收产物而不能起到纯化的作用的。对于非特异性扩增产物肯定无法去除,而且通常他们不能够完全去除所有的PCR引物,这会造成残留的引物在测序反应过程中参与反应而导致乱峰。 6.如何进行PCR产物纯化? PCR产物首先必须用Agarose胶电泳,将特异扩增的条带切割下,然后纯化。使用凝胶回收试剂盒回收,产物用ddH2O溶解。 7.PCR产物直接测序的好处? (1) PCR产物直接测序可以反映模板的真实情况; (2) 省去克隆的实验费用和时间; (3) PCR产物测序正确的片段进行下一步克隆实验使结果更有保障; (4) 混合模板进行PCR的产物直接测序可以发现其中的点突变。 8.对用于测序的质粒DNA的要求有哪些? 对测序模板DNA的一般要求:(1)DNA纯度要求高,1.6—2.0之间,不能有混合模板,也不能含有RNA,染色体DNA,蛋白质等;(2)溶于ddH2O中,溶液不能含杂质,如盐类,或EDTA等螯合剂,将干扰测序反应正常进行。 9.如何鉴定质粒DNA浓度和纯度? 我们使用水平琼脂糖凝胶电泳,并在胶中加入0.5ug/ml的EB(电泳缓冲液中不必加E,加一个已知浓度的标准样品。电泳结束以后在紫外灯下比较亮度,判断浓度和纯度。此方法可以更直接、准确地判断样品中是否含有染色体DNA、RNA等,也可以鉴别抽提的质粒DNA 的不同构型。 质粒DNA的3种构型是指在抽提质粒DNA过程中,由于各种原因的影响,使得超螺旋的共价闭合环状结构的质粒(SC)的一条链断裂,变成开环状(OC)分子,如果两条链发生断裂,就变成为线状(L)分子。这3种分子有不同的迁移率,通常,超螺旋型(SC)迁移速度最快,其次为线状(L)分子,最慢为开环状(OC)分子。使用紫外分光光度计检测,或者用溴乙锭-标准浓度DNA比较法只能检测抽提到的产物中的浓度,甚至由于抽提的质粒DNA中含有RNA、蛋白质、染色体DNA等因素的干扰,浓度检测的数值也是没有多少意义的。

下一代测序技术

下一代测序技术 摘要:DNA测序技术对生物学的发展有着最根本的意义。Sanger法测序经过了30年的应用和发展,而在过去三年中,以454, solexa, SOLiD为代表的高通量测序平台已经大幅度降低了测序成本,提高了测序速度,成为基因组测序市场的主流。在此基础上,各种下一代测序技术正在快速研发,将使基因组测序和重测序的通量和成本更加平民化,为基因组学、遗传学、生物医学和健康科学等领域的发展创造更加广阔的前景。本文将对所有新的测序技术的原理、优势和应用进行总结和展望。 1977年Maxim、Gilbert发明的化学降解法测序技术和Sanger发明的双脱氧末端终止法测序技术不仅为他们赢得了诺贝尔奖,也使得从DNA序列层面研究分子遗传学成为可能。特别是后者,从最开始的凝胶电泳到越来越高通量的毛细管电泳,从开始的手工操作到越来越多自动测序仪的出现,各种改进的Sanger 测序技术统治了DNA测序领域三十年,至今仍在长片段测序,大片段文库测序方面有广泛的应用。人类基因组计划(HGP)的完成就是靠Sanger测序法。 在耗费了庞大成本的人类基因组计划宣布完成之后,越来越多的物种基因组测序工作对测序成本和通量提出了更高的要求,新一代测序技术(也被称为第二代测序技术)开始登上历史舞台。2005年454 life science公司率先推出了焦磷酸测序技术,使测序成本较Sanger法降低了100倍,速度快了(提高)100倍,人类基因组测序逐步进入了100,000美元时代。如今,454 FLX测序仪(Roche Applied Science)、基于“边合成边测序”的Solexa测序仪(Illumina Inc.)和使用“边连接边测序”的SOLiD测序仪(Applied Biosystems)已经成为基因组测序市场的主流机型。除此之外,2008年一年内又有HeliScope单分子测序仪(Helicos)和Polonator(Dover/Harvard)两种测序机型商品化。 在NHGRI(美国人类基因组研究中心)的支持和推动下,未来几年内测序成本将在目前基础上再下降100倍,最终使个人基因组测序成本降至1000美元,人类将革命性的进入个人基因组时代。高通量和低成本的测序技术将进入到普通实验室,基因组测序的简单化将使分子生物学飞跃发展,个人基因组测序产业化也将对健康医学等领域产生革命性的影响。本文将首先对目前已经商品化的新一代测序技术(454、Solexa、SOLiD、HeliScope)做一介绍和比较,再对正在研发中的各种下一代测序方法(第三代测序技术)的原理和应用做一详细的介绍和展望。 1. Roche 454测序技术 2005年454生命科学公司在《自然》杂志发表论文,介绍了一种区别于传统Sanger法的全新高通量测序方法,将测序成本降低了100倍以上,开创了第二代测序技术的先河,454测序仪也成为最先商品化的第二代测序仪。正是在此基础上,其它如Solexa、SOLiD等第二代测序仪才相继问世。454测序技术的原理在于首先使用乳液PCR(emulsion PCR)技术(图一a)扩增已经连接上接头的基因组文库片段,扩增子结合在28 μm的磁珠表面,将乳液破坏后用变性剂处理磁珠,再将含有扩增子的磁珠富集到芯片表面,用测序引物进行测序。在测序过程中,454使用了一种“焦磷酸测序技术”(Pyrosequencing),即在合成DNA 互补链的过程中,每加入一种单核苷酸(dNTP),如与模板链配对结合,就会释放出一个焦磷酸,与底物腺苷-5’-磷酸硫酸(APS)在A TP硫酸化酶作用下合成A TP,与荧光素(Luciferin)一起在荧光素酶(Luciferase)的作用下,会发出一个光信号,由芯片背后连接的电荷耦合装置(CCD,Charge Coupled Device)捕捉。454测序技术合成DNA链使用的是普通单核苷酸,没有任何标记,合成中也没有切割基团等生化反应,因此读长可以达到300-400bp。但没有阻断(block)和去阻断(de-block)过程也意味着对连续重复单核苷酸的阅读只能根据信号强度来判断,容易对其中插入和缺失碱基阅读错误。454测序技术相比较其他第二代测序技术如Solexa和SOLiD, 在读长上有着巨大的优势,但是目前成本要略高。总体而言,高读长使得454技术比较利于De Novo拼接和测序。

高通量测序技术

高通量测序技术(High-throughput sequencing)又称“下一代”测序技术 ("Next-generation" sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。 根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序(DNA nanoball sequencing)等。 高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。 实验过程 1.样本准备(sample fragmentation) 2.文库构建(library preparation) 3.测序反应(sequencing reaction) 4.数据分析(data analysis) 测序平台 自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,曾推出过3730xl DNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。(见表一) 公司名称技术原理技术开发者 Apply Biosystems(ABI) 基于磁珠的大规模并行克隆连接 DNA测序法 美国Agencourt私人基因组学公司(APG) Illumina 合成测序法英国Solexa公司首席科学家David Bentley Roche 大规模并行焦磷酸合成测序法 美国454 Life Sciences公司的创始人Jonathan Rothberg Helicos 大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake Complete Genomics DNA纳米阵列与组合探针锚定连接 测序法 美国Complete Genomics公司首席科学家radoje drmanac 表一:主流测序平台一览 Roche 454焦磷酸测序 (pyrophosphate sequencing) Illumina Solexa 合成测序 (sequence by synthesize) Illumina Genome AnalyzerIIx测序原理 Illumina公司的新一代测序仪Hiseq 2000和Hiseq 2500具有高准确性,高通量,高灵敏度,和低运行成本等突出优势,可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究。Hiseq是一种基于单分子簇的边合成边测序技术,基于专有的可逆终止化学反应原理。测序时将基因组DNA的随机片段附着到光学透明

CHIP SEQ分析常见问题集锦

ChIP-Seq分析常见问题集锦 染色质免疫共沉淀测序(ChIP-Seq)是指对染色质免疫共沉淀(ChIP)获得的DNA片段进行大规模测序,并能把所研究蛋白的DNA结合位点精确定位到基因组上。 Roche GS FLX Titanium、Illumina Solexa GA IIx和AB SOLID4这3种测序技术均可以用于ChIP-seq,其中采用Illumina Solexa GA IIx进行ChIP-Seq已有较多文献报道。 ChIP-Seq技术高质量、高通量、低成本的数据产出,为表观遗传组学研究奠定了技术基础。研究者可以在以下几方面展开研究:(1)判断DNA链的某一特定位置会出现何种组蛋白修饰;(2)检测RNA polymerase II及其它反式因子在基因组上结合位点的精确定位;(3)研究组蛋白共价修饰与基因表达的关系;(4)CTCF转录因子研究。 ChIP-Seq有什么样品要求? 答:(1)请提供浓度≥10ng/ul、总量≥200ng、OD260/280为1.8~2.2的DNA样品;若单次ChIP后DNA量不够,建议将2~3次ChIP的DNA合并在一起。 (2)请提供DNA打断时检测胶图,要求打断后DNA电泳主带在200-500bp范围内;请对于ChIP 获得DNA设计引物进行QPCR验证和定量,能够提供检测位点的检测报告。附阳性和阴性对照。(3)样品请置于1.5ml管中,管上注明样品名称、浓度以及制备时间,管口使用Parafilm 封口。在运输前将所有样品管固定于50ml带盖离心管中,再将50ml管放在封口袋中。 ChIP-Seq相比ChIP-chip有哪些优势? 答:第一,ChIP-Seq能实现真正的全基因组分析。目前所能获得的芯片上固定的探针只能代表全基因组部分序列,所获得的杂交信息具有偏向性;第二,对于结合位点分析,ChIP-Seq 通过寻找“峰”,结合分辨率可精确到10~30bp,而芯片上探针由于长度所限,无法精确定位,即使目前最高水平的商业芯片都无法提供可与ChIP-Seq媲美的分辨率;第三是所需样本数量。ChIP-chip需要多达4~5μg的起始样本,在杂交之前需要进行LM-PCR,但可能导致背景增高,竞争性扩增等导致假阳性。而ChIP-Seq仅需要纳克级起始材料,如SOLiD起始材料可低至20ng。两者技术特点如下: 研究方法CHIP-on-chip CHIP-Seq 分辨率30~100bp1bp 覆盖范围受芯片容量限制,只能选择性地扫 描特定区域,无法覆盖全基因组只要测定的序列(Reads)能够定位到基因组上,就能获得全部基因组信息 缺陷探针和非特异性区域杂交测序数据会有一些GC含量偏向 性价比只能研究在基因组上广泛存在的目 的位点(Broading bingding)可以扫描全基因组;可以研究在基因组上存在的稀有目的位点(Sharp bingding) 需要的DNA 量 高低(10~50bp)动态量程弱信号会被遗弃;强信号会饱和没有局限 选择数据产 出量 不可以可以

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

基因测序(PCR常见问题)

基因测序(PCR常见问题)生物专业很实用 PCR常见问题 PCR常见问题分析及对策(无扩增产物、非特异性扩增、拖尾、假阳性) 问题1:无扩增产物 现象:正对照有条带,而样品则无 原因: 1.模板:含有抑制物,含量低 2.Buffer对样品不合适 3.引物设计不当或者发生降解 4.反应条件:退火温度太高,延伸时间太短 对策: 1.纯化模板或者使用试剂盒提取模板DNA或加大模板的用量 2.更换Buffer或调整浓度 3.重新设计引物(避免链间二聚体和链内二级结构)或者换一管新引物 4.降低退火温度、延长延伸时间 问题2:非特异性扩增 现象:条带与预计的大小不一致或者非 特异性扩增带

原因: 1.引物特异性差 2.模板或引物浓度过高 3.酶量过多 4.Mg2+浓度偏高 5.退火温度偏低 6.循环次数过多 对策: 1.重新设计引物或者使用巢式PCR 2.适当降低模板或引物浓度 3.适当减少酶量 4.降低镁离子浓度 5.适当提高退火温度或使用二阶段温度法 6.减少循环次数 问题3:拖尾 现象:产物在凝胶上呈Smear状态。 原因: 1.模板不纯 2.Buffer不合适 3.退火温度偏低 4.酶量过多 5.dNTP、Mg 2+浓度偏高 6.循环次数过多 对策: 1.纯化模板 2.更换Buffer 3.适当提高退火温度 4.适量用酶 5.适当降低dNTP和镁离子的浓度 6.减少循环次数 问题4:假阳性 现象:空白对照出现目的扩增产物 原因: 靶序列或扩增产物 的交*污染 对策: 1.操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外; 2.除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及加样枪头等均应一次性使用。 3.各种试剂最好先进行分装,然后低温贮存 PCR引物设计的黄金法则(转自tiangen)

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

一代测序、高通量测序等各种测序相关概念介绍

什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行 细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

相关文档
最新文档